Nasa Gemini 4 Press Kit

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Nasa Gemini 4 Press Kit as PDF for free.

More details

  • Words: 33,446
  • Pages: 94
I

J

w o 7-41

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D C

P R E S S K I

lELS w o

20546

FOR RELEASE: FRIDAY PPI's

May 21, 1965 RELEASE NO: 65-158

CONTENTS GENERAL NEWS RELEASE.

..........................

14

BACKGROUND INFORMATION Possible Extravehicular Activity.......**... Primary Objectives Secondary Objectives........................ 6 Mission Description 7-12 Flight Data..................*......*~......12 Weather Requirements..... ...................12-14 C o u n t d o w n ...... 15-16 Flight Crew Activities 17-18 Immediate Preflight Crew Activities 18-19 Flight Activities .l9-22 Post Flight Activities.... 23 Crew Safety ........................*........24 During Launch............................24-2 7 Abort Procedures (Illustration) .25 Inflight.................................28-2 9 Reentry, Landing, Recovery 29-33 Parachute Landing Sequence (Illustration)31 Gemini Survival Package 34-36 Manned Space Flight Tracking Network . . . . . . . . 3 7-38 Goddard Computer Support 38-39 Mission Control Center, Cape Kennedy .....39-40 MASA Communications Network. .40-42 Spacecraft Communications 42 Network Responsibility.. .43-44 Network, Configuration, Capability 45 Medical Checks ..............................46 Cardiovascular Effects of Space Flight.. .46-47 Gemin" i\ Fxperiments.. 048

.......................... 2 .........................

........... ...................... ...... ....................... ...............

......... ............... ..................... ................. ............ ................ ................ .......

.....................

*;,+ti-

I

1 -

is schecluled no e a r l i e r t'rian June 3 .

55

1-09? 5

................ .................... ..................... ............. ......... ....... ........... ............. ........................... ............................ ........................... ........................... ......................... ..... 7 ....... .............. ...................... ........................... ............................ . ........................ . ............................. ....................... . ...................... ........................... ..................... ..........................

In-Flight Phonocardiogram 49 Bond Demineralization 49 Electrostatic Charge 50-51 Proton-Electron Spectrometer 51-52 Tri-Axis Flux-Gate Magnetometer .53-54 Two-Color Earth's Limb Photography 9-56 Synoptic Terrain Photography ..5 7-59 Synoptic Weather Photography 60-62 Food for Gemini 4 63-64 65-68 Gemini 4 Menu Gemini Spacecraft 69 Reentry Module 69-70 Adapter Section .70-76 Liquid Rocket Systems (Illustration) 71 Thrust Chamber Arran ement (Illustration)72 73 Maneuvering Control Illustration) Response to Control Thrust (Illustration)74 RCS Function (Illustration) 75 Gemini Launch Vehicie .7 7-80 Gemini Space Suit 81-82 Crew Biographies 83 James A McDivitt 83 Edward H White I1 84 Frank Borman 85 James A Lovell, Jr 86 Project Officials 8'7 Previous Gemini lights 88-90 Orbits-Revolutions 91 - 0 -

NOTE TO EDITORS:

Supplemental information will be released as rapidly as it develops

.

NEWS

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546

wo 2-4155 TELS. W O

FOR RELEASE: FRIDAY P Ms~ May 21, 1965 RELEASE NO:

65-158 NASA SCHEDULES FOUR-DAY MANNED GEMINI FLIGHT

FROM CAPE KENNEDY The N a t i o n a l Aeronautics and Space A d m i n i s t r a t i o n w i l l launch t h e United S t a t e s ' l o n g e s t d u r a t i o n manned space f l i g h t t o date from Cape Kennedy, Fla.,

no e a r l i e r t h a n June 3.

The two-man Gemini 4 mission i s scheduled t o c i r c l e the Earth 62 times i n f o u r days to e v a l u a t e t h e e f f e c t s of extended

space f l i g h t on crew performance and p h y s i c a l c o n d i t i o n .

Astronaut James A. McDivitt i s command p i l o t and A s t r o n a u t Edward H. White I1 i s p i l o t f o r t h e f l i g h t .

A s t r o n a u t s Frank

Borman and James A. Lovell, Jr., t h e back-up crew, w i l l r e p l a c e t h e primary crew should e i t h e r member o f t h a t team become i n e l i g i b l e f o r the f l i g h t .

