Ratios

  • Uploaded by: Omer Ali
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ratios as PDF for free.

More details

  • Words: 951
  • Pages: 5
Ratios Important Facts: 1.Ratio : The ratio of two qualities a and b in the same units, is the fraction a/b and we write it as a:b. In the ratio, a:b, we call ‘a’ as the first term of antecedent and b, the second term consequent. Ex: The ratio 5:9 represents 5/9 with antecedent=5 ,consequent=9 3Rule: The multiplication or division of each term of 9 ratio by the same non-zero number does not affect the ratio. 4.Proportion: The equality of two ratios is called proportion. If a:b=c:d, we write a:b::c:d and we say that a,b,c and d are in proportion. Here a and b are called extremes, while b and c are called mean terms. Product of means=product of extremes Thus, a:b::c:d => (b*c)=(a*d) 5.Fourth proportional: If a:b::c:d, then d is called the fourth proportional to a,b and c. 6.Third proportional: If a:b::b:c, then c is called third proportional to a and b. 7.Mean proportional: Mean proportional between a and b is SQRT(a*b).

COMPARISION OF RATIOS: We say that (a:b)>(c:d) => (a/b)>(c/d) 8.Compounded ratio: The compounded ratio of the ratios (a:b), (c:d),(e:f) is (ace:bdf). 9.Duplicate Ratio: If (a:b) is (a2: b2 ) 10.Sub-duplicate ratio of (a:b) is (SQRT(a):SQRT(b)) 11.Triplicate ratio of (a:b) is (a3: b3 )

12.Sub-triplicate ratio of (a:b) is (a1/3: b1/3 ). 13.If a/b=c/d, then (a+b)/(a-b)=(c+d)/(c-d) (componend o and dividend o)

VARIATION: 14.we say that x is directly proportional to y, if x=ky for some constant k and we write. 15.We say that x is inversely proportional to y, if xy=k for some constant and we write. 16. X is inversely proportional to y. If a/b=c/d=e/f=g/h=k then k=(a+c+e+g)/(b+d+f+h) If a1/b1,a2/b2, a3/b3..............an/bn are unequal fractions then the ratio.

Rations and Proportions: Simple Problems

SIMPLE PROBLEMS 1.If a:b =5:9 and b:c=4:7 Find a:b:c? Sol: a:b=5:9 and b:c=4:7=4*9/4:9*4/9=9:63/9 a:b:c=5:9:63/9=20:36:63 2.Find the fourth proportion to 4,9,12 Sol: d is the fourth proportion to a,b,c a:b=c:d 4:9=12:x 4x=9*12=>x=27 3.Find third proportion to 16,36 Sol: if a:b=b:c then c is the third proportion to a,b

16:36=36:x 16x=36*36 x=81 4.Find mean proportion between 0.08 and 0.18 Sol: mean proportion between a and b=square root of ab mean proportion =square root of 0.08*0.18=0.12 5.If a:b=2:3 b:c=4:5, c:d=6:7 then a:b:c:d is Sol: a:b=2:3 and b:c=4:5=4*3/4:5*3/4=3:15/4 c:d=6:7=6*15/24:7*15/24=15/4:35/8 a:b:c:d=2:3:15/4:35/8=16:24:30:35 6.2A=3B=4C then A:B:C? Sol: let 2A=3B=4C=k then A=k/2, B=k/3, C=k/4 A:B:C=k/2:k/3:k/4=6:4:3 7.15% of x=20% of y then x:y is Sol: (15/100)*x=(20/100)*y 3x=4y x:y=4:3 8.a/3=b/4=c/7 then (a+b+c)/c= Sol: let a/3=b/4=c/7=k (a+b+c)/c=(3k+4k+7k)/7k=2 9.Rs 3650 is divided among 4 engineers, 3 MBA’s and 5 CA’s such that 3 CA’s get as much as 2 MBA’s and 3 Eng’s as much as 2 CA’s .Find the share of an MBA. Sol: 4E+3M+5C=3650 3C=2M, that is M=1.5C 3E=2C that is E=.66 C Then, (4*0.66C)+(3*1.5C)+5C=3650 C=3650/12.166 C=300 M=1.5 and C=450.

Difficult Problems

DIFFICULT PROBLEMS 1.Three containers A,B and C are having mixtures of milk and water in the ratio of 1:5 and 3:5 and 5:7 respectively. If the capacities of the containers are in the ratio of all the three containers are in the ratio 5:4:5, find the ratio of milk to water, if the mixtures of all the three containers are mixed together. Sol: Assume that there are 500,400 and 500 liters respectively in the 3 containers. Then ,we have, 83.33, 150 and 208.33 liters of milk in each of the three containers. Thus, the total milk is 441.66 liters. Hence, the amount of water in the mixture is 1400-441.66=958.33liters. Hence, the ratio of milk to water is 441.66:958.33 => 53:115(using division by .3333) The calculation thought process should be (441*2+2):(958*3+1)=1325:2875 Dividing by 25 => 53:115. 2.A certain number of one rupee, fifty parse and twenty five paise coins are in the ratio of 2:5:3:4, add up to Rs 210. How many 50 paise coins were there? Sol: the ratio of 2.5:3:4 can be written as 5:6:8 let us assume that there are 5 one rupee coins,6 fifty paise coins and 8 twentyfive paise coins in all. their value=(5*1)+(6*.50)+(8*.25)=5+3+2=Rs 10 If the total is Rs 10,number of 50 paise coins are 6. if the total is Rs 210, number of 50 paise coins would be 210*6/10=126. 3.The incomes of A and B are in the ratio of 4:3 and their expenditure are in the ratio of 2:1 . if each one saves Rs 1000,what are their incomes? Sol: Ratio of incomes of A and B=4:3 Ratio of expenditures of A and B=2:1 Amount of money saved by A=Amount of money saved by B=Rs 1000

let the incomes of A and B be 4x and 3x respectively let the expense of A and B be 2y and 1yrespectively Amount of money saved by A=(income-expenditure)=4x-2y=Rs 1000 Amount of money saved by B=3x-y=Rs 1000 this can be even written as 6x-2y=Rs 2000 now solve 1 and 3 to get x=Rs 500 therefore income of A=4x=4*500=Rs 2000 income of B=3x=3*500=Rs 1500 4.A sum of Rs 1162 is divided among A,B and C. Such that 4 times A's share share is equal to 5 times B's share and 7 times C's share . What is the share of C? Sol: 4 times of A's share =5 times of B's share=7 times of C's share=1 therefore , the ratio of their share =1/4:1/5:1/7 LCM of 4,5,7=140 therefore, ¼:1/5:1/7=35:28:20 the ratio now can be written as 35:28:20 therefore C's share=(20/83)*1162=20*14=Rs 280. 5.The ratio of the present ages of saritha and her mother is 2:9, mother's age at the time of saritha's birth was 28 years , what is saritha's present age? Sol: ratio of ages of saritha and her mother =2:9 let the present age of saritha be 2x years. then the mother's present age would be 9x years Difference in their ages =28 years 9x-2x=28 years 7x=28=>x=4 therefore saritha's age =2*4=8 years

Related Documents

Ratios
May 2020 26
Ratios
May 2020 23
Ratios
April 2020 27
Ratios
November 2019 37
Ratios
May 2020 29
Ratios
November 2019 38

More Documents from ""

Averages
April 2020 27
Profit And Loss
April 2020 27
Chain Rule
April 2020 27
Odd Numbers And Series
April 2020 24
Areas
April 2020 33
Banking
April 2020 27