Solution For 2006-07 Second Term Exam

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solution For 2006-07 Second Term Exam as PDF for free.

More details

  • Words: 490
  • Pages: 11
1. 2000Q6

2. 2001 Q2 x2 1 dx = ∫ 1 − dx = x − tan −1 x + c 2A (a) ∫ 2 2 1+ x 1+ x

3. 2001Q3

4. 2001 Q6

5. 2000 Q3.

6. 2004P1Q2

7. 2005Q1

8. (a)

(i)

f ' ( x) = 1 +

2x − 1 ( x − x + 1) 2 2

=

x 4 + x 2 + 1 − 2x3 − 2x + 2x 2 + 2x − 1 ( x 2 − x + 1) 2

=

x 4 − 2x 3 + 2x 2 ( x 2 − x + 1) 2

=

x 2 ( x 2 − 2 x + 3) ( x 2 − x + 1) 2 (b) (i) f ' ( x) > 0 ⇔ x ≠ 0 (ii) f ' ( x) < 0 ⇔ no solution (iii) f " ( x) > 0 ⇔ 0 < x < 1 (iv) f " ( x) < 0 ⇔ x < 0 or x > 1 (c) Point of inflexion (0,-1) and (1,0) (d) x = y

x x=y

y = f (x) × (1,0)

(e) × (0,-1)

9. 2003Q9

y

1

π

10. (a)

π

∫ π sin mx sin nxdx = 2 ∫ π (cos(m − n) x − cos(m + n) x)dx −



For m=n 1 π (cos 0 − cos 2mx)dx 2 ∫−π 1 sin 2mx π = (x − )| −π 2 2m =π =

For m ≠ n 1 sin( m − n) x sin( m + n) x π = ( − )| −π 2 ( m − n) ( m + n) =0 π

∫π −

(b)

n

n

(∑ bk sin kx) 2 dx =∑ (bk k =1 n

k =1

2

π

∫ π sin −

2

kx)dx

= π ∑ bk (by (a )) 2

k =1

π

π

2 (c) (i) ∫0 cos xdx = ∫0 (

π cos 2 x + 1 1 xπ π )dx = sin 2 x | + | = 0 2 2 20 2

n 1 1 2 kπ lim (c)(ii) n→∞ ∑ n cos n = π k =1



π

0

cos 2 xdx =

1 2 2

2

1 π n  1 π n  kπ π  π    sin k + x − sin k − x dx = lim sin kx  dx       ∑  2 cos (d) lim ∑   ∫ − π n →∞ n ∫−π n → ∞ n  k =1  n n  n     k =1  1 π  n  kπ  π ∑  4 cos 2  dx = 2π (by (c)(ii)) n →∞ n ∫−π  n  (by (b))  k =1 

= lim

11. 2003Q8

12. 2005Q11

Related Documents