The mission i s d e s i g n a t e d Gemini 4--the f o u r t h of 12 f l i g h t s planned i n t h e Gemini p r o j e c t .

Gemini 1 and Gemini 2, were wunanned.

The f i r s t two m i s s i o n s , Astronauts V i r g i l

Grissom and John Young o r b i t e d t h e Earth t h r e e times March

23 i n Gemini 3.

- more -

3-6925

- 2 -

A s u c c e s s f u l f’ull-duration Gemini 4 f l i g h t w i l l more

than t r i p l e the manned space f l i g h t t i m e accumulated by the United S t a t e s .

To date t h e U.S. has n e a r l y 65 man-hours i n

space and t h e Gemini 4 mission would b r i n g t h e t o t a l t o a b o u t 257 man-hours.

T o t a l U.S. manned s p a c e c r a f t time i n space

would be about 154 hours a f t e r the 97-hour-and-50-minute

Gemini

4 flight.

Gemini 4 w i l l be launched by a two-stage T i t a n 11, a modified U.S. A i r Force I n t e r c o n t i n e n t a l B a l l i s t i c m i s s i l e , i n t o an o r b i t w i t h a h i g h p o i n t (apogee) 185 m i l e s and low p o i n t (perigee) of 100 m i l e s above t h e Earth.

Each o r b i t w i l l

take about 90 minutes and range between 33 degrees n o r t h and

south of t h e Equator.

Recovery i s planned i n t h e A t l a n t i c Ocean about 400 m i l e s south of Bermuda.

Eleven experiments a r e planned f o r Gemini 4.

Three of

t h e s e are medical, f o u r engineering, two Department of Defense and two s c i e n t i f i c .

The medical experiments w i l l s t u d y e f f e c t s of e x e r c i s e

and work i n space, time h e a r t c o n t r a c t i o n s w i t h a phonocardiogram and determine whether bone d e m i n e r a l i z a t i o n t a k e s p l a c e on long space f l i g h t s .

- more

-

- 3 Engineering experiments will measure electrostatic charges on the spacecraft surface, measure radiation immediately around the spacecraft, monitor direction and amplitude of the Earth's magnetic field with respect to the spacecraft and make two-color photographs of the Earth's "limb" (the outer edge of brightness).

DOD experiments concern radiation measurements inside the spacecraft and simple devices for navigation.

Scientific experiments include wide-angle terrain and weather photography.

The Gemini 4 mission marks the first time that mission control will be exercised at the Manned Spacecraft Center, Houston.

The Mission Control Center at Houston was used to

monitor the Gemini 3 mission but control of that mission and all the Mercury manned space flights was done at Cape Kennedy.

The Gemini program is the second phase of the United State's manned space flight program.

It is designed to provide

experience in orbiting maneuvers, rendezvous and docking, space flights lasting up to 14 days and for manned scientific investigations in space.

-

more

-

- 4 -

Gemini is under the d i r e c t i o n o f the O f f i c e o f Manned Space F l i g h t , NASA Headquarters, Washington, D.C.,

and i s

managed by NASA's Manned S p a c e c r a f t Center, Houston.

Gemini

i s a n a t i o n a l space e f f o r t and i s supported by t h e Department o f Defense i n such areas as launch vehicle development,

launch o p e r a t i o n s , t r a c k i n g and recovery. (BACKGROUND DATA FOLLOWS)

- more

-

Orbit phase

Orient to retro attitude

Equipment adapter separation at retro fire (TR) minus 30 Retro seconds fire

Retro adapter At separation by crew. Orient alJtIroxiniately t o reentry 1.O ft/sec beyiii attitude re-eiitry control Droyue chute deploy ft

a 50,000

\B

Second staye s e p a r a t i o 5 g

\

BASIC MISSION PHASES Pre-launch Launch Orbit Retrograde Reentry Landing Recovery

fairing jettison

Second staye cut-off

I

1. Actuation of "D" handle between legs opens hatches

1. 2.

3. 4. 5. 6. 7. Lift-off

T+4

Q

3.

F i r s t staye cut-off and jettison

R and R section jettison and iliain chute de-

I

4. Secoiid staye iy iii t ion

P i l o t chute

and fires catapults, thrusting seats clear of spacecraft. Rocket portion of rocket catapult iynites, providing continued thrust and increased seat velocity. Rocket burnout. Man seat separation. Droyue motor fires, and chute is deployed. Chute iiiflated. Backboard and egress k i t released. Survival year stripped out on lanyard.

