Web Chap A

  • Uploaded by: tanvir09
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Web Chap A as PDF for free.

More details

  • Words: 1,544
  • Pages: 22
Web Chapter A Optimization Techniques Overview • Unconstrained & Constrained Optimization

• Calculus of one variable • Partial Differentiation in Economics • Appendix to Web Chapter A: » Lagrangians and Constrained Optimization 2002 South-Western Publishing

Slide 1

Optimum Can Be Highest or Lowest      • Finding the maximum flying range for the Stealth Bomber is an optimization                problem.   • Calculus teaches that when the first                     derivative is zero, the solution is at an optimum.   • The original Stealth Bomber study showed that a  controversial flying V­wing design optimized the  bomber's range, but the original researchers failed to   find that their solution in fact minimized the range.   • It is critical that managers make decision that     maximize,  not minimize, profit potential! Slide 2

Unconstrained Optimization  • Unconstrained Optimization is a relatively  simple calculus problem that can be  solved using differentiation, such as  finding the quantity that maximizes profit  in the function: 

π (Q) = 16∙Q ­ Q2.  • The answer is Q = 8 as we will see. Where  dπ/dQ = 0.  Slide 3

Constrained Optimization

• Constrained Optimization involves one or more  constraints of money, time, capacity, or energy.   • When there are inequality constraints (as when  you must spend less than or equal to your total  income), linear programming can be used.   • Most often, managers know that some  constraints are binding, which means that they  are equality constraints.   » Lagrangian multipliers are used to solve these problems  (which appears in the Appendix to Web Chapter A). Slide 4

Optimization Format • Economic problems require tradeoffs forced on  us by the limits of our money, time, and energy. • Optimization involves an objective function  and one or more constraints , b. 

Maximize    y = f(x1 , x2 , ..., xn ) Subject to g(x1 , x2 , ..., xn ) < b  or:    Minimize      y = f(x1 , x2 , ..., xn )   Subject to g(x1 , x2 , ..., xn ) > b  Slide 5

Using Equations • profit = f(quantity) or Π = f(Q) » dependent variable & independent variable(s) » average profit = Π/Q » marginal profit = ∆Π / ∆Q

• Calculus uses derivatives » dΠ/dQ = lim ∆Π / ∆Q ∆Q

0

» SLOPE = MARGINAL = DERIVATIVE » NEW DECISION RULE: To maximize profits, find where dΠ/dQ = 0 -- first order condition Slide 6

Quick Differentiation Review Name

Function

Derivative

Example

• Constant Y = c

dY/dX = 0

Y=5 dY/dX = 0

• Line Y = c•X

dY/dX = c

Y = 5•X dY/dX = 5

• Power Y = cXb

dY/dX = b•c•X b-1

Y = 5•X2 dY/dX = 10•X Slide 7

Quick Differentiation Review • Sum Rule Y = G(X) + H(X) example

Y = 5•X + 5•X2

dY/dX = dG/dX + dH/dX dY/dX = 5 + 10•X

• Product Rule Y = G(X)•H(X)

dY/dX = (dG/dX)H + (dH/dX)G

example

Y = (5•X)(5•X2 ) dY/dX = 5(5•X2 ) + (10•X)(5•X) = 75•X2

Slide 8

Quick Differentiation Review • Quotient Rule Y = G(X) / H(X) dY/dX = (dG/dX)•H - (dH/dX)•G H2 Y = (5•X) / (5•X2) dY/dX = 5(5•X2) -(10•X)(5•X) (5•X2)2 = -25X2 / 25•X4 = - X-2 • Chain Rule Y = G [ H(X) ] dY/dX = (dG/dH)•(dH/dX) Y = (5 + 5•X)2 dY/dX = 2(5 + 5•X)1(5) = 50 + 50•X Slide 9

Applications of Calculus in Managerial Economics • max imizati on

probl em :   

A  profit  function  might  look  like  an  arch,  rising  to  a  peak  and  then  declining  at  even  larger  outputs.    A  firm  might  sell  huge  amounts at very low prices, but discover that profits are low  or negative. • At the maximum, the slope of the profit function is zero.  The  first order condition for a maximum is that the derivative at  that point is zero.   • If  π =  50∙Q  ­  Q2,  then  dπ/dQ  =  50  ­  2∙Q,  using  the  rules  of  differentiation.   • Hence, Q = 25 will maximize profits where 50 ­ 2•Q = 0. Slide 10

More Applications of Calculus • minimization problem: Cost minimization 

supposes that there is a least cost point to produce.  An  average cost curve might have a U­shape.  At the least  cost point, the slope of the cost function is zero.  

