Solutions Chap11

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solutions Chap11 as PDF for free.

More details

  • Words: 6,955
  • Pages: 50
CHAPTER 11 SOLUTIONS 1. 50 (− j80) 106 = − j80 Ω, = 42.40∠ − 32.01°Ω j 500 × 25 50 − j80 ∴ V = 84.80∠ − 32.01° V, I R = 1.696∠ − 32.01° A Zc =

I c = 1.0600∠57.99° A ps (π / 2ms) = 84.80 cos (45° − 32.01°) 2 cos 45° = 116.85 W pR = 50 × 1.696 2 cos 2 (45° − 32.01°) = 136.55 W pc = 84.80 cos (45° − 32.01°) = 1.060 cos (45° + 57.99°) = −19.69 W

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 2. (a)

1 2 1 Li = × 4 (4t 4 − 4t 2 + 1) 2 2 4 2 4 2 ∴ wL = 8t − 8t + 2 ∴ wL (3) − wL (1) = 8 × 3 − 8 × 3 + 2 − 8 ×1 + 8 ×1 − 2 = 576 J 4H : i = 2t 2 − 1∴ v = Li′ = 4 (4t ) = 16t , wL =

t

(b)

1 t 2 2  2  2  0.2 F : vc = (2t − 1) dt + 2 = 5  t 3 − t  + 2 = 5  t 3 − t  − 5  − 1 + 2 ∫ 0.2 1 3 1 3  3  10 10 61 61 ∴ vc (2) = × 8 − 10 − + 5 + 2 = V ∴ Pc (2) = × 7 = 142.33 W 3 3 3 3

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS R 1 = 2, ω o2 = = 3, s1,2 = −2 ± 1 = −1, − 3 2L LC

3.

vc (0) = −2V, i (0) = 4A, α =

(a)

1 i = Ae− t + Be−3t ∴ A + B = 4; i (0+ ) = vL (0+ ) = (−4 × 4 × +2) = −14 1 ∴− A − 38 = −14 ∴ B = 5, A = −1, i = −e− t + 5e −3t A t

∴+ vc = 3∫ (−e − t + 5e −3t ) dt − 2 = 3(e− t − 5e −3t ) to − 2 = e − t − 3 − 5e −3t + 5 − 2 o

−t

∴ vc = 3e − 5e −3t ∴ Pc (0 + ) = (3 − 5) (−1 + 5) = −8 W (b)

Pc (0.2) = (3e −0.2 − 5e −0.6 ) (−e0.2 + 5e −0.6 ) = −0.5542 W

(c)

Pc (0.4) = (3e −0.4 − 5e −1.2 ) (5e −1.2 − e −0.4 ) = 0.4220 W

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 4.

We assume the circuit has already reached sinusoidal steady state by t = 0. 2.5 kΩ → 2.5 kΩ, 1 H → j1000 Ω, 4 µF → -j250 Ω, 10 kΩ → 10 kΩ Zeq = j1000 || -j250 || 10000 = 11.10 – j333.0 Ω (20∠30)(11.10 − j 333.0) = 2.631∠50.54o V 2500 + 11.10 − j 333.0 Veq Veq I10k = = 0.2631 ∠ - 50.54o mA I1 H = = 2.631 ∠ - 140.5o mA 10000 j1000 Veq (20∠30)(2500) I4 µF = = 10.52 ∠39.46o mA V2.5k = = 19.74∠37.55o V − j 250 2500 + 11.10 − j 333.0 Veq =

[19.74 cos 37.55 ] P2.5k =

o 2

Thus,

=

2500

[

97.97 mW

][

]

P1 H = 2.631cos(− 50.54 ) 2.631 × 10-3 cos(−140.5o ) = - 3.395 mW o

[ ( )][ [2.631cos(− 50.54 )] = P2.5k =

]

P4 µF = 2.631cos − 50.54o 10.52 × 10-3 cos(39.46o ) = 13.58 mW o

10000

2

279.6 µW

FREQ IM(V_PRINT1) IP(V_PRINT1) 1.592E+02 7.896E-03 3.755E+01

FREQ VM(L,0) 1.592E+02 2.629E+00

FREQ VM(R2_5k,$N_0002)VP(R2_5k,$N_0002) 1.592E+02 1.974E+01 3.755E+01

FREQ IM(V_PRINT11) IP(V_PRINT11) 1.592E+02 1.052E-02 3.946E+01

FREQ IM(V_PRINT2) IP(V_PRINT2) 1.592E+02 2.628E-03 -1.405E+02

FREQ IM(V_PRINT12) IP(V_PRINT12) 1.592E+02 2.629E-04 -5.054E+01

Engineering Circuit Analysis, 6th Edition

VP(L,0) -5.054E+01

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 5. is → 5∠0° A, C → − j 4 Ω, Z in = 8 (3 − j 4) =

40∠ − 53.13° 11 − j 4

= 3.417∠ − 33.15°∴ Vs = 17.087∠ − 33.15°, vs = 17.087 cos (25t − 33.15°) V ∴ Ps , abs (0.1) = −17.087 cos (2.5rad − 33.147°) × 5cos 2.5rad = −23.51 W 17.087 cos (25t − 33.15°) ∴ 8 i8 (0.1) = 2.136 cos (2.5rad − 33.15°) = −0.7338 A i8 =