-

i

seconds

Gemini

4 Significant Events

dis-reef

98800ft

I

- 5 -

POSSIBLE EXTRAVEHICULAR ACTIVITY N o d e c i s i o n has been made whether i n t h e Gemini 4

mission t h e crew w i l l engage i n e x t r a v e h i c u l a r a c t i v i t y . This w i l l depend on t h e q u a l i f y i n g o f t h e e x t r a v e h i c u l a r

space s u i t s and the h a t c h .

During t h e i r t r a i n i n g t h e Gemini 4 crew performed a simulated e x t r a v e h i c u l a r t e s t i n t h e vacuum chamber a t McDonnell A i r c r a f t Corp., a t a simulated a l t i t u d e of l50,OOO feet.

A d e c i s i o n t o undertake t h e e x t r a v e h i c u l a r t e s t can be made as l a t e as t h e day b e f o r e t h e launch.

-

more

-

- 6 -

G E M I N I 4 PRIMARY OBJECTIVES

1.

Demonstrate and e v a l u a t e performance of the space-

c r a f t systems f o r a p e r i o d exceeding f o u r days. 2.

Evaluate e f f e c t s of prolonged exposure t o t h e space

environment of t h e two-man f l i g h t crew i n p r e p a r a t i o n f o r f l i g h t s of l o n g e r d u r a t i o n .

G E M I N I 4 SECONDARY OBJECTIVES

1.

Demonstrate O r b i t a l A t t i t u d e and Maneuver System's

c a p a b i l i t y t o perform r e t r o f i r e back-up. 2.

Demonstrate c a p a b i l i t y of the s p a c e c r a f t and f l i g h t

crew t o make i n - p l a n e and out-of-plane

3.

maneuvers.

Conduct f u r t h e r e v a l u a t i o n of s p a c e c r a f t systems

as o u t l i n e d i n i n f l i g h t systems t e s t o b j e c t i v e s :

a.

S t r u c t u r e and thermal p r o t e c t i o n system.

b.

Environmental c o n t r o l system.

C.

Crew station.

d.

Guidance and c o n t r o l system.

e.

O r b i t a l A t t i t u d e and Maneuver System

(oms).

-

more

-

- 7 -

4. Execute the following experiments: a. M - 3 inflight exerciser. b.

M-4 inflight phonocardiogram.

c.

M-6 bone demineralization.

d.

MSC-1 electrostatic charge.

e.

MSC-2 proton electron spectrometer.

f.

MSC-3 tri-axis magnetometer.

g.

MSC-10 two-color Earth's limb photographs.

h.

D-8 radiation in spacecraft.

i.

D-9 simple navigation.

j.

S-5 synoptic terrain photography.

k.

S-6 synoptic weather photography. MISSION DESCRIPTION

The spacecraft will be launched from Pad 19 on a true azimuth of 72 degrees east of north.

Slightly more than six

minutes after liftoff, it will be inserted into a 100-185statute-mile orbit inclined approximately 32.5 degrees to the Equator.

(All miles are statute).

- more -

- 8 -

Orbital insertion will occur about 680 miles from Cape Kennedy at a velocity of 25,766 feet per second (17,567 miles per hour), including up to 10 feet per second provided by the spacecraft's aft-firing thrusters during the separation maneuver.

While in orbit, maneuvers totaling

55 feet per second

will be used to adjust the orbital lifetime and to demonstrate the maneuvering ability of the spacecraft.

Additional

maneuvers totaling 25 feet per secondwillbe performed separately, but in conjunction with orbit adjustment maneuvers, to check out operational procedures.

Retrofire is planned at

97 hours, 31 minutes and 43

seconds after liftoff as Gemini 4 is passing over the west coast of the United States before the end of the 62nd revolution.

Landing is expected approximately

17 minutes after

retrofire in the Atlantic Ocean about 400 miles south of Bermuda

.

Each of the maneuvers will be calculated in realtime and adjusted to meet requirements as determined by the mission director.

