Video Atc Dme.docx

  • Uploaded by: Bruce Landa II
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Video Atc Dme.docx as PDF for free.

More details

  • Words: 1,359
  • Pages: 5
Albert Einstein fue un físico estadounidense de origen alemán conocido principalmente por el desarrollo de la teoría de la relatividad y la explicación teórica del movimiento browniano y el efecto fotoeléctrico. Nació en la ciudad de Ulm, Alemania, el 14 de marzo de 1879. La participación de Einstein en la escuela no fue destacada, debido a que le aburrían las clases y no se adaptaba a la rígida disciplina militar que se estilaba en los colegios de la época. Sin embargo, comenzó a desarrollar un fuerte interés por la ciencia. Este interés le llevó a cursar estudios en el Politécnico de Zurich, en Suiza. Einstein trabajó como funcionario de la Oficina de Patentes de Berna. En 1905 publicó cuatro trabajos de investigación que resultaron fundamentales en las ciencias físicas. En 1915 amplió las consideraciones sobre la naturaleza de la luz, el tiempo y el espacio, para incluir la influencia de la gravedad. Einstein ganó el Premio Nobel de Física en 1921, debido a su investigación sobre el efecto fotoeléctrico. Él se hizo repentinamente famoso, incluso más allá del ámbito de la física. Durante los últimos años de su vida, Einstein intentó sin éxito desarrollar nuevas teorías físicas. Él creía que necesitaba mayor conocimiento matemático para desarrollar sus ideas. Paralelamente, se desempeñó como activista por la paz, y como asesor para la creación del estado de Israel. Este gran físico muere el 18 de abril de 1955, a consecuencia de la ruptura de un aneurisma.

A typical light aircraft gyro vacuum system consists of the following parts: in cockpit air filter, suction gauge, attitude and directional gyro, pressure relief valve and the engine driven vacuum pump with air exhaust. Sometimes a warning light is installed and this illuminates when the suction drops below 4,5 inHg Air is drawn in by the vacuum pump through a fine air filter and it enters the instruments to drive the gyro rotor. The air is then directed on the rotor by a small nozzle and the rotational speeds are set around 20000 RPM. The air is then routed through hoses along a pressure relief valve and pump

and is eventually vented overboard somewhere in the engine compartment. Make sure that air exit is not blocked. Air Filter: This filter utilizes 0,3 um (micron) filtration media providing superior filtration without undue air flow restriction, it has 3/8" installation tubes for routing hoses to the attitude and gyro compass. You may expect its life time to be around 500 hours, but there have been cases in which the filter lasted a lot longer. As long as the suction gauge shows a good indication, there should be no problem. Pressure Relief Valve: Without this valve the suction would be too high and could damage the delicate nozzle and rotor system by letting the rotor spin at a RPM that is too high. Premature wear and instrument failures will then be the result. The suction should be kept within 4,5 inHg and 6,5 inHg. Suction Gauge: As already mentioned above, the image here shows a 1" suction gauge which you commonly will find in light aircraft. It clearly shows the correct range for the suction to be in the green arc. This is so that vacuum gyro instruments may operate within their specifications for said reasons. There are basically two posible sources for an aircraft to obtain vacuum power. They are as follows: A) Vacuum Pump: This is usually a dry vane carbon type air pump and it has a limited life span. You may expect that to be around 500 to 1000 hours and if they fail you will notice a slow drop in suction and gyros will slowly start to tumble in the instruments. This effect is especially noticable in the attitude indicator. B) Venturi Tube: Mostly used on small VFR only aircraft as this tube supplies vacuum only when the aircraft already flying (sometimes propeller slipstream will have that effect too just by taxiing on the ground, but it wil be below the specified range). And as they are sitting in the airflow, they will produce drag (on the other hand a vacuum pump costs a tiny bit of engine power) and it can pick up ice disabling these instruments for IFR flight. Electrically Driven Gyro's: These are more expensive, but the advantage is that the gyro can run at a higher RPMs and the instruments are completely dust sealed and will give a more stable indication and longer service life for the pilot. Vacuum System Failures

There are a number of checks that must be done on a regular basis by the pilot: during runup and flight the vacuum pressure must be between 4,5 and 6.5 InHg (in the green). Some installations have a low vacuum warming light on the panel, this should be illuminated when the engine is not running or at a too low RPM for the relief valve to be able to regulate the suction properly. When suction is above 6,5 inHg, the rotor RPMs will be too high and they may eventually suffer from bearing damage. You will see that the instruments will react very quickly, almost too lively to be normal. Suction values near the lower end (4,5 inHg) of the scale will result in lower gyro RPMs and possible tumbling and much slower response and lagging of the indicators. When the vacuum pump begins to fail there will be a gradually drop in suction indication and RPM of the gyros. This may go unnoticed for while until the rotor RPM is too low and indication of either the attitude (will start tumbling) or gyro compass indication is erratically. The vacuum system should be checked at least annually or every 100 hours for certified aircraft. It would be a wise decisión to keep the same schedule with homebuilts too. Test: The test carried out on the vacuum system belonging to aircraft PA 30, in order to verify its proper functioning, was carried out by means of a module that simulated the operation of the vacuum pump. To start the module activation, it is necessary to check the power supply and perform the analysis of the operation of the module (which includes checking which are the "switches" that have to be operated.) Then place the appropriate nipples for the connection of the module with the motor system right, recognizing at the same time the instruments involved in the operation of the system.Finally the previous procedure, the ignition starts the equipment and proceeds to verify in the respective instrument that the vacuum pressure is within the range of 4.5 to 6.5 inHg In the instrument located in the cabin of the aircraft, it could be observed that the pressure was at an approximate of 5 inHg, so (despite being in the established range) in order to test the Pressure Relief Valve, it was regulated to 4.5 inHg, determining that the system was in excellent condition.

La prueba realizada al sistema de vacío perteneciente a la aeronave PA 30, para verificar el correcto funcionamiento del mismo fue llevada a cabo mediante un módulo que simulaba el funcionamiento de la vacuum pump. Para iniciar el accionamiento del módulo es necesario verificar la alimentación y realizar el análisis del funcionamiento del mismo (lo que incluye verificar cuáles son los “switchs” que tienen que accionarse. Luego colocar los nipples adecuados para la conexión del módulo con el sistema del motor derecho, reconociendo a la vez los instrumentos involucrados en el funcionamiento del sistema. Finalizado el procedimiento anterior, se inicia el encendido el equipo y se procede a verificar

en el instrumento respectivo que la presión de vacío se encuentre dentro del rango de 4.5 a 6.5 inHg. En el instrumento ubicado en la cabina de la aeronave, pudo observarse que la presión se encontraba en un aproximado de 5 inHg, por lo cual (a pesar de encontrarse en el rango establecido) con el fin de probar la Pressure Relief Valve , fue regulada a 4.5 inHg, determinándose que el sistema se encontraba en excelentes condiciones.

ATC observaciones: Se necesita un atenuador. Switch SQUR: Es para iniciar la interrogación del equipo en tierra con la aeronave.

Related Documents

Video Atc Dme.docx
April 2020 7
Atc
October 2019 26
Atc Profile
May 2020 17
Atc Simulator 1
July 2020 10
Video
November 2019 52
Video
May 2020 52

More Documents from "Anonymous Z3994m"

April 2020 10
Uso Del Manual Mel.docx
April 2020 17
April 2020 13
Video Atc Dme.docx
April 2020 7