Proteccion Contra El Deterioro.docx

  • Uploaded by: Isaac Rios
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Proteccion Contra El Deterioro.docx as PDF for free.

More details

  • Words: 1,924
  • Pages: 8
INSTITUTO TECNOLOGICO DE LA LAGUNA. INGENIERIA DE LOS MATERIALES NO METELICOS “PROTECCION CONTRA EL DETERIORO: POLIMEROS Y CERAMICOS”

ISAAC ABISAI RIOS FLORES 17131041

4/DIC/2018

CORROSIÓN La corrosión se define como el deterioro de un material a consecuencia de un ataque electroquímico por su entorno. De manera mas general, puede entenderse como la tendencia general que tiene los materiales a buscar su forma mas estable o de menor energía interna. Siempre que la corrosión este originada por una reacción electroquímica (oxidación), la velocidad a la que tiene lugar dependerá en alguna medida de la temperatura, de la salinidad del fluido en contacto con el material y sus propiedades.

TIPOS DE CORROSION Corrosión química En la corrosión química un material se disuelve en un medio corrosivo líquido y este se seguirá disolviendo hasta que se consuma totalmente o se sature el líquido y demás para todos. Las aleaciones base cobre desarrollan una barniz verde a causa de la formación de carbonato e hidróxidos de cobre, esta es la razón por la cual la Estatua de la Libertad se ve con ese color verduzco. •

Ataque por metal líquido

Los metales líquidos atacan a los sólidos en sus puntos más críticos de energía como los límites de granos lo cual a la larga generará varias grietas. •

Lixiviación selectiva

Consiste en separar sólidos de una aleación. La corrosión grafítica del hierro fundido gris ocurre cuando el hierro se diluye selectivamente en agua o la tierra y desprende cascarillas de grafito y un producto de la corrosión, lo cual causa fugas o fallas en la tubería. •

Disolución y oxidación de los materiales cerámicos

Pueden ser disueltos los materiales cerámicos refractarios que se utilizan para contener el metal fundido durante la fusión y el refinado por las escorias provocadas sobre la superficie del metal.



Ataque químico a los polímeros

Los plásticos son considerados resistentes a la corrosión, por ejemplo el teflón y el vitón son algunos de los materiales más resistentes, estos resisten muchos ácidos, bases y líquidos orgánicos pero existen algunos solventes agresivos a los termoplásticos, es decir las moléculas del solvente más pequeñas separan las cadenas de los plásticos provocando hinchazón que ocasiona grietas. Tipos de corrosión electroquímica •

Celdas de composición

Se presentan cuando dos metales o aleaciones, tal es el caso de cobre y hierro forma una celda electrolítica. Con el efecto de polarización de los elementos aleados y las concentraciones del electrolito las series fem quizá no nos digan que región se corroerá y cual quedara protegida. •

Celdas de esfuerzo

La corrosión por esfuerzo se presenta por acción galvánica pero puede suceder por la filtración de impurezas en el extremo de una grieta existente. La falla se presenta como resultado de la corrosión y de un esfuerzo aplicado, a mayores esfuerzos el tiempo necesario para la falla se reduce. •

Corrosión por oxígeno

Este tipo de corrosión ocurre generalmente en superficies expuestas al oxígeno diatómico disuelto en agua o al aire, se ve favorecido por altas temperaturas y presión elevada ( ejemplo: calderas de vapor). La corrosión en las máquinas térmicas (calderas de vapor) representa una constante pérdida de rendimiento y vida útil de la instalación. •

Corrosión microbiológica

Es uno de los tipos de corrosión electroquímica. Algunos microorganismos son capaces de causar corrosión en las superficies metálicas sumergidas. La biodiversidad que está presente en éste tipo de corrosión será: Bacterias. Algas. Hongos.