The maneuvers planned are:

- more -

- 9 -

S e p a r a t i o n Maneuver

-- Twenty

seconds a f t e r t h e launch

v e h i c l e ' s second stage engine c u t s off- (SECO), the command

p i l o t w i l l a c t i v a t e the two a f t - f i r i n g t h r u s t e r s f o r 12

seconds t o a p p l y up t o 10 f e e t per second forward v e l o c i t y t o the spacecraft t o s e p a r a t e it from the launch v e h i c l e .

He

w i l l n o t c o n t r o l the s p a c e c r a f t a t t i t u d e d u r i n g the f i r s t t w o seconds of t h r u s t , t h e n he w i l l c o n t r o l a t t i t u d e t o 0 degrees r o l l , 0 degrees yaw and -20 degrees p i t c h f o r t h e remainder of t h e burn.

A t Second Apogee

-- The

forward v e l o c i t y will be i n c r e a s e d

seven feet per second t o raise the perigee and a c h i e v e a f i v e - d a y lifetime.

P r i o r t o burn, t h e command p i l o t w i l l

yaw the s p a c e c r a f t 180 degrees, p l a c i n g the b l u n t end forward, and the two f o r w a r d - f i r i n g , used f o r t h e maneuver. required.

85-pound t h r u s t e n g i n e s w i l l b e

About 11 seconds of t h r u s t w i l l be

The perigee of the o r b i t tdll be raised t o 105

m i l e s and t h e apogee w i l l remain a t 185 miles.

A t 30th Apogee

--

Forward v e l o c i t y w i l l b e i n c r e a s e d 1 2

f e e t per second t o raise t h e perigee and a c h i e v e a three-day

lifetime.

The 100-pound l e f t - f i r i n g t h r u s t e r will be used

and i t w i l l be n e c e s s a r y t o yaw t h e s p a c e c r a f t -64 degrees t o a l i g n the t h r u s t e r with t h e v e l o c i t y v e c t o r .

time w i l l b e about 30 seconds.

- more

-

Thrusting

-

10 -

Between 30th Apogee and 30th perigee

--

A series of

five foot per-second maneuvers will be performed to evaluate thruster operation and t o determine visual characteristics of thruster plumes.

The burns will be performed at five-

minute intervals.

The first will be up, using the 100-pound down-firing thruster while the spacecraft is at a -26-degree pitch angle to align the thruster perpendicular to the velocity vector.

The second will be down, utilizing the 100-pound upfiring thruster while the spacecraft is at apitch angle of

26 degrees to align the thruster perpendicular to the velocity vector.

The third will be to the left utilizing the 100-pound right-firing thruster while the spacecraft is at a yaw angle of -26 degrees to align the thruster perpendicular to the velocity vector.

Approximately 12 seconds of thrust will be required for each maneuver.

- more -

A t 30th P e r i g e e

--

11

-

A maneuver w i l l be performed t o

e v a l u a t e t h e a p p l i c a t i o n of a t h r e e - a x i s change i n v e l o c i t y u s i n g the two 100-pound a f t - f i r i n g t h r u s t e r s .

The space-

c r a f t a t t i t u d e w i l l be -169.3 degrees yaw and 10.9 degree pitch,

V e l o c i t y v a l u e s w i l l be 26 f e e t p e r second a f t ,

f i v e feet per second up and f i v e feet p e r second l e f t .

34 seconds of t h r u s t w i l l be r e q u i r e d .

About

A t the end of a l l

t h e maneuvers beginning a t t h e 30th apogee, the s p a c e c r a f t

w i l l be i n a 108-154-mile o r b i t .

A t 45th Apogee

-- Forward v e l o c i t y

w i l l be i n c r e a s e d

f o u r feet per second t o raise t h e p e r i g e e and a c h i e v e a two-day lifetime.

The 85-pound f o r w a r d - f i r i n g t h r u s t e r s

w i l l be used while t h e spacecraft i s i n a 180-degree yaw attitude.

Burn time w i l l be about seven seconds.

A t 45th Perigee

-- R

s i x - f o o t a f t burn, u s i n g t h e

forward firing t h r u s t e r s , will be made t o lowerthe apogee. S p a c e c r a f t a t t i t u d e w i l l be 0 degrees i n a l l axes.

time will be about 10 seconds.

Thrusting

A t t h e end of the two maneuvers

i n t h e 45th o r b i t , a e o r b i t a l elements will be 107-143 miles.

