TRANSISTORES DE EFECTO CAMPO Los transistores más conocidos son los llamados bipolares (NPN y PNP), llamados así porque la conducción tiene lugar gracias al desplazamiento de portadores de dos polaridades (huecos positivos y electrones negativos), y son de gran utilidad en gran número de aplicaciones pero tienen ciertos inconvenientes, entre los que se encuentra su impedancia de entrada bastantee baja. Existen unos dispositivos que eliminan este inconveniente en particular y que pertenece a la familia de dispositivos en los que existe un solo tipo de portador de cargas, y por tanto, son unipolares. Se llama transistor de efecto campo. Un transistor de efecto campo (FET) típico está formado por una barrita de material p ó n, llamada canal, rodeada en parte de su longitud por un collar del otro tipo de material que forma con el canal una unión p-n. En los extremos del canal se hacen sendas conexiones óhmicas llamadas respectivamente sumidero (d-drain) y fuente (s-source), más una conexión llamada puerta (g-gate) en el collar.
La figura muestra el croquis de un FET con canal N
Si
mbolos gráficos para un FET de canal N
Simbolos gráficos para un FET de canal N
Disposición de las polarizaciones para un FET de canal N. La Figura muestra un esquema que ayudará a comprender el funcionamiento de un FET. En este caso se ha supuesto que el canal es de material de tipo N. La puerta está polarizada negativamente respecto a la fuente, por lo que la unión P-N entre ellas se encuentra polarizada inversamente y existe (se crea) una capa desierta. Si el material de la puerta está más dopado que el del canal, la mayor parte de la capa estará formada por el canal. Si al tensión de la puerta es cero, y Vds = 0, las capas desiertas profundizan
poco en el canal y son uniformes a todo lo largo de la unión. Si Vds se hace positiva ( y Vgs sigue siendo cero) por el canal circulará una corriente entre sumidero y fuente, que hará que la polarización inversa de la unión no sea uniforme en toda su longitud y, en consecuencia, en la parte más próxima al sumidero, que es la más polarizada, la capa desierta penetrará más hacia el interior del canal. Para valores pequeños de Vds, la corriente de sumidero es una función casi lineal de la tensión, ya que la penetración de la capa desierta hacia el interior del canal no varía substancialmente de su valor inicial. Sin embargo, a medida que aumenta la tensión aumenta también la polarización inversa, la capa desierta profundiza en el canal y la conductancia de éste disminuye. El ritmo de incremento de corriente resulta, en consecuencia, menor y llega un momento en que el canal se ha hecho tan estrecho en las proximidades del sumidero que un incremento de Vds apenas tiene efecto sobre la corriente de sumidero. Entonces se dice que el transistor está trabajando en la zona de estricción (pinch-off), nombre cuyo origen se evidencia en la figura anterior, llamándose tensión de estricción Vp a la del punto de transición entre el comportamiento casi lineal y el casi saturado.
Si a la puerta se le aplica una polarización negativa estacionaria, la capa desierta penetra más e el interior que con la polarización nula; por tanto, para pasar a la zona de estricción se necesita meno tensión de sumidero. El aumentar la polarización negativa permite tener la transición a la zona d estricción a corrientes de sumidero aún inferiores.
El funcionamiento del FET se basa en la capacidad de control de la conductancia del canal por parte de la tensión de puerta y, como la unión puerta-canal se encuentra siempre polarizada inversamente, el FET es por esencia un elemento de alta impedancia de entrada. PARAMETROS DEL FET
La corriente de sumidero Id es función tanto de la tensión de sumidero Vds como de la puerta Vgs. Como la unión está polarizada inversamente, suponemos que la corriente de puerta es nula, con lo que podemos escribir: Ig = 0 e Id = ƒ(Vds, Vgs) En la zona de estricción (saturación) en que las características son casi rectas (en el gráfico, son horizontales, pero en realidad tienen una pendiente positiva) podemos escribir la respuesta del transistor para pequeños incrementos de Vds y Vgs en esta forma
El parámetro rd se llama resistencia diferencial del sumidero del FET, y es la inversa de la pendiente de la curva. Que como en el gráfico, dicha pendiente es cero (en la realidad, como he dicho antes existe algo de pendiente), entonces la rd es infinita (muy grande). El parámetro gm se le denomina conductancia mutua o transconductancia, y es igual a la separación vertical entre las características que corresponden a diferencias de valor de Vgs de 1 voltio.