Slides 8

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Slides 8 as PDF for free.

More details

  • Words: 2,285
  • Pages: 17
ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Trace elements and alkali • Trace elements in fuels and wastes • Emission standards for trace elements • Trace elements (excluding mercury) emission control • Mercury emission control • Alkali in fuels and wastes • Removal of alkali from fuel gases and flue gases see: www.hut.fi/~rzevenho /gasbook www.hut.fi/~rzevenho/

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Most important trace elements * and alkali #

## ##

**

**

** ** ** ** **

** ** ** ** ** ** ** ** ** ** ** **

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Emission standards for trace elements from combustion and incineration plants mg/m³STP STP @ 11 % O22, dry Hg

Power MSW MSW Power MSW Waste plant incinerator incinerator plant incinerator incinerator Finland Finland EU * Germany Germany USA (1990+) (1994) (2000) (1999) (1999) (1995)** no standard

0.05

0.05

no standard

0.03

Cd + Tl

no standard

0.05

0.05

no standard

0.05

As+Co+Cr+Cu+Mn +Ni+Pb+Sb+Sn+V

no standard

0.5

0.5

no standard

0.5

Cd only

Pb only * Includes waste co-firing in cement kilns

0.06/0.061 or 85% red. 0.03/0.015

0.37/0.15 ** Two values: existing / new

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Gas turbine inlet specifications for trace elements Element Regulation 1 Regulation 2 (1990) (ppmw) (1997) (ppmw) Na + K 0.06 0.03 Pb 0.12 1 V 0.06 0.05 Ca 1.3 1 Zn 0.24

Motivation hot corrosion hot corrosion hot corrosion fouling affects additives against Vanadium corrosion

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Trace elements in fossil - and waste-derived fuels Coal

Heavy Pet fuel oil coke Hg 0.02-3 ~0.07 < 0.01 As B Be Cd Co Cr Cu Mn Ni Pb Sb Se Sn Tl V Zn

0.5 - 10 5-100 0.1 - 10 0.05-10 0.5 - 20 0.5 - 60 5 - 60 5 - 300 0.5-100 1-300 <1 0.2 - 3 < 10 ~1 1-100 1-1000

Peat

1-3 ~ 0.1

1-2 ~ 0.01 0.1-0.3

1-2 ~0.5 0.5 - 2 ~ 0.5 5 - 104 ~ 10 < 0.1 30-100 0.5 - 1 5 - 10 20 - 50 ~ 300 1-5 1-5 6-100 ~1

~ 0.1

MSW < 15 0.5-500 < 0.5 1 - 40 < 100 < 20 < 1500 < 2500 < 1000 < 5000 < 2500 < 80 < 10 3 - 100

RDF

Wood Waste Waste Scrap Sew. wood paper tyres sludge 1 - 10 0.01-0.2 ~0.08 0.5 - 10 ~3

~0.2

~1 1 - 10

0.1-100

~ 0.5 ~ 0.1 ~1 0.5 - 3 10-1000 ~0.5 1 - 20

50-250 < 1000 ~250 10-100 100-500 <5 3-6 ~ 0.2 ~500

1-4 ~ 15 < 20 < 50

~ 0.5 ~ 0.8 ~ 0.7 ~6 ~ 18 ~27 ~7 ~8 ~5 ~ 0.08 ~8

0.04-3 5 - 50 100-200 ~20 ~ 10

5 - 10

1 - 10 ~5 ~ 100 ~ 100 200-700 ~ 200 ~ 75 ~ 50 60-760 100-300 100-500

~ 0.25 ~2 ~ 2 % 300-800 5 - 150

< 30

~ 150

1-2 %

unit : ppmw = mg/kg, dry

~1000

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Vanadium corrosion by oil ash Oxidation of iron via Na2O.6V2O5 + Fe <=> Na2O.V2O4 .5V2O5 + FeO Na2O.V2O4.5V2O5 + ½ O2 <=> Na2O.6V2O5 Na2SO4 + yV2O5 <=> Na2O.yV2O5 + SO3 (y = 1, 3 or 6)

Inhibition by magnesium: 3MgO + V2O5 <=> 3MgO.V2O5

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Behaviour of trace elements in coal combustion flue gases