Twelve minutes b e f o r e R e t r o f i r e

--

An O r b i t a l A t t i t u d e

and Maneuver System r e t r o g r a d e maneuver of about 110 f e e t per second w i l l b e performed t o p r o v i d e a r e e n t r y t r a j e c t o r y

- more

-

-

12

-

even if t h e r e t r o r o c k e t s should not f i r e .

The a f t - f i r i n g

t h r u s t e r s w i l l be used while t h e s p a c c c r a f t i s i n a 180Burn time w i l l be about 116 seconds.

degree yaw a t t i t u d e .

FLIGHT DATA

--

Launch Azimuth F l i g h t Duration

72 degrees.

--

Approximately 97 hours, 50 minutes.

I n i t i a l O r b i t a l Parameters Reentry V e l o c i t y

--

-- 100 -185 m i l e s .

About 24,000 f e e t p e r second, 16,450

m i l e s p e r hour. Reentry temperature

--

About 3,000 degrees Fahrenheit on

s u r f a c e of h e a t s h i e l d . Landing P o i n t

-- A t l a n t i c

Ocean about 400 m i l e s s o u t h of

Bermuda, 25.20 d e g r e e s north, 65 d e g r e e s west. Oxygen

-- Primary

Cabin Environment

52 pounds, Secondary 13 pounds.

--

100 p e r c e n t oxygen p r e s s u r i z e d a t

f i v e pounds per square inch. Retrorockets

-- Each o f

f o u r r e t r o r o c k e t s produces

approximately 2,500 pounds of t h r w s t f o r 5.5 seconds.

Will

f i r e separately.

WEATHER REQUIREMENTS

Recovery c a p a b i l i t y i s based p r i m a r i l y on r e p o r t s from recovery f o r c e commanders t o t h e recovery task f o r c e command a t Mission Control Center. more

-

-

-

13

-

The f o l l o w i n g are guide l i n e s o n l y .

Conditions

a l o n g the ground t r a c k w i l l be e v a l u a t e d p r i o r t o a n d d u r i n g the mission.

Launch Area

S u r f a c e Winds Ceiling

--

Visibility

Wave Height

-- 18 k n o t s

w i t h g u s t s t o 25 k n o t s .

5,000 f e e t cloud base m i n i m u m .

-- S i x m i l e s m i n i m u m .

-- Five

f e e t maximum.

P l a n n e d L a n d i n g Areas

S u r f a c e Winds Ceiling

--

-- 1,500

Visibility Wave Height

30 k n o t s maximum

f e e t cloud base m i n i m u m .

-- S i x m i l e s m i n i m u m .

-- E i g h t

f e e t maximum.

Contingency L a n d i n g Areas

Weather a n d s t a t u s of contingency recovery f o r c e s w i l l be c o n t i n u a l l y monitored.

Recommendations w i l l be made t o the

Mission D i r e c t o r who w i l l make the go-no-go d e c i s i o n based upon c o n d i t i o n s a t t h e t h e .

- more -

- 14 -

Pararescue The d e c i s i o n t o use p a r a r e s c u e p e r s o n n e l depends upon

weather c o n d i t i o n s , s u r f a c e v e s s e l l o c a t i o n s a n d t h e a b i l i t y to provide a i r dropped s u p p l i e s u n t i l t h e a r r i v a l of a

surface vessel.

The f i n a l d e c i s i o n t o jump w i l l be made by

t h e jump-master.

Weather g u i d e l i n e s f o r p a r a r e s c u e opera-

t i o n s are: S u r f a c e Winds Ceiling

--

Visibility

Waves

--

25 k n o t s maximum.

1,000 f e e t cloud base m i n i m u m .

-- T a r g e t

-- Five

visible.

f e e t maximum, s w e l l s 10 o r 11 f e e t

maximum.

- more -

- 15

-

LAUNCH COUNTDOWN T - 1 day

P r e p a r a t i o n s for launch countdown'

T-270 minutes

Awaken crcw

T-240 minutes

Begin countdown.

T-225 minutes

Engine c u t o f f , shutdown and d e s t r u c t test complete.

T-190 minutes

S t a r t e l e c t r i c a l connection o f Stage I and I1 d e s t r u c t i n i a t i a t o r s .

T-175 minutes

Ordnance e l e c t r i c a l connections complete, s a f e t y p i n s removed; blockhouse d o o r sealed.

T-1.70 minutes

Begin s e n s o r placement and s u i t i n g o f crew.

