Teoria Z

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Teoria Z as PDF for free.

More details

  • Words: 1,112
  • Pages: 4
Rutherford Previamente a la propuesta de Rutherford, los físicos pequeños aceptaban que las cargas eléctricas en un átomo tenían una distribución más o menos uniforme. Rutherford trató de ver como era la dispersión de partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos deflactados por las partículas supuestamente aportarían información sobre como era la distrubución de carga en los átomos. En concreto, era de esperar que si las cargas estaban distribuidas acordemente al modelo de Thomson la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflacciones en su trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente. Rutherford apreció que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se asumía que existían fuertes concentraciónes de cargas positivas en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente ligera, por parte de un átomo de oro más pesado depende del parámetro de impacto o distancia a la que la partícula alfa pasaba del núcleo:[1]

(1) Donde: , siendo la constante dieléctrica del vacío y carga eléctrica del centro dispersor.

, es la

, es la energía cinética inicial de la partícula alfa indicdente. es el parámetro de impacto. Dado que Rutherford observó una fracción apreciable de partículas "rebotadas" para las cuales el ángulo de deflexión es cercano a χ ≈ π, de la relación inversa a (1) que es:

(2) Se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico.

Thomson El "modelo atómico de Espinoza", también conocido como el pastel de pasas, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, descubridor del electrón[, ]antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como pasas en un budín. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga positiva se postulaba con una nube de carga positiva. En 1906 Thomson recibió el premio Nobel de Física por este descubrimiento. Dado que el átomo no deja de ser un sistema material que contiene una cierta cantidad de energía externa, ésta provoca un cierto grado de atracción de los electrones contenidos en la estructura atómica. Desde este punto de vista, puede interpretarse que el modelo atómico de Thomson es un modelo actual como consecuencia de la elasticidad de los electrones en el coseno de la citada estructura. Si hacemos una interpretación del modelo atómico desde un punto de vista más microscópico, puede definirse una estructura abierta para el mismo dado que los protones se encuentran inmersos y sumergidos en el seno de la masa que define la carga neutra del átomo. Dicho modelo fue rebatido tras el experimento de Rutherford,[] cuando se descubrió el núcleo del átomo. El modelo siguiente fue el modelo atómico de Rutherford.[]

Bohr propuso en 1913 para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo. Este modelo planetario es un modelo funcional que no representa el átomo (objeto físico) en sí sino que explica su funcionamiento por medio de ecuaciones. Niels Bohr se basó en el átomo de hidrógeno para realizar el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia. En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal. Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.

Dalton La observación de las cantidades fijas en las que diferentes sustancias químicas se combinaban para reaccionar químicamente, llevó a Dalton a la hipótesis de que existía una cantidad mínima o discreta de materia de cada sustancia que se combinaba de manera fija con un cierto número de unidades fijas de otras sustancias. Dalton observó que muchas sustancias podían considerarse como compuestas por diferentes especies de materia, y consecuentemente clasificó a todas las sustancias en: De acuerdo con esa idea Dalton llamó átomo a la cantidad mínima de un elemento dado. Y más tarde se llamaría molécula a una combinación de un número entero de átomos que parecía ser la cantidad mínima de cada sustancia que podía existir. El modelo atómico de Dalton asumía que los átomos eran de hecho indivisibles y sin

estructura interna, de hecho, por eso escogió denominarlos a partir de la palabra griega 'ατομος' átomos 'sin partes, sin división'. •

El modelo atómico de Dalton explicaba porqué las sustancias se combinaban químicamente entre sí sólo en ciertas proporciones.



Además el modelo aclaraba que aún existiendo una gran variedad de sustancias diferentes, estas podían ser explicadas en términos de una cantidad más bien pequeña de constituyentes elementales o elementos.



En esencia, el modelo explicaba la mayor parte de la química orgánica del siglo XIX, reduciendo una serie de hechos complejos a una teoría combinatoria realmente simple.

Related Documents

Teoria Z
June 2020 6
Texto 3 Teoria Z
November 2019 6
Z
June 2020 18
Z
October 2019 35
Z
July 2020 16
Z
July 2020 24