Nuclear Fusion Reactor Works

  • Uploaded by: anjandaniel143
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Nuclear Fusion Reactor Works as PDF for free.

More details

  • Words: 845
  • Pages: 17
NUCLEAR FUSION REACTOR Presented by ATISH KUMAR DAS INC 8th semester 0501288159

WHY SHOULD WE USE NUCLEAR FUSION? Abundant fuel supply • Safe • Clean • Less nuclear waste • MECHANISM OF NUCLEAR FUSION REACTOR :  Physics of Nuclear fusion reaction : Reactor • fusion reactor: magnetic confinement. • plasma toroid. • Parts of the ITER fusion reactor. • Conclusion •

 Abundant

fuel supply - Deuterium can be 

readily extracted from seawater, and excess tritium  can be made in the fusion reactor itself from lithium,  which is readily available in the Earth's crust.  Uranium for fission is rare, and it must be mined  and then enriched for use in reactors. 

Safe - The amounts of fuel used for fusion are  small compared to fission reactors. This is so that  uncontrolled releases of energy do not occur. Most  fusion reactors make less radiation than the natural  background radiation we live with in our daily lives.   

Physics of Nuclear Fusion: Reactions • Proton-proton chain - This sequence is the predominant fusion reaction scheme used by stars such as the sun. Two pairs of protons form to make two deuterium atoms. • Two helium-3 atoms combine to form beryllium-6, which is unstable. • Beryllium-6 decays into two helium-4 atoms.

A consortium from the United  States, Russia, Europe and Japan  has proposed to build a fusion  reactor called the International Thermonuclear Experimental Reactor (ITER) in France, to  demonstrate the feasibility of using  sustained fusion reactions for  making. 

To achieve fusion, you need to create special conditions to overcome this tendency. Here are the conditions that make fusion possible: • High temperature - The high temperature gives the hydrogen atoms enough energy to overcome the electrical repulsion between the protons. Fusion requires temperatures about 100 million Kelvin.At these temperatures, hydrogen is a plasma, not a gas. Plasma is a high-energy state of matter in which all the electrons are stripped from atoms and move freely about. The sun achieves these temperatures by its large mass and the force of gravity compressing this mass in the core.

•We must use energy from microwaves, lasers and ion  particles to achieve these temperatures. 

•High pressure - Pressure squeezes the hydrogen atoms  together. They must be within 1x10-15 meters of each other to  fuse. 

The sun uses its mass and the force of gravity to squeeze  hydrogen atoms together in its core. 

We must squeeze hydrogen atoms together by using  intense magnetic fields, powerful lasers or ion beams.  With current technology, we can only achieve the  temperatures and pressures necessary to make  deuterium-tritium fusion possible. It is easier to  extract deuterium from seawater than to make tritium  from lithium. Also, deuterium is not radioactive, and  deuterium-deuterium reactions will yield more energy.

Fusion Reactors: Magnetic Confinement • "Tokamak" is a Russian acronym for "toroidal chamber with axial magnetic field." • Magnetic confinement uses magnetic and electric fields to heat and squeeze the hydrogen plasma. The ITER project in France is using this method.

Plasma toroid • A reactor of this shape is called a tokamak. The ITER tokamak will be a self-contained reactor whose parts are in various cassettes. These cassettes can be easily inserted and removed without having to tear down the entire reactor for maintenance.

The ITER fusion reactor has following parts • Vacuum vessel - holds the plasma and keeps the reaction chamber in a vacuum . • Neutral beam injector (ion cyclotron system) - injects particle beams from the accelerator into the plasma to help heat the plasma to critical temperature • Cooling equipment (cryostat, cryopump) cool the magnets

• Magnetic field coils (poloidal, toroidal) super-conducting magnets that confine, shape and contain the plasma using magnetic fields . • Transformers/Central solenoid - supply electricity to the magnetic field coils . • Blanket modules - made of lithium,absorb heat and high-energy neutrons from the fusion reaction • Diverters - exhaust the helium products of the fusion reaction

Magnetic-confinement fusion process: The power needed to start the fusion reaction will be about 70  megawatts, but the power yield from the reaction will be about  500 megawatts.  The fusion reaction will last from 300 to 500 seconds.  (Eventually, there will be a sustained fusion reaction).  The lithium blankets outside the plasma reaction chamber will  absorb high-energy neutrons from the fusion reaction to make  more tritium fuel. The blankets will also get heated by the  neutrons.   

The fusion reactor will heat a stream of deuterium and tritium fuel to form high-temperature plasma. It will squeeze the plasma so that fusion can take place

• The heat will be transferred by a watercooling loop to a heat exchanger to make steam. • The steam will drive electrical turbines to produce electricity. • The steam will be condensed back into water to absorb more heat from the reactor in the heat exchanger.

conclusion • Fusion reactors will use abundant sources of fuel, will not leak radiation above normal background levels, and will produce less radioactive waste than current fission reactors. • At last fusion reactor used for mankind purposes.

References' • www.google.co.in • www.wikipedia.com

The end

Related Documents

Nuclear Reactor
April 2020 27
Nuclear Reactor
November 2019 28
Nuclear Fusion
April 2020 8
Nuclear Reactor Hazards
November 2019 18

More Documents from "api-3740904"

Blu-ray Disc
June 2020 5