T-168 minutes

Launch v e h i c l e t a n k p r e s s u r i z a t i o n completed.

T-150 minutes

S t a r t launch v e h i c l e s e c u r i n g p r e p a r a t i o n s .

T-120 minutes

V e r i f y launch v e h i c l e "Go" f o r f l i g h t ; simulated malfunction t e s t .

T-100 minutes

Crew e n t e r s s p a c e c r a f t .

T-60 minutes

Nhite Room e v a c u a t i o n complete; e r e c t o r lowering p r e p a r a t i o n s complete; e r e c t o r c l e a r e d t o lower.

T-35 minutes

S t a r t lowering e r e c t o r ; s t a r t range telemetry readout.

T-30 minutes

A c t i v a t e s p a c e c r a f t communications l i n k s .

T-25 minutes

S p a c e c r a f t t o i n t e r n a l power.

T-20 minutes

Command t r a n s m i t t e r on.

T-15 minutes

Spacecraft s t a t i c f i r i n g .

T-6 minutes

F i n a l s t a t u s and communications check.

T-5 minutes

S t a r t range t e l e m e t r y r e c o r d e r s .

T-4 minutes

S t a r t analog and e v e n t r e c o r d e r s .

-

more

-

.

- 16

T-3 minutes T-2 minutes, 30

seconds

-

Set in launch azimuth ( 7 2 degrees), Range clearance

.

T-1 minute, 30 seconds Roll program armed. T-0

Engine start signal.

- more -

- 17

-

FLIGHT CREW ACTIVITIES, GEMINI 4

The Gemini 4 flight crew was selected July 27, 1964. Concentrated mission training began in September.

In addition

to the extensive general training received prior to flight

assignment--such as familiarization with high accelerations, zero gravity, and various survival techniques--the following preparations have or will be accomplished prior to launch:

a.

Familiarization with launch, launch abort, and

reentry acceleration profiles of' the Gemini 4 mission using the Naval Air Development Center, Johnsville, Pa., centrifuge. b.

Egress and recovery activities using a spacecraft

boilerplate model and actual recovery equipment and personnel. c.

Celestial pattern recognition in the Moorehead

Planetarium, Chapel Hill, N.C. d.

Hatch-open and standup exercises at a simulated

l50,OOO ft. in the McDonnell Aircraft Corp. pressure chamber. e.

Parachute descent training over land and water using

a towed parachute technique. f.

Zero gravity evaluation of extra vehicular activities,

food and other on-board equipment. g.

Suit, seat, and harness fittings.

h.

Launch abort simulations at Ling-Temco-Vought in a configured simulator.

- more

-

- 18

i.

-

T r a i n i n g s e s s i o n s t o t a l i n g over 110 hours p e r crew

member on t h e Gemi::i mission s i m u l a t o r s . D e t a i l e d systems b r i e f i n g ; d e t a i l e d experiment

j.

b r i e f i n g s ; f l i g h t p l a n and mission r u l e s reviews. P a r t i c i p a t i o n i n mock-up reviews, S e r v i c e Engineering

k.

Department R e p o r t (SEDR) reviews, subsystem t e s t s , and spacec r a f t acceptance review. I n f i n a l p r e p a r a t i o n f o r flight, t h e crew p a r t i c i p a n t s i n network launch a b o r t s i m u l a t i o n s , j o i n t combined systems t e s t , rrJet mock s i m u l a t e d lm,~nck( and t h e

test.

f i n a l simulated f l i g h t

A t T-2 days, t h e major flight crew medical examinations

w i l l be a d m i n i s t e r e d t o determine r e a d i n e s s f o r flight and

o b t a i n data for comparison w i t h p o s t flight medical examination results.

Immediate P r e f l i g h t Crew A c t i v i t i e s Seven h o u r s p r i o r t o launch, t h e back-up f l i g h t crew r e p o r t s t o the 100-foot level o€ t h e White Room t o monitor a l l cockpit switches. the positioning ~ 1 '

By T-5 hours, t h e

p i l o t s ' ready room, the 100-foot level o f t h e White Room and t h e crew q u a r t e r s are manned and made ready f o r t h e primary

crew.