∴ P8, abs = 0.73382 × 8 = 4.307 W; I3 =

17.087∠ − 33.15° = 3.417∠19.98° A 3 − j4

∴ i3 (0.1) = 3.417 cos (2.5rad + 19.98°) = −3.272 A ∴ P3, abc = 3.2722 × 3 = 32.12 W Vc = − j 4 (3.417∠19.983°) = 13.67∠ − 70.02°, vc (0.1) = 13.670 cos (2.5rad − 70.02°) = 3.946 V ∴ Pc , abc = 3.946 (−3.272) = −12.911 W

Engineering Circuit Analysis, 6th Edition

(Σ = 0)

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 6. j 5(10 − j 5) = 4 + 2.5 + j 5 = 6.5 + j 5 Ω 10 100 ∴ Is = = 12.194∠ − 37.57° A 6.5 + j 5 1 ∴ Ps ,abs = − × 100 × 12.194 cos 37.57° = −483.3W 2 1 P4, abs = (12.194) 2 4 = 297.4 W, 2 Pcabs = 0 Zin = 4 +

100 j5 = 6.097∠52.43° so 6.5 + j 5 10 1 P10,abs = (6.097) 2 × 10 = 185.87 W 2 PL = 0 (Σ = 0) I10 =

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 7. V = (10 + j10)

40∠30° = 52.44∠69.18° V 5∠50° + 8∠ − 20°

1 × 10 × 52.44 cos 69.18° = 93.20 W 2 1 = × 10 × 52.44 cos (90° − 69.18°) = 245.08 W 2

P10, gen = Pj10, gen

2

P8 ∠− 20 abs

1  52.44  =   8cos (−20°) = 161.51 W 2 8 

Engineering Circuit Analysis, 6th Edition

(Σ gen = Σ abs )

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 8. ZR = 3 +

1 = 3 + 1 + j3 = 4 + j3 Ω 0.1 − j 0.3

Ignore 30° on Vs , I R = 5

2 + j5 5 29 , IR = 6 + j8 10

2

1  5 29  =   × 3 = 10.875 W 2  10 

(a)

P3 Ω

(b)

Vs = 5∠0° ∴ Ps , gen =

(2 + j 5) (4 + j 3) = 13.463∠51.94° V 6 + j8

1 × 13.463 × 5cos 51.94° = 20.75 W 2

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 9.

Pj10 = P− j 5 = 0, V10 − 50 V10 V10 − j 50 + + =0 j10 10 − j5 ∴ V10 (− j 0.1 + 0.1 + j 0.2) + j 5 + 10 = 0 ∴ V10 = 79.06∠16.57° V 1 79.06 2 = 312.5 W; 2 10 79.06∠161.57° − 50 I 50 = = 12.75∠78.69° A j10 1 ∴ P50V = × 50 × 12.748cos 78.69° = 62.50 W 2 79.06∠161.57° − j 50 = 15.811∠ − 7.57° : I j 50 = − j5 1 Pj 50 = × 50 × 15.811cos (90° + 71.57°) = −375.0 W 2 P10 Ω =

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 10. Vx − 20 Vx − Vc + = 2Vc , 2 3 3Vx − 60 + 2Vx − 2Vc = 12Vc Vc − Vx V + c =0 3 − j2 ∴ 2Vc − 2Vx + j3Vc = 0, − 2Vx + (2 + j3) Vc = 0 ∴ 5Vx − 14Vc = 60,

60 −14 0 2 + j3 120 + j180 Vx = = = 9.233∠ − 83.88° V 5 −14 10 + j15 − 28 −2 2 + j 3

Pgen

5 60 −2 0 Vc = = 5.122∠ − 140.9° V ∴ −18 + j15 1 = × 9.233 × 2 × 5.122 cos ( −83.88° + 140.19°) = 26.23 W 2

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 11. (a)

X in = 0 ∴ Z L = R th + j 0

(b)

R L , X L independent∴ Z L = Zth∗ = R th − jXth

(c)

Vth 1 R L fixed∴ PL = × R L ∴ Z L = R L − jXth 2 (R th + R L )2 + (X th + X L )2

(d)

X L fixed, Let X L + Xth = a ∴ f =

2

2PL Vth

2

=

RL (R th + R L ) 2 + a 2

R + R 2L + a 2 − 2R L (R th + R L ) df = th =0 2 dRL (R th + R L ) 2 + a 2  R th2 + 2R th R L + R 2L + a 2 − 2R th R L = 2R 2L = 0 ∴ R L = R th2 + a 2 = (e)

R th2 + (Xth + X L )2

X L = 0 ∴ R L = R th2 + X th2 = Zth

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 12.

−10 = 107.33∠ − 116.57° V 10 + j 5 − j10 (10 + j15) Zth = = 8 − j14 Ω 10 + j 5 Vth = 120

(a)

∴ Z L = 8 + j15 Ω

(b)

IL =

107.33∠ − 116.57° ∴ 16 2

PL ,max =

1  107.33    × 8 = 180 W 2  16 

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 13.

