Topnob

  • Uploaded by: shannonlhughes9968
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Topnob as PDF for free.

More details

  • Words: 1,612
  • Pages: 71
N An Overview of this Session An Intuitive Visual Approach Stretching your Intuition An Easy Mathematical Approach Building a cube Mathematically Cubes within Cubes: Line sets Back to the Author

Most people do not know what an N-space cube is, much less how to draw one. These pages show you what they are and how to create them. The visual approach to drawing them can be understood by fourth graders, while the mathematical approach can be understood by freshmen in high school. I hope you have fun with N-space Cubes. They have provided me with much enjoyment and delight. Sincerely, Dennis Clark This material is copyrighted, but can be used as long as it is not altered and as long as the author retains credit.

N An Intuitive Visual Approach We say: “I See!” when we understand

A 0-space cube is a point. Here, we represent it with a black dot.

Two 0-space cubes with a line between the points makes a 1-space cube. (A line)

Two 1-space cubes with their corresponding points connected make a 2-space cube. (A square)

Two 2-space cubes with their corresponding corners connected form a 3-space cube. (a cube)

These two 3-space cubes appear to be overlapping. No problem.

Two 3-space cubes with their corresponding corners connected form a 4-space cube. (a tesseract)

So how do we create a 5-space cube?

Connect the corresponding corners of two 4-space cubes to form a 5-space cube.

A messy 5-space cube.

N Stretching your Intuition The brain needs to be Stretched and Exercised much like the muscles of your body

Even here we are violating the geometric definition of a cube. a

c

6-sides equal length lines 90 degree corners

b Angle b,a,c is not 90 degrees.

Whenever we represent a 3-dimensional object in 2 dimensions something gets distorted. Here it’s some of the angles.

For our purposes, the physical position of any point is irrelevant.

Only its connectivity is important. A point must remain connected to the same points regardless of its physical location.

e a g

c

f

b d

h

e h

a g

c

f b d

So this is also a cube.

This is still a cube. The physical location of any point is irrelevant. e h

c

g

a

f

b d

It is the connectivity that makes this a 3-space cube.

We pause for a neighborly definition: Adjacents Points b, c, and e are adjacent to point a.

e

a c

g b,c, and e are the adjacents of a.

b

f d

h

These are both 3-space cubes because their connectivity is correct. In fact, the right-hand cube is just a twisted version of the one on the left. a h

e

a c

b

g g c

b

f d

h

f

d e

Let’s untwist the Twisted Circle Cube Pretend the cube is a flat pancake.

a b

h

Cut the pancake in half along the dotted line. Flip the left half of the pancake g over while keeping each of the the points attached to their respective adjacents.

c

f

d e

Let’s untwist the Twisted Circle Cube

a

Now quarter the pancake.

b

e

Flip the G-H quarter over. Doing so will untwist EG and FH, but it will twist GC and HD.

f c

g

d h

Let’s untwist the Twisted Circle Cube

a

Now quarter the pancake.

b

e

Flip the G-H quarter over. Just when it looks like things have gotten worse...

f c

h

d g

Things finally get straightened out.

a

Our Twisted Circle Cube is now an

b

e

Untwisted Circle Cube. f d

h

c g

It is now an Untwisted Circle Cube a e

e

a c

b

g f d

b

f d

h

h

c g

N An Easy Mathematical Approach Math is a tool of Infinite Possibilities

a

d k r

i p

u

v

t

g

ad

w

q

h

ac ab

aa

o n

x

s

j b

y

l

c

f

m

e

Letters are a Cumbersome Naming Convention

z

ae

Every N-cube has 2N points (corners)

1

0 2

4

6

5 3

7

N space

Points in each cube

0 1 2 3 4 5 6 7

1 2 4 8 16 32 64 128

We label the corners using binary numbers 001

000

010

At first this may seem to be even more clumsy than using letters. 011

101 100 110

111

But it gives us one huge advantage we didn’t have before: Now, we can identify the adjacents mathematically.

The points of an N-space cube can be uniquely identified by N using 2 N-digit binary numbers. 001

000

010

00

01

10

11

011

101 100 110 N=3

111 N=2

3-digit numbers 2 N = (8) points

2-digit numbers N 2 = (4) points

Two points are adjacent if their binary digits differ by only one digit. Is adjacent to 00 00 01 01 10 10 11 11

01 10 00 11 00 11 01 10

00

01

10

11

A clarifying example: The adjacents of 1101001 are because each adjacent differs from 1101001 by one and only one digit.