Se han identificado algunas especies hidrógeno-dependientes que usan el hidrógeno disuelto del agua en sus procesos metabólicos provocando una diferencia de potencial del medio circundante. Su acción está asociada al pitting (picado) del oxígeno o la presencia de ácido sulfhídrico en el medio. En este caso se clasifican las ferrobacterias. Es indispensable que el medio tenga presencia de agua. Las bacterias pueden vivir en un rango de pH de 0 a 10, dicho rango no implica que en un pH de 11 no pueda existir bacteria alguna. •

Corrosión por presiones parciales de oxígeno

El oxígeno presente en una tubería por ejemplo, está expuesto a diferentes presiones parciales del mismo. Es decir una superficie es más aireada que otra próxima a ella y se forma una pila. El área sujeta a menor aireación (menor presión parcial) actúa como ánodo y la que tiene mayor presencia de oxígeno (mayor presión) actúa como un cátodo y se establece la migración de electrones, formándose óxido en una y reduciéndose en la otra parte de la pila. Este tipo de corrosión es común en superficies muy irregulares donde se producen obturaciones de oxígeno. •

Corrosión galvánica

Es la más común de todas y se establece cuando dos metales distintos entre sí actúan como ánodo uno de ellos y el otro como cátodo. Aquel que tenga el potencial de reducción más negativo procederá como una oxidación y viceversa aquel metal o especie química que exhiba un potencial de reducción más positivo procederá como una reducción. Este par de metales constituye la llamada pila galvánica. En donde la especie que se oxida (ánodo) cede sus electrones y la especie que se reduce (cátodo) acepta los electrones. •

Corrosión por heterogeneidad del material

Se produce en aleaciones metálicas, por imperfecciones en la aleación. •

Corrosión por aireación superficial

También llamado Efecto Evans. Se produce en superficies planas, en sitios húmedos y con suciedad. El depósito de suciedad provoca en presencia de humedad la existencia de un entorno más electronegativamente cargado.

RADIACIÓN La radiación propagada en forma de ondas electromagnéticas (rayos UV, rayos gamma, rayos X, etc.) se llama radiación electromagnética, mientras que la llamada radiación corpuscular es la radiación transmitida en forma de partículas subatómicas (partículas α, partículas β, neutrones, etc.) que se mueven a gran velocidad, con apreciable transporte de energía. Si la radiación transporta energía suficiente como para provocar ionización en el medio que atraviesa, se dice que es una radiación ionizante. En caso contrario se habla de radiación no ionizante. El carácter ionizante o no ionizante de la radiación es independiente de su naturaleza corpuscular u ondulatoria. Son radiaciones ionizantes los rayos X, rayos γ, partículas α y parte del espectro de la radiación UV entre otros. Por otro lado, radiaciones como los rayos UV y las ondas de radio, TV o de telefonía móvil, son algunos ejemplos de radiaciones no ionizantes. Elementos radiactivos Algunas substancias químicas están formadas por elementos químicos cuyos núcleos atómicos son inestables. Como consecuencia de esa inestabilidad, sus átomos emiten partículas subatómicas de forma intermitente y aleatoria.1 En general son radiactivas las sustancias que presentan un exceso de protones o neutrones. Cuando el número de neutrones difiere del número de protones, se hace más difícil que la fuerza nuclear fuerte debida al efecto del intercambio de piones pueda mantenerlos unidos.1 Eventualmente el desequilibrio se corrige mediante la liberación del exceso de neutrones o protones, en forma de partículas α que son realmente núcleos de helio, partículas β que pueden ser electrones o positrones. Estas emisiones llevan a dos tipos de radiactividad: • Radiación α, que aligera los núcleos atómicos en 4 unidades básicas, y cambia el número atómico en dos unidades.1 • Radiación β, que no cambia la masa del núcleo, ya que implica la conversión de un protón en un neutrón o viceversa, y cambia el número atómico en una sola unidad (positiva o negativa, según la partícula emitida sea un electrón o un positrón).1

Además, existe un tercer tipo de radiación en que simplemente se emiten fotones de alta frecuencia, llamada radiación γ. En este tipo de radicación lo que sucede es que el núcleo pasa de un estado excitado de mayor energía a otro de menor energía, que puede seguir siendo inestable y dar lugar a la emisión de más radiación de tipo α, β o γ. La radiación γ es un tipo de radiación electromagnética muy penetrante debido a que los fotones no tienen carga eléctrica, así como ser inestables dentro de su capacidad molecular dentro del calor que efectuasen entre sí. Tipos de radiación •