R L = Zth ∴ R L = 82 + 142 = 16.125 Ω PL =

1 107.332 × 16.125 = 119.38 W 2 (8 + 16.125)2 + 142

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 14. − j 9.6 = −4.8 I x − j1.92 I x − +4.8I x 9.6 =5 1.92 ∴ V = (0.6 × 5)8 = 24 V 1 ∴ Po = × 24 × 1.6 × 5 = 96 W ( gen) 2 ∴ Ix =

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 15. j 480 80 − j 60 80 + j 60 80 − j 60 = 28.8 + j 38.4 Ω ∴ Z L max = 28.8 − j 38.4 Ω

(a)

Zth = 80 j 60 =

(b)

Vth = 5(28.8 + j 38.4) = 144 + j192 V, 144 + j192 2 × 28.8 1 1442 + 1922 and PL ,max = × 28.8 = 250 W 2 4 × 28.82

∴ IL =

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 16.

Zeq = (6 – j8) || (12 + j9) = 8.321 ∠ -19.44o W Veq = (5 ∠-30o) (8.321 ∠ -19.44o) = 41.61 ∠ -49.44o V Ptotal = ½ (41.61)(5) cos (-19.44o) = 98.09 W I6-j8 = Veq / (6 – j8) = 4.161 ∠ 3.69o A I4+j2 = I8+j7 = Veq/ 12+j9 = 2.774 ∠ -86.31o A P6-j8 = ½ (41.61)(4.161) cos (-49.44o – 3.69o) = 51.94 W P4+j2 = ½ (2.774)2 (4) = 15.39 W P8+j7 = ½ (2.774)2 (8) = 30.78 W Check: Σ = 98.11 W (okay)

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 17. Vth = 100

j10 (20) j10 = 20 + j 40, Z th = = 4 + j8 Ω 20 + j10 20 + j10

∴ R L = Zth ∴ R L = 8.944 Ω ∴ PL ,max =

1 202 + 402 × 8.944 = 38.63 W 2 (4 + 8.944)2 + 64

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 18.

We may write a single mesh equation: 170 ∠0o = (30 + j10) I1 – (10 – j50)(-λI1) Solving, 170∠0 o I1 = 30 + j10 + 10λ − j 50λ o 170∠0 (a) λ = 0, so I1 = = 5.376∠ - 18.43 o A and, with the same current flowing 30 + j10 through both resistors in this case, P20 = ½ (5.376)2 (20) = 289.0 W P10 = ½ (5.376)2 (10) = 144.5 W 170∠0 o = 3.005∠45 o A 40 − j 40 P20 = ½ (3.005)2 (20) = 90.30 W The current through the 10-Ω resistor is I1 + λI1 = 2 I1 = 6.01 ∠ 45o so

(b) λ = 1, so I1 =

P10 = ½ (6.01)2 (10) = 180.6 W (c)

(a) FREQ IM(V_PRINT3) 6.000E+01 5.375E+00

IP(V_PRINT3) -1.846E+01

FREQ IM(V_PRINT4) 6.000E+01 5.375E+00

IP(V_PRINT4) -1.846E+01

(b) FREQ IM(V_PRINT3) 6.000E+01 6.011E+00

IP(V_PRINT3) 4.499E+01

FREQ IM(V_PRINT4) 6.000E+01 3.006E+00

IP(V_PRINT4) 4.499E+01

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS

19.

(10)(1) + (−5)(1) + 0(1) = 1.667 A 3 1 (20)(1) + 0(1) Waveform (b): Iavg = 2 = 5A 2

(a) Waveform (a): Iavg =

Waveform (c): 1 Iavg = 1 × 10 −3 =−

(b)



2πt dt = - 8 × 10 3 8sin −3 4 × 10

(

10 − 3 0

)

 4 × 10 −3   πt    cos −3   2π   2 × 10 

10 −3

0

16 (0 − 1) = 16 A π π

(100)(1) + (25)(1) + (0)(1) = 41.67 A 2 3 Waveform (b): i(t) = -20×103 t + 20 i2(t) = 4×108 t2 – 8×105 t + 400 10 -3 1 2 I avg = 4 × 10 8 t 2 - 8 × 10 5 t + 400 dt -3 ∫ 0 2 × 10 5  4 × 10 8  2 1 0.1333 − 3 3 8 × 10 = 66.67 A 2 = 10 10 −3 + 400 10 −3  = -3 -3  2 × 2 × 10  3 2 10  Waveform (c):

2 Waveform (a): I avg =

(

)

(

2 I avg

1 = 1 × 10 −3



Engineering Circuit Analysis, 6th Edition

)

(

0

)

(

(

)

2πt sin π × 10 3 t  3 t 64sin 2 dt = 64 × 10   4 × 10 −3 2π × 10 3  2

10 − 3

10 = 64 × 10 3   2

(

)

−3



)

10 −3

0

sin π  = 32 A 2 3 2π × 10 

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 20.

At ω = 120π, 1 H → j377 Ω, and 4 µF → -j663.1 Ω Define Zeff = j377 || -j663.1 || 10 000 = 870.5 ∠ 85.01o Ω

(400

)

2∠ − 9 o 2500 V2.5k = = 520.4 ∠ - 27.61o V o 2500 + 870.5 ∠85.01 400 2∠ − 9 o 870.5 ∠85.01o V10k = = 181.2 ∠57.40 o V o 2500 + 870.5 ∠85.01

(

)(

)

Thus, P2.5k = ½ (520.4)2 / 2 500 P10k = ½ (181.2)2 / 10 000 P1H P4µF

= = = =

54.16 W 1.642 W 0 0 (A total absorbed power of 55.80 W.)

To check, the average power delivered by the source: Isource =

400 2∠ − 9 o = 0.2081 ∠ - 27.61o A 2500 + 870.5∠85.01o

and Psource = ½ ( 400 2 )(0.2081) cos (-9o + 27.61o) = 55.78 W (checks out).

