1. 2000Q6
2. 2001 Q2 x2 1 dx = ∫ 1 − dx = x − tan −1 x + c 2A (a) ∫ 2 2 1+ x 1+ x
3. 2001Q3
4. 2001 Q6
5. 2000 Q3.
6. 2004P1Q2
7. 2005Q1
8. (a)
(i)
f ' ( x) = 1 +
2x − 1 ( x − x + 1) 2 2
=
x 4 + x 2 + 1 − 2x3 − 2x + 2x 2 + 2x − 1 ( x 2 − x + 1) 2
=
x 4 − 2x 3 + 2x 2 ( x 2 − x + 1) 2
=
x 2 ( x 2 − 2 x + 3) ( x 2 − x + 1) 2 (b) (i) f ' ( x) > 0 ⇔ x ≠ 0 (ii) f ' ( x) < 0 ⇔ no solution (iii) f " ( x) > 0 ⇔ 0 < x < 1 (iv) f " ( x) < 0 ⇔ x < 0 or x > 1 (c) Point of inflexion (0,-1) and (1,0) (d) x = y
x x=y
y = f (x) × (1,0)
(e) × (0,-1)
9. 2003Q9
y
1
π
10. (a)
π
∫ π sin mx sin nxdx = 2 ∫ π (cos(m − n) x − cos(m + n) x)dx −
−
For m=n 1 π (cos 0 − cos 2mx)dx 2 ∫−π 1 sin 2mx π = (x − )| −π 2 2m =π =
For m ≠ n 1 sin( m − n) x sin( m + n) x π = ( − )| −π 2 ( m − n) ( m + n) =0 π
∫π −
(b)
n
n
(∑ bk sin kx) 2 dx =∑ (bk k =1 n
k =1
2
π
∫ π sin −
2
kx)dx
= π ∑ bk (by (a )) 2
k =1
π
π
2 (c) (i) ∫0 cos xdx = ∫0 (
π cos 2 x + 1 1 xπ π )dx = sin 2 x | + | = 0 2 2 20 2
n 1 1 2 kπ lim (c)(ii) n→∞ ∑ n cos n = π k =1
∫
π
0
cos 2 xdx =
1 2 2
2
1 π n 1 π n kπ π π sin k + x − sin k − x dx = lim sin kx dx ∑ 2 cos (d) lim ∑ ∫ − π n →∞ n ∫−π n → ∞ n k =1 n n n k =1 1 π n kπ π ∑ 4 cos 2 dx = 2π (by (c)(ii)) n →∞ n ∫−π n (by (b)) k =1
= lim
11. 2003Q8
12. 2005Q11