Radiación electromagnética



Radiación ionizante



Radiación térmica



Radiación de Cherenkov



Radiación corpuscular



Radiación solar



Radiación nuclear



Radiación de cuerpo negro



Radiación no ionizante



Radiación cósmica

RECUBRIMIENTOS Los recubrimientos metálicos, inorgánicos y orgánicos, se aplican a metales para evitar o reducir la corrosión. Recubrimientos metálicos: Los recubrimientos metálicos que difieren del metal por proteger se aplican como capas delgadas para separar el ambiente corrosivo del metal. Los recubrimientos metálicos se aplican algunas veces de manera que puedan servir como ánodos de sacrificio que se corroan en vez del metal subyacente. Por ejemplo, el recubrimiento del zinc sobre acero para hacer acero galvanizado es anódico para el acero y se corroe de manera sacrificada. Muchas partes metálicas se protegen mediante electro-depositación para producir una delgada capa protectora del metal. En este proceso la parte que se va a recubrir se hace del cátodo de una celda electrolítica. El electrolito es una solución de una sal de metal que se recubrirá, y se aplica corriente directa a la parte por recubrir y a otro electrodo. El recubrimiento de una capa delgada de estaño sobre la placa de acero para producir la placa de estaño que se utiliza para latas de este último material es un ejemplo de la aplicación de este método. El recubrimiento también puede tener varias capas, como es el caso de la placa de cromo utilizada en automóviles. Este recubrimiento consta de tres capas: 1) un rocío interno de cobre para la adhesión del recubrimiento al acero, 2) una capa intermedia de níquel para una buena resistencia a la corrosión y 3) una delgada capa de cromo principalmente para el aspecto. Algunas veces una delgada capa de metal se extiende sobre las superficies del metal por proteger. La delgada capa exterior del metal proporciona resistencia a la corrosión a su metal núcleo del interior. Por ejemplo, algunos aceros “se revisten” con una delgada capa de acero inoxidable. Este proceso de revestimiento también se utiliza para proporcionar ciertas aleaciones de aluminio de alta resistencia con una capa exterior resistente a la corrosión. Para estas aleaciones Alclad, que es como se conocen, una delgada capa de aluminio relativamente puro se extiende sobre la superficie exterior de la aleación del núcleo de alta resistencia.

Recubrimientos inorgánicos (cerámicas y vidrio) En algunas aplicaciones es deseable recubrir acero con un recubrimiento cerámico para obtener un acabado durable y liso. El acero se recubre por lo general con una cubierta de porcelana compuesta por una delgada capa de vidrio fundido a la superficie del acero de manera que se adhiera bien y tenga un coeficiente de expansión ajustado al metal de la base. En algunas industrias químicas se utilizan recipientes de acero con forro de vidrio debido a su facilidad de limpieza y resistencia a la corrosión. Recubrimientos orgánicos Las pinturas, barnices, lacas y muchos otros materiales poliméricos orgánicos se utilizan comúnmente para proteger metales contra ambientes corrosivos. Estos materiales ofrecen barreras delgadas, resistentes y durables para proteger el metal del sustrato de ambientes corrosivos. De acuerdo con el peso, el uso de recubrimientos orgánicos protege más a los metales contra la corrosión que cualquier otro método. Sin embargo, es necesario elegir recubrimientos adecuados y aplicarlos de manera apropiada sobre superficies bien preparadas. En muchos casos el mal desempeño de las pinturas, por ejemplo, puede atribuirse a la incorrecta aplicación y a la preparación de las superficies. Es necesario tener cuidado de no aplicar recubrimientos orgánicos en casos donde el metal del sustrato podría ser atacado con rapidez si se agrieta la película del recubrimiento.

Related Documents


More Documents from ""

Solamente Una Vez..pdf
April 2020 17
Mini.pdf
April 2020 10
Atijesus.pdf
December 2019 7
Co-pgm17_e_01.docx
December 2019 33