FREQ IM(V_PRINT1) 6.000E+01 2.081E-01

IP(V_PRINT1) -2.760E+01

FREQ VM(L,0) 6.000E+01 1.812E+02

VP(L,0) 5.740E+01

FREQ VM(R2_5k,$N_0002) VP(R2_5k,$N_0002) 6.000E+01 5.204E+02 -2.760E+01

FREQ IM(V_PRINT11) 6.000E+01 2.732E-01

IP(V_PRINT11) 1.474E+02

FREQ IM(V_PRINT2) 6.000E+01 4.805E-01

FREQ IM(V_PRINT12) 6.000E+01 1.812E-02

IP(V_PRINT12) 5.740E+01

IP(V_PRINT2) -3.260E+01

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 21. (a)

v = 10 + 9 cos100t + 6 sin100t 1 1 ∴ Veff = 100 + × 81 + × 36 = 158.5 = 12.590 V 2 2

(b)

Feff =

1 2 (10 + 20 2 + 102 ) = 150 = 12.247 4

(c)

Favg =

(10)(1) + (20)(1) + (10)(1) 40 = = 10 4 4

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 22. (a)

g(t) = 2 + 3cos100t + 4cos(100t – 120o) 3 ∠0 + 4∠-120 = 3.606 ∠-73.90 so Geff = o

(b)

o

3.6062 4+ = 3.240 2

h (t ) = 2 + 3cos100t + 4 cos (101t − 120°) 1 1 ∴ H eff = 2 + 32 + 4 2 = 16.5 = 4.062 2 2

(c)

f (t ) = 100t , 0 < t < 0.1∴ Feff = =

1 0.1 6 2 10 t dt 0.3 ∫0

10 1 × 106 × × 10−3 = 33.33 3 3

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 23.

f (t ) = (2 − 3cos100t ) 2

(a)

f (t ) = 4 − 12 cos100t + 9 cos 2 100t ∴ f (t ) = 4 − 12 cos100t + 4.5 + 4.5cos 200t ∴ Fav = 4 + 4.5 = 8.5

(b)

Feff = 8.52 +

1 1 × 122 + × 4.52 = 12.43 2 2

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS

24.

(a)

ieff

(

)

1  =  10 2 + (−5) 2 + 0 3 

1

2

= 6.455 A

(b) ieff

1 1  =   ∫ [− 20t + 20] dt  + 0  2  0 

(c) ieff

1  1  2π   t  dt  =   ∫ 8sin  0  4   1 

Engineering Circuit Analysis, 6th Edition

1

2

1

2

=

5 = 2.236 A

1

=

 2  πt  - 8  π  cos  2  = 2.257 A   0   

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 25. (a)

A = B = 10V, C = D = 0 ∴10∠0° + 10∠ − 45° = 18.48∠ − 22.50o 1 1 ∴ P = × × 18.482 = 42.68 W 2 4

(b)

A = C = 10V, B = D = 0, vs = 10cos10t + 10 cos 40t , P=

(c)

1 102 1 102 + = 25 W 2 4 2 4

vs = 10 cos10t − 10sin (10t + 45°) → 10 − 10∠ − 45° = 7.654∠67.50o 1 7.6542 ∴P = = 7.322 W 2 4

(d)

v = 10 cos10t + 10sin (10t + 45°) + 10 cos 40t ; 10∠0° + 10∠ − 45° = 18.48∠ − 22.50o ∴P =

(e)

1 1 1 1 × 18.482 × + × 102 × = 55.18 W 2 4 2 4

102 // + 10dc ∴ Pav = 55.18 + = 80.18 W 4

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS

26.

Zeq = R || j0.3ω =

j 0.3Rω . By voltage division, then, we write: R + j 0.3Rω

j 0.1ω - 0.03ω 2 + j 0.1ωR V100mH = 120∠0 = 120∠0 j 0.3Rω − 0.03ω 2 + j 0.4 Rω j 0.1ω + R + j 0.3ω j 0.3Rω j 36 Rω R + j 0.3ω V300mH = 120∠0 = 120∠0 j 0.3Rω − 0.03ω2 + j 0.4 Rω j 0.1ω + R + j 0.3ω (a) We’re interested in the value of R that would lead to equal voltage magnitudes, or j 36 Rω Thus, 36Rω =

=

(

(120) - 0.03ω 2 + j 0.1ωR

)

12.96ω 4 + 144ω 2 R 2 or R = 0.1061 ω

(b) Substituting into the expression for V100mH, we find that V100mH = 73.47 V, independent of frequency. To verify with PSpice, simulate the circuit at 60 Hz, or ω = 120π rad/s, so R = 40 Ω. We also include a miniscule (1 pΩ) resistor to avoid inductor loop warnings. We see from the simulation results that the two voltage magnitudes are indeed the same.