(FGD = flue gas desulphurisation, desulphurisation, PM = particulate matter) Typical emissions (µ (µg/MJ) :

HELSINKI UNIVERSITY OF TECHNOLOGY

Mercury

Hg

0.5 - 14

Antimony Arsenic Beryllium Cadmium Cobalt Chromium Lead Manganese Nickel Selenium

Sb As Be Cd Co Cr Pb Mn Ni Se

< 0.1 - 2.4 0.1 - 4.2 < 0.1 - 1.4 < 0.1 - 3.0 < 0.1 - 6.8 < 0.1 - 51 0.6 - 29 1.1 - 22 0.3 - 40 <0.1 - 130

ENE-47.153

Trace elements partitioning during combustion or gasification: Class I,II,III elements

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Relative enrichment factor (RE) RE =

element concentrat ion in ash % ash in fuel x element concentrat ion in fuel 100 Bottom ash

Fly ash

Class I

RE ~ 1

RE ~ 1

Class II

RE ~ 0.7

RE 1.3 ~ 4

Class III

RE << 1

RE >> 10

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Effect of chlorine on trace element volatility Incineration

Chromium Nickel Beryllium Silver Barium Thallium Antimony Lead Selenium Cadmium Osmium Arsenic Mercury

0 % chlorine

Incineration

10 % chlorine

Principal Volatilisation Principal Volatilisation species temperature species temperature °C °C CrO2/CrO3 1613 CrO2/CrO3 1611 Ni(OH)2 1210 NiCl4 693 Be(OH)2 1054 Be(OH)2 1054 Ag 904 AgCl 627 Ba(OH)2 849 BaCl2 904 Tl2O3 721 TlOH 138 Sb2O3 660 Sb2O3 660 Pb 627 PbCl4 - 15 SeO2 318 SeO2 318 Cd 214 Cd 214 OsO4 41 OsO4 41 As2O3 32 As2O3 32 Hg 14 Hg 14

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Partitioning of class I, II, III trace elements during pulverised coal combustion

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

100 100 80 80

40 40

FGD FGD residue residue fly fly ash ash

20 20

bottom bottom ash ash

60 60

00 As As

B B

Cd Cd Cr Cr Hg Hg Ni Ni Pb Pb Se Se

↑ output → input Studstrup 3, Denmark

% input input besides besides coal coal fuel fuel %

% output output %

Trace element partitioning during pulverised coal combustion

flue flue gas gas

88 66

limestone limestone

44

FGD FGDwater water

22 00 As As

B B

Cd Cd

Cr Cr

Hg Hg

Ni Ni

Pb Pb

Se Se

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Effect of fuel type and furnace type on trace element emissions Process Particles control efficiency, % Emissions µg/MJ Hg As Be Cd Co Cr Mn Mo Ni Pb V Zn

Heavy fuel Pulverised Grate peat Pulverised Circulating oil spray peat combustion coal FBC peat combustion combustion combustion 98.7 - 99.5 59 - 81 95.6 - 99.5 99.5 - 99.8

0.0011 1.5 < 0.004 0.008 3 3 < 14 3 310 - 540 5 1300 15

0.11

0.10

< 1.5 - 2.3 2 - 10 0.05 0.1 - 1.5 < 0.002 - 0.13 0.8 - 4 0.3 - 1.2 0.06 - 0.2 3 - 79 0.6 - 3 10 - 26 17 - 31 < 1 - 11 < 0.07 - 0.9 < 33 - 54 <1-5 3-4 40 - 200 4-6 0.7 - 7 < 6 - 12 7 - 37

HELSINKI UNIVERSITY OF TECHNOLOGY

0.12

0.03

2 - 39 5 0.5 -1.8 1 - 22 8 - 230 2 - 230 < 1 -41 < 15 - 170 20 - 120 10 - 88 20 - 220

< 0.1 - 1.6 0.01 - 0.3 0.1 - 0.4 0.3 - 4 0.7 - 1.3 0.6 - 6 < 1.5 - 2.3 9 - 13 1 - 11 9 1 - 11