1101000 1101011 1101101 1100001 1111001 1001001 0101001

1101001 1101001 1101001 1101001 1101001 1101001 1101001 1101000 1101011 1101101 1100001 1111001 1001001 0101001

The XOR binary operation 0

1

0

0

1

1

1

0

0 0 1 1

xor xor xor xor

0=0 1=1 0=1 1=0

1101001 1101001 1101001 1101001 1101001 1101001 1101001 0000001 0000010 0000100 0001000 0010000 0100000 1000000 1101000 1101011 1101101 1100001 1111001 1001001 0101001

N Build a Cube Mathematically XORbitantly Large N-Space Cubes

000 001 001

000

001

000 001 001

000 010 010

000

001

010

000 001 001

000 010 010

001

000 100 100

000

010

100

001 001 000

001 010 011

000

001

010

011

100

001 001 000

001 010 011

001 100 101

000

001

010

011

101

100

010 001 011

010 010 000

000

001

010

011

101

100

010 001 001

010 010 000

010 100 110

000

001

010

100

011

101

110

100 001 001

100 010 110

000

001

010

100

011

101

110

100 001 001

100 010 110

100 100 000

000

001

010

100

011

101

110

011 001 010

011 010 001

011 100 111

000

001

010

100

011

101

110

111

101 001 101

101 010 111

101 100 001

000

001

010

100

011

101

110

111

110 001 111

110 010 100

110 100 110

000

001

010

100

011

101

110

111

000

001

010

100

011

101

110

111

0000 0001

0011

0101

0111

0010

0100

1001

0110

1011

1101 1111

1000

1010

1110

1100

1 4

6 0011

4 1

0000 0001

0101

0111

0010

0100

1001

0110

1011

1101 1111

1000

1010

1110

1100

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7

Pascal’s Triangle 1 3 1 6 4 1 10 10 5 1 15 20 15 6 1 21 35 35 21 7 1

00000

00001

00010

00100

01000

10000

00011

00101

01001

10001

00110

01010

10010

01100

10100

11000

00111

01011

10011

01101

10101

11001

01110

10110

11010

11100

01111

10111

11011

11111

11101

11110

N Lineset Symmetries Pretty N-cube Pictures

0000 1

0001

0010

0100

1

1

1

0011

0101

1001

0110

1

0111

1000

1010

1

1011

1

1101

1110 1

1111

1100

0000 2

0001

0010

0100

2

0011

2

0101 2

0111

1001

0110

1000 2

1010

2

1100 2

1011

1101 2

1111

1110

0000 3

0001

0010

0100

3

0011

0101

3

1001

3

3

0110 3

0111

1000

1011

3

1101 3

1111

1010

1110

1100

0000 4

0001

0010

0100

4

0011

1000

4

0101

1001

4

0110

4

0111

4

1010 4

1011

1101

4

1111

1110

1100

0000 1

0001 2

0011

31

3

0010 4

1

0101 3

2

421

0111

1000

421

42

0110 3

4

1101 3

2

1111

3

1010

1

1011 4

0100 3

1001

42

4

31

1110 1

1100 2

0 (t+2)

(t+2)

=

1

=

T + 2

n

1 (t+2) 2 (t+2)

2 =

T

3 (t+2)

3 =

T

6 =

T

7 (t+2)

4

3

=

T

+ 12 T

+ 14 T

=

T

+ 16 T

+ 80 T

+ 84 T

+ 80 T + 32 2

+ 160 T

5

+ 240 T

4 + 280 T

6 + 112 T

2 3

+ 60 T

7

+ 32 T + 16

4

6

8

+ 40 T

5

7

8 (t+2)

+ 24 T

+ 10 T

6

2

+ 8 T

5 =

+ 12 T + 8

3

T

5

(t+2)

+ 6 T

4 =

(t+2)

2

T

4 (t+2)

+ 4 T + 4

3 + 560 T

5 + 448 T

+ 192 T + 64 2

+ 672 T

4 + 1120 T

+ 448 T + 128

3 + 1792 T

2 + 1792 T

+ 1024 T + 256

6

6

5

4

3

2

(T+2) = T + 12T + 60T + 160T + 240T + 192T + 64

A 6-space cube contains: (1)

6-space cube

12

5-space cubes

60

4-space cubes

160

3-space cubes

240

2-space cubes

192

1-space cubes

64

0-space cubes

The coefficients of the algebraically expanded expression N

(T+2) contain some curious information.

00000

00001

00010

00100

01000

10000

00011

00101

01001

10001

00110

01010

10010

01100

10100

11000

00111

01011

10011

01101

10101

11001

01110

10110

11010

11100

01111

10111

11011

11111

11101

11110

Related Documents

Topnob
November 2019 4

More Documents from "shannonlhughes9968"

Topnob
November 2019 4
Snakes
November 2019 11