FREQ VM($N_0002,$N_0003)VP($N_0002,$N_0003) 6.000E+01 7.349E+01 -3.525E+01 FREQ VM($N_0001,$N_0002)VP($N_0001,$N_0002) 6.000E+01 7.347E+01 3.527E+01

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 27. (a)

Vav ,1 = 30V 1 Vav ,2 = (10 + 30 + 50) = 30V 3

(b)

Veff ,1 =

1 3 1 1 (20t ) 2 dt = × 400 × × 27 = 1200 = 34.64V ∫ 0 3 3 3

Veff ,2 =

1 2 1 (10 + 30 2 + 50 2 ) = × 3500 = 34.16 V 3 3

(c) PSpice verification for Sawtooth waveform of Fig. 11.40a:

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS

28.

 − j106  − jR106  = Zeff = R ||  6  3ω  3ωR − j10

(

)

120∠0 120ω 3ωR - j106 = ISRC = 106 R106 − j106 3ωR − j106 − jωR106 −j −j ω 3ωR − j106 R I3µF = ISRC 106 R− j 3ω

(

)

R

= 1 . This is 106 R− j 3ω only true when R = ∞; otherwise, current is shunted through the resistor and the two capacitor currents will be unequal. (b) In this case, the capacitor current is

(a) For the two current magnitudes to be equal, we must have

120∠0

1 6

10 106 −j −j ω 3ω

= j 90ω µA, or

90ω cos(ωt + 90o ) µA

(c) PSpice verification: set f = 60 Hz, simulate a single 0.75-µF capacitor, and include a 100-MΩ resistor in parallel with the capacitor to prevent a floating node. This should resit in a rms current amplitude of 33.93 mA, which it does.

FREQ IM(V_PRINT3) 6.000E+01 3.393E-02

Engineering Circuit Analysis, 6th Edition

IP(V_PRINT3) 9.000E+01

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 29. v(t ) = 10t [u (t ) − u (t − 2)] + 16e −0.5(t −3) [u (t − 3) − u (t − 5)] V Find eff. value separately V1,eff =

1 2 20 100t 2 dt = × 8 = 7.303 ∫ 0 5 3

V2,eff =

1 5 256 3 − t 5 256e − (t −3) dt = e (−e )3 = 6.654 ∫ 3 5 5

∴ Veff = 7.3032 + 6.6542 = 9.879 Veff =

5 1 2 2 100 t dt + 256e3e − t dt  ∫ ∫   0 3 5

=

1 100  × 8 + 256e3 (e −3 − e−5 )   5 3 

=

1  800  + 256 (1 − e−2 )  = 9.879 V OK  5 3 

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 30.

The peak instantaneous power is 250 mW. The combination of elements yields Z = 1000 + j1000 Ω = 1414 ∠45o Ω. Arbitrarily designate V = Vm ∠0 , so that I =

Vm ∠0 Vm ∠ − 45o = A. Z 1414

We may write p(t) = ½ Vm Im cos φ + ½ Vm Im cos (2ωt + φ) where φ = the angle of the current (-45o). This function has a maximum value of ½ VmIm cos φ + ½ VmIm. Thus, 0.250 = ½ VmIm (1 + cos φ) = ½ (1414) Im2 (1.707) and Im = 14.39 mA. In terms of rms current, the largest rms current permitted is 14.39 /

Engineering Circuit Analysis, 6th Edition

2 = 10.18 mA rms.

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 31.

I = 4∠35° A rms

(a)

V = 20I + 80∠35° Vrms, Ps , gen = 80 × 10 cos 35° = 655.3 W

(b)

PR = I R = 16 × 20 = 320 W

(c)

PLoad = 655.3 − 320 = 335.3 W

(d)

APs , gen = 80 × 10 = 800 VA

(e)

APR = PR = 320 VA

(f)

I L = 10∠0° − 4∠35° = 7.104∠ − 18.84° A rms

2

∴ APL = 80 × 7.104 = 568.3 VA (g)

PFL = cos θ L = since I L lags V,

PL 335.3 = = 0.599 APL 568.3 PFL is lagging

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 32. (a)

(b) (c)

(d)

120 = 9.214∠ − 26.25° A rms j192 4+ 12 + j16 ∴ PFs = cos 26.25 = 0.8969 lag Is =

Ps = 120 × 9.214 × 0.8969 = 991.7W j 48 1 = 4+ (192 + j144) 3 + j4 25 11.68 − j 5.76 ∴ Z L = 11.68 + j 5.76 Ω, YL = 11.682 + 5.762 j 5.76 , C = 90.09 µ F ∴ j120π C = 11.682 + 5.762 ZL = 4 +

PSpice verification

FREQ VM($N_0003,0) VP($N_0003,0) 6.000E+01 1.200E+02 0.000E+00 FREQ IM(V_PRINT1) IP(V_PRINT1) 6.000E+01 9.215E+00 -2.625E+01

; (a) and (b) are correct

Next, add a 90.09-µF capacitor in parallel with the source: FREQ IM(V_PRINT1) IP(V_PRINT1) 6.000E+01 8.264E+00 -9.774E-05

Engineering Circuit Analysis, 6th Edition

;(c) is correct (-9.8×10-5 degrees is essentially zero, for unity PF).

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 33.