ENE-47.153

Controlling trace elements emissions Most concern: Hg, Se, B, As, Cd, Cd, Pb Less concern: Cr, Cr, Cu, Ni, Ni, V, Zn

class III/II class II/ I

Class I and II in bottom ash and (enriched) in fly ashes: → removal depends mainly on dust control system (and its efficiency for 0.1 - 1 µm fines) Class II and III can be (more) effectively removed by the flue gas desulphurisation system (Hg ~ 40%, Se ~70%) Specific methods based on sorbents can be used, such as activated carbon, clays and aluminum silicates. For coal combustion / gasification not (yet) widely used, for waste incinerators often used for Hg and As, Cd, Cd, Pb

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Trace element removal by wet FGD downstream of particulate control

Hg Se Be Fly ash

Removal efficiency % ~ 50 ~ 60 ~ 80 90 ~ 99

HELSINKI UNIVERSITY OF TECHNOLOGY

Sorbents for heavy metals

Outlet concentration µg/m³STP ~ 1.5 ~ 10 ~ 250 1000 ~ 10000

ENE-47.153

Sorbent Element Temperature range Based on zeolites Hg low temperatures, - impregnated with sulphur up to 400EC - impregenated with iodides - Ag and Hg ion exchanged Based on activated carbon Hg low temperatures, - activated carbon up to 300EC - activated carbon impregnated with at higher sulphur, chlorine, iodides temperatures also - oxidised activated carbon Cd, Pb Siliceous materials V, Pb, Ni, Zn high temperatures 600-1000EC - Mg, Ca, Al silicates - Mixed silicates, silicate -fly ash at low temperatures low temperatures e.g. < 100EC mixtures, impregnated siliceous also Hg, Cd materials Based on alumina Pb at up to 700EC - activated alumina gel, - alumina coated steel wool, - alumina impregnated with alkali carbonate or phosphate Calcium compounds Hg, Zn, V, Ni at Hg at up to 300-400EC, - hydrated lime/fly ash low temperature - limestone/fly ash, limestone/silica V, Ni, As at high temperatures - hydrated lime + Sn, limestone, As at high calcium chloride temperature Other materials Hg, V, Ni, Pb, As V, Ni at up to 550EC - MgO, Mg(OH)2, - Cr, Ni compounds As at high temperatures - Fe compounds, e.g. blast furnace dust

HELSINKI UNIVERSITY OF TECHNOLOGY

ENE-47.153

Mercury (from coal) partitioning

HELSINKI UNIVERSITY OF TECHNOLOGY

Mercury emissions from coal fired boilers (US) unit: mg/GJ, 1 GJ ~ 300 m3STP flue gas

Mercury in US coal:

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

ENE-47.153

Mercury species transformations during pulverised coal combustion

HELSINKI UNIVERSITY OF TECHNOLOGY

ENE-47.153

Mercury emissions control Filter + wet scrubber versus ESP + wet scrubber

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Mercury emissions control Injection of activated carbon and hydrated lime at filter inlet

HgCl2

Hg°

HELSINKI UNIVERSITY OF TECHNOLOGY

ENE-47.153

Control of mercury emissions - #1 of 2 • Low temperatures – ad-/ab -sorption on activated carbon ad-/ab-sorption HgCl2: physisorption, physisorption, Hg: chemisorption, chemisorption, more efficient with a sulphur, chlorine or iodine - impregnated sorbent – injection of Na2S4 and removal of HgS in acid scrubber : • HgCl2 + Na2S4 → HgS + 3 S + 2 NaCl • Hg° → HgS + Na2S3 Hg° + Na2S4 • Na2S4 + 2 HCl → H2S + 3 S + 2 NaCl • HgCl2 + H2S → HgS + 2 HCl • Hg° → HgS Hg° + S

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Control of mercury emissions - #2 of 2 • (..... Low temperatures: ) – sodium chlorite (NaClO2) in acid scrubber for HCl – SO2 + activated carbon (for Hg°) + TMT (for Hg2+) – aluminium silicates – oxidation by H2O2 and wet scrubbing • High temperatures: – Ca/Mg-based sorbents, sorbents, fly ash, Ca(OH)2+Sn – some metals: Cr, Cr, Ni, Ni, Fe-compounds

