2
Sequences, Series and Convergence:
2.1 Iterative Sequences 2.1.1
Exercises: Three iterative sequences are defined as follows:
(a)
a (1) 0, a (n 1) (a(n) 5) / 8 ,
(c)
c(1) 1, c (n 1) 2 c(n) 1 ,
b (1) 0.5, b ( n 1) 8 b( n) /( b ( n) 2 1) ,
(b)
n 1, 2 , 3 ,
Complete the following table using your calculator. Record the answers only to 4 decimal places. (Hint: The following key sequences give the first row: 0 , = , ( Ans + 5 ) / 8 = , = , = , = , …) t(n+1) (a(n)+5)/8 8b(n)/(b(n)2+1) √(2c(n)+1)
2.1.2
t(1) 0.0000 0.5000 1.0000
t(2) 0.6250 3.2000 1.7321
t(3) 0.7031 2.2776 2.1128
t(4) 0.7129 2.9448 2.2860
t(5) 0.7141 2.4358 2.3605
t(10) 0.7143 2.6971 2.4136
t(15) 0.7143 2.6337 2.4142
t(25) 0.7143 2.6451 2.4142
Exercises: In the above exercise, continue the iteration, without recording, until two
consecutive iterates coincide. Then all the following iterates also will be the same. Obviously, this common iterate will be the limit of the sequence. Note down this limit to nine decimal places. Independently, by an analytic method, find the limit of the sequence. t(n+1) (a(n)+5)/8 8b(n)/(b(n)2+1)
Limit by Iteration 0.714285714 2.645751311
L=(L+5)/8 L = 8 L / (L2+1)
√(2c(n)+1)
2.414213562
L2 = 2 L + 1
2.1.3
Limit by Analytic Method L=5/7 0.714285714 √7 2.645751311 (1+√5 ) / 2
2.414213562
Exercises: By completing the table below, find the limit of the sequences approximately and
show that the convergence is linear. (a) a ( n 1) (c)
1 , a(1) 1 a ( n) 2 1
c ( n 1)
(1 c( n) 3 ) , c(1) 1 4
n
1
2
an
1.0000
an+1 - an
-0.5000
(an+2 - an+1)/( an+1 - an)
b(n 1) sin(b(n)) 1, b(1) 1
(b)
3
4
5
6
0.5000
0.8000
0.3000
-0.1902
7
8
0.6098
0.7290
0.1192
-0.0760
9
10
0.6530
0.7011
0.0481
-0.0306
0.6705
0.6899
0.6775
0.0194
-0.0123
0.0078
-0.6000 -0.6341 -0.6266 -0.6373 -0.6327 -0.6365 -0.6344 -0.6359 -0.6350 -0.6356
bn
1.0000
1.8415
1.9636
1.9238
1.9383
1.9332
1.9350
1.9344
1.9346
1.9345
bn+1 - bn
0.8415
0.1221
-0.0397
0.0145
-0.0051
0.0018
-0.0006
0.0002
-0.0001
0.0000
0.1451
-0.3255 -0.3643 -0.3525 -0.3569 -0.3554 -0.3559 -0.3557 -0.3558 -0.3558
1.0000
0.5000
(bn+2 - bn+1)/( bn+1 - bn) cn cn+1 - cn (cn+2 - cn+1)/( cn+1 - cn)
0.2542
0.2541
0.2541
0.2541
0.2541
0.2541
-0.5000 -0.2188 -0.0257 -0.0014 -0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.4375
0.0484
0.0484
0.0484
0.0484
0.0484
0.1174
For the sequence (a) , the limit is
0.2813 0.0541
0.68
0.2556 0.0487
0.0484
correct to two decimal places. Also, (an+2 - an+1)/( an+1 - an)
is a constant (= - 0.6350) for sufficiently large n. Therefore, the convergence is linear.
2.1.4
Notes: Sequences whose convergence is linear converge slowly. However, there is a method
to accelerate the speed of convergence and to find the limit with high accuracy. Consider a sequence whose convergence is linear.
certain value N ,
a a n 1 k ( say) . This implies that beyond a Suppose, lim n 2 n a n1 a n
a n 2 a n1 k . We can therefore assume that a n 2 a n1 k a n1 a n for all a n1 a n
n N . It follows that if i is a positive integer, then a N i 1 a N i k a N i a N i 1 k 2 a N i 1 a N i 2 k i a N 1 a N k i 1 a N a N 1 .
Therefore, a N i 1 (a N i 1 a N i ) a N i a N i 1 a N i 1 a N i 2 a N 1 a N a N a N 1 a N 1
a N a N 1 k i 1 k i k i 1 k 1 a N 1 .
Taking limits on both sides as i , we get, lim a n = a N a N 1 lim ( k i 1 k i k 1) a N 1 n
a N
=
a N 1 lim (1 k k i k i 1 ) a N 1 = n
n
a N k a N 1 a N a N 1 a N 1 = 1 k 1 k
The above formula gives us a means of finding the limit fast and accurate. 2.1.5
Exercises: Using the above formula find the limits of the three sequences in Exercise 2.1.3 ,
correct to four decimal places. We complete the above table again with nine d.p. accuracy. n
6
7
8
9
10
an
0.652999725
0.701061373
0.670471796
0.689877632
0.677538381
an+1 - an
0.048061648
-0.030589577
0.019405836
-0.012339251
0.007835212
(an+2 - an+1)/( an+1 - an)
-0.636465421
-0.634393745
-0.635852590
-0.634982755
-0.635558539
bn
1.933218657
1.935040754
1.934393196
1.934623688
1.934541691
bn+1 - bn
0.001822098
-0.000647559
0.000230493
-0.000081997
0.000029176
(bn+2 - bn+1)/( bn+1 - bn)
-0.355391920
-0.355940832
-0.355745954
-0.355815345
-0.355790662
cn
0.254105133
0.254101855
0.254101696
0.254101689
0.254101688
cn+1 - cn
-0.000003278
-0.000000159
-0.000000008
0.000000000
0.000000000
(cn+2 - cn+1)/( cn+1 - cn)
0.048426439
0.048425784
0.048425756
0.048425710
0.048426433
We notice that for the sequence (a), we have
N 10 , k 0.635, a 9 0.689877632 and a10 0.677538381 . formula, we get
a N k a N 1 1 k
lim a n
n
=
0.67753831 0.636 (0.689877632 ) = 0.6823 1.635
Similarly, find the limits of the other two sequences:
lim bn
n
,
lim c n
n
Therefore, applying the
,