Z A = 5 + j 2 Ω, Z B = 20 − j10 Ω, Z c = 10∠30° Ω = 8.660 + j5 Ω Z D = 10∠ − 60° = 5 − j8.660 Ω 200 −20 + j10 0 33.66 − j13.660 7265∠22.09° I1 = = = 15.11∠3.908° A rms 25 − j8 −20 + j10 480.9∠ − 26.00° −20 + j10 33.66 − j13.660 25 − j8 200 −20 + j10 0 200 (20 − j10) I2 = = = 9.300∠ − 0.5681° A rms 480.9∠ − 26.00° 480.9∠20.00° APA = I1 Z A = 15.1082 29 = 1229 VA 2

APB = I1 − I 2

2

Z B = 5.8812 × 10 5 = 773.5 VA

APC = I 2 2 ZC = 9.32 × 10 = 86.49 VA APD = I 2

2

Z1 = 9.32 × 10 = 864.9 VA

APS = 200 I1 = 200 × 15.108 = 3022 VA

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 34.

Perhaps the easiest approach is to consider the load and the compensation capacitor separately. The load draws a complex power Sload = P + jQ. The capacitor draws a purely reactive complex power SC = -jQC. θload = tan-1(Q/P), or Q = P tan θload QC = SC = Vrms

Vrms 2 2 = ω CVrms = ω CVrms (− j / ω C)

Stotal = Sload + SC = P + j(Q – QC)  Q-QC θnew = ang(Stotal) = tan −1   P

  , so that Q – QC = P tan θnew 

Substituting, we find that QC = P tan θload – P tan θnew or 2 ω CVrms = P (tan θload – tan θnew) Thus, noting that θold = θload, C =

Engineering Circuit Analysis, 6th Edition

P ( tan θ old - tan θ new ) 2 ω Vrms

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 35.

Z1 = 30∠15°Ω, Z 2 = 40∠40°Ω

(a)

Ztot = 30∠15° + 40∠40° = 68.37∠29.31°Ω ∴ PF = cos 29.3° = 0.8719 lag

(b)

Ztot = 68.37∠29.31° = 59.62 + j 33.48 PFnew = 0.9 lag ∴θ new = cos −1 0.9 = 25.84° tan 25.84° = 0.4843 = ∴ 33.48 −

X new ∴ X new = 28.88 Ω 59.62

1 = 28.88, 100π C

C = 691.8µ F

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 36.

θ1 = cos-1(0.92) = 23.07o, θ 2 = cos-1 (0.8) = 36.87o, θ 3 = 0 100 ∠23.07o S1 = = 100 + j 42.59 VA 0.92 250 ∠36.87 o S2 = = 250 + j187.5 VA 0.8 500 ∠0o S3 = = 500 VA 1 Stotal = S1 + S2 + S3 = 500 + j230.1 VA = 550.4 ∠24.71o VA (a) Ieff =

Stotal 550.4 = = 4.786 A rms Veff 115

(b) PF of composite load = cos (24.71o) = 0.9084 lagging

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 37. APL = 10, 000 VA, PFL = 0.8lag, I L = 40A rms Let I L = 40∠0° A rms; PL = 10, 000 × 0.8 = 8000 W 8000 =5 Ω 402 cosθ L = 0.8lag∴θ L = cos−1 0.8 = 36.87° Let Z L = R L + jX L ∴ R L =

∴ X L = 5 tan 36.87° = 3.75 Ω, Z L = 5 + j 3.75, Ztot = 5.2 + j 3.75 Ω 1 5.2 + j 3.75 = 0.12651 + j (120π C − 0.09124),

∴ Vs = 40 (5.2 + j 3.75) = 256.4∠35.80° V; Ytot = = 0.12651 − j 0.09124S, Ynew

PFnew = 0.9 lag,θ new = 25.84°∴ tan 25.84° = 0.4843 0.09124 − 120π C ∴ 0.12651 C = 79.48µ F =

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 38.

Zeff = j100 + j300 || 200 = 237 ∠54.25o. PF = cos 54.25o = 0.5843 lagging. (a) Raise PF to 0.92 lagging with series capacitance Znew = j100 + jXC + j300 || 200 = 138.5 + j(192.3 + XC) Ω  192.3 + X C  -1 o tan −1   = cos 0.92 = 23.07  138.5  Solving, we find that XC = -133.3 Ω = -1/ωC, so that C = 7.501 µF (b) Raise PF to 0.92 lagging with parallel capacitance Znew = j100 || jXC +

j300 || 200 =

− 100 X C +138.5 + j92.31 Ω j (100 + X C )

 100X C   Ω = 138.5 + j  92.31 + 100 + X C   100X C    92.31 +  100 + X C  −1  tan = cos-1 0.92 = 23.07 o   138.5     Solving, we find that XC = -25 Ω = -1/ωC, so that C =

40 µF

General circuit for simulations. Results agree with hand calculations With no compensation: With series compensation: With parallel compensation:

FREQ 1.592E+02 1.592E+02 1.592E+02

Engineering Circuit Analysis, 6th Edition

IM(V_PRINT1) 4.853E-01 7.641E-01 7.641E-01

IP(V_PRINT1) -5.825E+01 -2.707E+01 -2.707E+01

θ 54.25o 23.07o 23.07o

PF 0.5843 lag 0.9200 lag 0.9200 lag

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 39. (a) (b)