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Removal of mercury with activated carbon (140°C, inlet 20 µg/m³ g/m³ Hg)

Effect of particle size and contact time

Effect of particle size and C/Hg ratio

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Akali in fuels (mg/kg, dry) Coal Lignite Peat Orimul- Wood sion™ saw dust

Straw

RDF

Auto Scrap Sew. Black shred- tyres sludge liquor der res. solids

Na

100 1500

100 300

~ 400 ~ 2000 ~ 40

100 5000

3000 - ~ 10000 200 - ~ 2000 5000 600

K

50 3000

100 1000

~ 700

15 20 %

~ 300 ~ 500 5000 - 2000 - ~ 3000 200 - ~ 6000 ~ 1 % 10000 3000 600

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Natrium in coal : • release of Na during heat-up ‚ relation between Na & Cl, Cl, ƒ Na-vapour Na-vapour in PFBC flue gas •

illinois coal



ƒ

HELSINKI UNIVERSITY OF TECHNOLOGY

ENE-47.153

Sodium / ash interactions in furnaces

HELSINKI UNIVERSITY OF TECHNOLOGY

ENE-47.153

Vapour pressures of alkali species ↑ Saturated vapour pressure of alkali chlorides NaCl, NaCl, KCl → Alkali saturation pressures and concentrations in coalderived gas

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Vapour phase alkali in PFBC (Otaniemi, Otaniemi, Finland, 770-920°C, 10 bar)

unit : weight-ppb

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Alkali in flue gas/gasifier product gas • In gasifier product gas In flue gas

chlorides, hydroxides, sulphide <1000°C : chlorides + SO2 → sulphates

• Comparison PGBC / PFBG of peat, 900° 900°C : alkali ~2 orders of magnitude higher in fuel gas than in flue gas • Maximum alkali for expansion turbine inlet: assuming air ratio 2.5 for for gas turbine: • 90 - 99% of the alkali has to be removed

24 ppb 84 ppb in fuel gas

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Alkali removal from flue gas/gasifier product gas • Species and concentrations: Potassium K Sodium Na • Na+K Na+K in gasifier gas, ppmw

350°C ~10-5

600°C KCl NaCl ~0.8+~1

1227°C K > KCl > KBO2 Na > NaCl > NaBO2 for Shell gasifier

• Below 530-570°C: alkali concentrations below turbine inlet limits • Temperature below 600°C: all alkali as chlorides and sulphates particles, which will be collected with the fly ash • Temperature above 600° 600°C: ¬ Cooling and removal as particles - Absorption using aluminum silicates (600-1000° (600-1000°C)

HELSINKI UNIVERSITY OF TECHNOLOGY

ENE-47.153

Alkali removal from flue gas/gasifier product gas by solid sorbents at 600-1000°C • Sorbents: Sorbents:

Kaolinite, Kaolinite, Bauxite, Emathlite

• Reductions achieved: close to 100% • Chemical fixation in the material. E.g. for bauxite: AlkCl + H2O + Al2O3.xSiO2(s) → AlkAlO2.xSiO2 + 2HCl • Sorption can be combined with hot gas particulate control in moving granular bed filters, allowing 2-5% alkali

ENE-47.153

HELSINKI UNIVERSITY OF TECHNOLOGY

Alumina silicate sorbents for alkali 600-1000°C

Emathlite Kaolinite Bauxitic kaolinite Attapulgite Ca-montmorillonite

SiO2 %-wt ~ 69 ~ 51 ~ 36 ~ 62 ~ 54

Al22O33 %-wt ~8 ~ 44 ~ 58 ~ 10 ~ 18

(Na,K)22O (Ca,Mg)O %-wt %-wt ~1 ~9 ~0 ~0 ~0 ~0 ~1 ~ 10, ~ 5 ~2 ~5, ~ 13

P22O5 %-wt ~3 ~0 ~0 ~1 ~0

Others %-wt ~ 10 ~5 ~6 ~2

~8

Procedure : inject sorbent into gas and collect sorbent in particulate control system

Related Documents

Slides 8
November 2019 15
Slides
May 2020 55
Slides
May 2020 34
Slides
June 2020 35
Slides
July 2020 36
Slides
August 2019 53