- more

-

-

19

-

T-4 hours, 30 minutes

Primary crew awakened

T -4 hours

Medical examination

T-3 hours, 40 minutes

Breakfast

T-3 hours

Crew leaves Q&C (Operations and Checkout) Building

T-2 hours, 50 minutes

Crew arrives at ready room

on Pad 16

During the next hour, the biomedical sensors are placed, underwear and signal conditioners are donned, flight suits minus helmets and gloves are put on and blood pressure is checked. The helmets and gloves are then attached and communications

and oral temperature systems are checked. Purging of suit begins

T-2 hours

T - 1 hour,

49 minutes

crew leaves ready room

T-1 hour,

44 minutes

Crew arrives at 100-foot l e v e l

T-1 hour,

40 minutes

Crew enters spacecraft

From entry until ignition, the crew participates in or monitors system checks and preparations. Flight kctivitles At ignition the crew begins the primary launch phase task of assessing system status and detecting abort situations.

At 45 seconds after staging the command p i l o t jettisons the nose and horizon scanner fairings.

Twenty seconds arter SECO,

the command p i l o t initiates forward thrusting and tine p i l o t

- more

-

-

20

-

actuates spacecraft separation and selects rate command attitude control. Ground computations of insertion velocity corrections are received and velocity adjustments are made by forward or aft thrusting. After successful insertion and completion of the insertion check list, the detailed flight plan is begun.

In addition to frequent housekeep-

tasks such as

systems tests, biomedical readouts and eating, the following significant events are planned: Orbit

Events -

1

Thruster and control mode check, communications systems check, D-9 experiment (star to booster sextant measurements).

2

Translation manuever and night Apollo yaw orientation check.

4

Tracking tasks and synoptic weather photography.

5-6

Cormand p i l o t sleeps, MSC-2 experlment (proton electron measurement), MSC-3 (magnetic field measurement),

l'4-3 (exercise) and MSC-10 (two-color Earth limb photography).

8

Command pilot awakes, D-8 experiment (radiation'

measurements), pilot sleeps.

- more

-

- 21 -

9

D-9 experklent (star and horizon sextant sightings)

11

Pilot awakes.

12

M-3 (exercise).

13

Command pilot sleeps.

16

S-5 (synoptic terrain photography), command pilot

.

awakes, pilot sleeps.

17

High frequency communications tests.

19

Pilot awakes, D-9 (star and horizon sextant measurements),

20

Command pilot sleeps S-6 (synoptic weather photography).

21

MSC-2 (proton and electron measurements) , MSC-3 (magnetic field measurements), D-8 (radiation measurements), S-5 (synoptic weather photography).

22

D-8 (radiation measurements), S-5 (synoptic weather photography).

23

Command pilot awakes, pilot sleeps.

25

Pilot awakes.

26

M-3 (exercise).

27

Command pilot sleeps, S-6 (synoptic weather photography).

28

S-5 (synoptic terrain photography).

29

S-6 (synoptic weather photography), M - 3 (exercise).

30

Command pilot awakes, translation maneuvers.

31

Power down spacecraft, pilot sleep starts, S-5 (synoptic terrain photography) , S-6 ( s y n o p t i c weather photography).

-

more -

- 22

-

33

Pilot awakes.

34

M-3 (exercise).

35

Command pilot sleeps D-9 (star to horizon sextant

I

measurements), MSC-2 (proton and electron measurements), MSC-3 (magnetic field measurements).

36

S-6 (synoptic weather photography).

37

S-6 (synoptic weather photography).

33

Command pilot awakes, pilot sleeps, D-9 (sextant measurements).

40

Pilot awakes.

45 46

Power up and align platform. Translation maneuver,

47

Translation maneuvers, Apollo yaw orientation, pilot

M-3 (exercise).

sleeps.

49

Pilot awakes, M - 3 (exercise).

50

D-9 (sextant measurements), command pilot sleeps.

53

Command pilot awakes, pilot sleeps.

55

Pilot awakes.

57

M-3 (exercise).

60

M-3 (exercise), end of missions systems checkout,

52

Pre-retro checklist, TR-5-minute checklist, TR-1minute checklist, retrofire, retro jettison, postretro checklist.

63

Reentry, drogue deploy, main chute deploy, twopoint suspension, impact, post-landing checklist,

- more -

-

23 -

P o s t Fll.ght A c t i v i t i e s

The p o s t f l i g h t a c t i v i t i e s w i l l involve expanded medjcal e v a l u a t i o n s compared w i t h p r e v i o u s m i s s i o n s .