Ps ,tot = 20 + 25 × 0.8 + 30 × 0.75 = 70 kW 20, 000 = 80∠0° A rms 250 I 2 = 25, 000 / 250 = 100 A rms I1 =

∠I 2 = − cos−1 0.8 = −36.87 ∴ I 2 = 100∠ − 36.87o A rms 30, 000 40, 000 = 40, 000 VA, I 3 = = 160 A rms 0.75 250 ∠ I 3 = − cos−1 0.75 = −41.41° ∴ I 3 = 160∠ − 41.41° A rms AP3 =

∴ I s = 80∠0° + 100∠ − 36.87° + 160∠ − 41.41° = 325.4∠ − 30.64° A rms ∴ APs = 250 × 325.4 = 81, 360 VA (c)

PF3 =

70, 000 = 0.8604 lag 81,360

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 40.

200 kW average power and 280 kVAR reactive result in a power factor of PF = cos (tan-1 (280/200) = 0.5813 lagging, which is pretty low. (a) 0.65 peak = 0.65(200) = 130 kVAR Excess = 280 – 130 = 150 kVAR, for a cost of (12)(0.22)(150) = $396 / year. (b) Target = S = P + j0.65 P θ = tan-1(0.65P/P) = 33.02o, so target PF = cos θ = 0.8385 (c) A single 100-kVAR increment costs $200 to install. The excess kVAR would then be 280 – 100 – 130 = 50 kVAR, for an annual penalty of $332. This would result in a first-year savings of $64. A single 200-kVAR increment costs $395 to install, and would remove the entire excess kVAR. The savings would be $1 (wow) in the first year, but $396 each year thereafter. The single 200-kVAR increment is the most economical choice.

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 41. 20 (1 + j 2) = 10.769 − j 3.846 = 11.435+ ∠ − 19.65° Ω 3 + j2 100 ∴ Is = = 8.745∠19.65° 11.435∠ − 19.654° ∴ S s = − Vs I∗s = −100 × 8.745∠ − 19.65° = −823.5 + j 294.1VA

Zin = − j10 +

I 20 = 8.745∠19.65° ×

10 + j 20 = 5.423∠49.40° 30 + j 20

∴ S 20 = 20 × 5.432 2 = 588.2 + j 0 VA I10 =

20 × 5.423∠49.40 = 4.851∠ − 14.04° 10 + j 20

S10 = 10 × 4.8512 = 235.3 + j 0 VA S j 20 = j 20 × 4.8512 = j 470.6 VA, S − j10 = − j10 × 8.7452 =

− j 764.7 VA,

Engineering Circuit Analysis, 6th Edition

Σ=0

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 42. Vx − 100 V V − j100 + x + x =0 6 + j4 − j10 5  1  100 ∴ Vx  + j 0.1 + 0.2  = + j 20  6 + j4  6 + j4 ∴ Vx = 53.35− ∠42.66° V 100 − 53.35− ∠42.66° = 9.806∠ − 64.44° A 6 + j4 1 ∴ S1. gen = × 100 × 9.806∠64.44° = 211.5 + j 4423VA 2 1 S 6,abs = × 6 × 9.8062 = 288.5 + j 0 VA 2 1 S j 4, abs = ( j 4) 9.8062 = 0 + j192.3VA 2 j100 − 53.35− ∠42.66° I2 = = 14.99∠121.6°, 5 1 S5 abs = × 5 × 14.992 = 561.5 + j 0 VA 2 1 S 2, gen = ( j100)14.99∠ − 121.57° = 638.4 − j 392.3VA 2 1  53.35  S − j10,abs =   (− j10) = 0 − j142.3VA = 142.3∠0 VA 2  10  ∴ I1 =

Engineering Circuit Analysis, 6th Edition

Σ=0

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 43. (a)

500 VA, PF = 0.75 lead∴ S = 500∠ − cos −1 0.75 = 375 − j 330.7 VA

(b)

500W, PF = 0.75 lead∴ S = 500 −

(c)

500 sin (cos −1 0.75) = 500 − j 441.0 VA j.075

−500 VAR, PF = 0.75 (lead) ∴θ = − cos −1 0.75 = −41.41° ∴ P 500 / tan 41.41° = 566.9W, S = 566.9 − j 500 VA

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 44. (a)

S s = 1600 + j500 VA (gen) 1600 + j 500 = 4 + j1.25 ∴ I s = 4 − j1.25 400 400 Ic = = j 3.333A rms∴ I L = I s − I c = 4 − j1.25 − j 3.333 − j120 ∴ I L = 4 − j 4.583A rms∴ I ∗s =

S L = 400 (4 + j 4.583) = 1600 + j1833 VA (b)

1833.3   + PFL = cos  tan −1  = 0.6575 lag 1600  

(c)

S s = 1600 + j 500 = 1676∠17.35° VA ∴ PFs = cos17.35° = 0.9545 lag

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 45.

(cos−1 0.8 = 36.87°, cos−1 0.9 = 25.84°)

(a)

Stot = 1200∠36.87° + 1600∠25.84° + 900 = 960 + j 720 + 1440 + j 697.4 + 900 = 3300 + j1417.4 = 3592∠23.25° VA 3591.5 ∴ Is = = 15.62 A rms 230

(b)

PFs = cos 23.245° = 0.9188

(c)

S = 3300 + j1417 VA

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 46.