• The first order condition for a minimum is that  the derivative at that point is zero.   • If C = 5∙Q2 ­ 60∙Q, then dC/dQ = 10∙Q ­ 60.   • Hence, Q = 6 will minimize cost where    10•Q ­ 60 = 0. Slide 11

More Examples • Competitive Firm: Maximize Profits » where Π = TR - TC = P•Q - TC(Q) » Use our first order condition: dΠ /dQ = P - dTC/dQ = 0. a function of Q » Decision Rule: P = MC. Problem 1



Max Π = 100•Q - Q2 100 -2•Q = 0 implies Q = 50 and Π = 2,500

Problem 2



Max Π = 50 + 5•X2 So, 10•X = 0 implies Q = 0 and Π = 50 Slide 12

Second Order Condition: One Variable

• If the second derivative is negative, then it’s a maximum • If the second derivative is positive, then it’s a minimum Problem 1 ●Max

Problem 2

Π = 100•Q - Q

2

100 -2•Q = 0 second derivative is: -2 implies Q =50 is a MAX

●Max

Π = 50 + 5•X2

10•X = 0 second derivative is: 10 implies Q = 0 is a MIN Slide 13

Partial Differentiation • Economic relationships usually involve several independent variables. • A partial derivative is like a controlled experiment -- it holds the “other” variables constant • Suppose price is increased, holding the disposable income of the economy constant as in Q = f (P, I ), then ∂Q/∂P holds income constant. Slide 14

Problem: • Sales are a function of advertising in newspapers and magazines ( X, Y) • Max S = 200X + 100Y -10X2 -20Y2 +20XY • Differentiate with respect to X and Y and set equal to zero.

∂S/∂X = 200 - 20X + 20Y= 0 ∂S/∂Y = 100 - 40Y + 20X = 0 • solve for X & Y and Sales Slide 15

Solution: 2 equations & 2 unknowns • 200 - 20X + 20Y= 0 • 100 - 40Y + 20X = 0 • Adding them, the -20X and +20X cancel, so we get 300 - 20Y = 0, or Y =15 • Plug into one of them: 200 - 20X + 300 = 0, hence X = 25 • To find Sales, plug into equation: S = 200X + 100Y -10X2 -20Y2 +20XY = 3,250 Slide 16

International Import Restraints • Import quotas of Japanese automobiles are  inequality constraints. The added constraint will  affect decisions. • A Japanese manufacturer will shift more  production to U.S. assembly facilities and  increase the price of cars exported to the U.S.   • We may also expect that the exported cars will be  "top of the line" models, and we expect U.S.  manufacturers to raise domestic car prices. Slide 17

Web Chapter A -- Appendix Objective functions are often constrained by one or more “constraints” (time, capacity, or money) Max L = (objective fct.) - λ{constraint set to zero} Min L = (objective fct.) +λ{constraint set to zero} An artificial variable is created for each  constraint in the Lagrangian multiplier technique.   This artificial variable is traditionally called  Slide 18

Maximize Utility Example example: Max Utility subject to a money constraint Max U = X•Y2 subject to a $12 total budget with the prices of X as $1, the price of Y as $4 (suppose X represents soda and Y movie tickets). Max L = X•Y2 - λ { X + 4Y - 12} • differentiate with respect to X, Y and lambda, λ. Slide 19

∂L/∂X = Y2 - λ = 0 ∂L/∂Y = 2XY - 4λ = 0 ∂L/∂λ = X + 4Y- 12 = 0

Y2 = λ 2XY = 4λ

Three equations and three unknowns Solve: Ratio of first two equations is: Y/2X = 1/4 or Y = .5 X. Substitute into the third equation: We get:

X = 4; Y = 2; and λ = 4 • Lambda is the marginal (objective function) of the (constraint). In the parentheses, substitute the words used for the objective function and constraint.

• Here, λ = the marginal utility of money.

Slide 20

Problem Minimize crime in your town • • • •

Police, P, costs $15,000 each. Jail, J, costs $10,000 each. Budget is $900,000. Crime function is estimated: C = 5600 - 4PJ » Set up the problem as a Lagrangian » Solve for optimal P and J, and C » What is economic meaning of lambda? Slide 21

Answer • Min L= 5600 - 4PJ + λ{15,000•P + 10,000•J -900,000 } • To Solve, differentiate

1. ∂L/∂P: - 4•J +15,000•λ = 0 2. ∂L/∂J: - 4•P +10,000•λ = 0 3. ∂L/∂λ : 15,000•P +10,000•J -900,000 =0 J/P = 1.5 so J = 1.5•P & substitute into (3.) 15,000•P +10,000•[1.5•P] - 900,000 = 0 solution: P = 30, J = 45, C = 200 and λ = -.012 • Lambda is the marginal crime (reduction) for a dollar of additional budget spent

Slide 22

Related Documents

Web Chap A
April 2020 34
Chap A
June 2020 7
Chap A
June 2020 3
Chap 11 A
November 2019 10
Dissertation 1992 Chap-a
November 2019 22
Chap 2 A
November 2019 16

More Documents from "Michael Pearson"

Planning And Strategy
April 2020 21
Web Chap A
April 2020 34
Chap 14
April 2020 22
Lec-2_04.02.2008
April 2020 15
Chap 3
April 2020 21
Chap 8
April 2020 13