V = 339 ∠-66o V, ω = 100π rad/ s, connected to Z = 1000 Ω. 339 = 239.7 V rms 2 (b) pmax = 3392 / 1000 = 114.9 W (a) Veff =

(c) pmin = 0 W  339   Veff2  339   2 (d) Apparent power = Veff Ieff =  = = 57.46 VA    2   1000  1000   (e) Since the load is purely resistive, it draws zero reactive power. (f) S = 57.46 VA

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 47.

V = 339 ∠-66o V, ω = 100π rad/s to a purely inductive load of 150 mH (j47.12 Ω) V 339∠ - 66o = = 7.194 ∠ - 156o A Z j 47.12 7.194 = 5.087 A rms so Ieff = 2 (b) p(t) = ½ VmIm cos φ + ½ VmIm cos(2ωt + φ) where φ = angle of current – angle of voltage pmax = ½ VmIm cos φ + ½ VmIm = (1 + cos(-90o)) (339)(7.194)/ 2 = 1219 W (a) I =

(c) pmin = ½ VmIm cos φ - ½ VmIm = -1219 W 339 (5.087 ) = 1219 VA 2 (e) reactive power = Q = Veff Ieff sin (θ – φ) = 1219 VA

(d) apparent power = Veff Ieff =

(f) complex power = j1219 VA

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 48.

1 H → j Ω, 4 µF → -j250 kΩ Zeff = j || -j250×103 || 103 Ω = 1 ∠89.99o Ω V10k = (a) pmax

(5∠0) (1 ∠89.99o ) = 0.002 ∠89.97o V 2500 + (1 ∠89.99o ) = (0.002)2 / 10×103 = 400 pW

(b) 0 W (purely resistive elements draw no reactive power) (c) apparent power = VeffIeff = ½ VmIm = ½ (0.002)2 / 10000 = 200 pW 5∠0 = 0.002 ∠ - 0.02292o A o 2500 + 1∠89.99 S = ½ VmIm ∠(89.99o + 0.02292o) = 0.005 ∠90.01o VA (d) Isource =

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 49.

(a) At ω = 400 rad/s, 1 µF → -j2500 Ω, 100 mH → j40 Ω Define Zeff = -j2500 || (250 + j40) = 256 ∠ 3.287o Ω 12000∠0 = 43.48 ∠ - 3.049o A rms 20 + 256∠3.287o Ssource = (12000)(43.48) ∠ 3.049o = 521.8 ∠3.049o kVA

IS =

S20Ω = (43.48)2 (20) ∠0 = 37.81 ∠0 kVA Veff

(12000∠0)(256∠3.287 o ) = = 11130 ∠0.2381o V rms o 20 + 256∠3.287

I1µF =

Veff = 4.452 ∠90.24o A rms - j 2500 so S1µF = (11130)(4.452) ∠-90o = 49.55 ∠-90o kVA

V100mH =

(11130∠0.2381o )( j 40) = 1758 ∠81.15o V rms 250 + j 40

V100mH = 43.96 ∠ - 8.852o A rms j 40 so S100µΗ = (1758)(4.43.96) ∠90o = 77.28 ∠90o kVA

I100mH =

(11130∠0.2381o )(250) = 10990 ∠ − 8.852o V rms 250 + j 40 so S250Ω = (10990)2 / 250 = 483.1 ∠0o kVA

V250Ω =

(b) 37.81 ∠0 + 49.55 ∠-90o +77.28 ∠90o + 483.1 ∠0o = 521.6 ∠3.014o kVA, which is within rounding error of the complex power delivered by the source. (c) The apparent power of the source is 521.8 kVA. The apparent powers of the passive elements sum to 37.81 + 49.55 + 77.28 + 483.1 = 647.7 kVA, so NO! Phase angle is important! (d) P = Veff Ieff cos (ang VS – ang IS) = (12000)(43.48) cos (3.049o) = 521 kW (e) Q = Veff Ieff sin (ang VS – ang IS) = (12000)(43.48) sin (3.049o) = 27.75 kVAR

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

CHAPTER 11 SOLUTIONS 50.

(a) Peak current = 28 2 = 39.6 A (b) θload = cos-1(0.812) = +35.71o (since lagging PF). Assume ang (V) = 0o.

(

)(

)

p(t) = 2300 2 39.60 2 cos (120πt ) cos (120πt - 35.71o ) at t = 2.5 ms, then, p(t) = 147.9 kW (c) P = Veff Ieff cos θ = (2300)(28) cos (35.71o) = 52.29 kW (d) S = Veff Ieff ∠θ = 64.4 ∠ 35.71o kVA (e) apparent power = |S| = 64.4 kVA (f) |Zload| = |V/ I| = 2300/28 = 82.14 Ω. Thus, Zload = 82.14 ∠ 35.71o Ω (g) Q = Veff Ieff sin θ = 37.59 kVAR

Engineering Circuit Analysis, 6th Edition

Copyright 2002 McGraw-Hill, Inc. All Rights Reserved

Related Documents

Solutions Chap11
November 2019 28
Chap11
July 2020 12
Chap11
November 2019 34
Chap11
June 2020 16
072-076-chap11
October 2019 16
Ufa#ed2#sol#chap11
November 2019 15