It i s

planned t h e f l i g h t crew w i l l spend t h r e e n i g h t s aboard t h e recovery c a r r i e r performing taped d e b r i e f i n g s and undergoing e x t e n s i v e medical examinations.

They w i l l r e t u r n t o Houston

f o r a p r e s s conference and then w i l l r e p o r t f o r more e x t e n s i v e medical examinations and complete systems d e b r i e f i n g s for e i g h t t o 10 days a f t e r recovery.

-

more

-

- 24

-

CREW SAFETY C r e w s a f e t y i s paramount.

Gemini r e p r e s e n t s thousands

of hours of design, m o d i f i c a t i o n , f a b r i c a t i o n , i n s p e c t i o n ,

t e s t i n g and t r a i n i n g .

Every component o r system c r i t i c a l t o

crew s a f e t y has a redundant (back-up) feature.

During Laurich The malfunction d e t e c t i o n system (MDS) i n t h e launch

v e h i c l e i s t h e heart of crew s a f e t y d u r i n g t h e powered phase of f l i g h t

--

l i f t - o f f t o second s t a g e shut-down.

T h i s system was designed f o r t h e Gemini launch v e h i c l e

and had no c o u n t e r p a r t i n t h e T i t a n weapon system.

Its func-

t i o n i s t o monitor Gemini launch v e h i c l e subsystem performance and warn t h e crew of a p o t e n t i a l l y c a t a s t r o p h i c malfunction i n time f o r escape, i f necessary.

The MDS monitors engine

t h r u s t f o r both s t a g e s , s t e e r i n g r a t e s , p r o p e l l a n t t a n k pres-

sures, s t a g i n g , S t a g e I h y d r a u l i c p r e s s u r e , a s p a c e c r a f t switchover command o r engine hardover.

During t h e powered phase of f l i g h t t h e r e are t h r e e modes f o r crew escape.

These a r e ( 1 ) e j e c t i o n seats, ( 2 ) f i r i n g t h e

- more -

- 25

I

ABORT PROCEDURES MODE I - EJECT AFTER SHUTDOWN MODE II - SALVO RETROS AFTER SHUTDOWN MODE III - SHUTDOWN, SEPARATE, TURN AROUND, RETROFIRE

MODE20,700 FPS VELOCITY

5 MlN. 10 SEC.

78,000 FT.

tu\\\s


L

k

n I I

d

I DELAYED

MODE

II (WAIT 5 SECS )

50 SECON

A

s

I 15,000 FT.

MODE

I )--

M SEA LEVEL

--

.c

T 50

SECONDS

i

-

26

-

r e t r o r o c k e t s t o separate t h e s p a c e c r a f t from t h e launch veh i c l e , then i n i t i a t i n g t h e spacecraft recovery system, ( 3 ) normal s p a c e c r a f t s e p a r a t i o n followed by u s e of t h e t h r u s t e r s and r e t r o r o c k e t s .

F o r malfunctions d i c t a t i n g r e t r o - a b o r t mode

which occur between 15,000 and 76,000 f e e t , t h e a s t r o n a u t s w i l l n o t i n i t i a t e a b o r t u n t i l aerodynamic p r e s s u r e has decreased t o

t h e p o i n t where s u c c e s s f u l s e p a r a t i o n of t h e s p a c e c r a f t from t h e launch v e h i c l e i s a s s u r e d .

Escape procedures w i l l be i n i t i a t e d by t h e command p i l o t following t w o v a l i d cues t h a t a malfunction has occurred.

The

p a r t i c u l a r malfunction and t h e t i m e a t which i t o c c u r s w i l l determine a b o r t procedures as follows: 1.

Lift-off

t o 15,000 f e e t (50 seconds)

--

Immediate

e j e c t i o n for all malfunctions. 2.

15,000 ( 5 0 seconds) t o 78,000 f e e t (100 seconds)

Delayed r e t r o - a b o r t f o r a l l malfunctions.

--

This a c t i o n c o n s i s t s

of arming a b o r t c i r c u i t s , w a i t i n g u n t i l aerodynamic p r e s s u r e has decreased, t h e n s a l v o f i r i n g the f o u r r e t r o r o c k e t s t o sepa-

r a t e from t h e launch v e h i c l e .

T h i s d e l a y r e q u i r e s approximately

f i v e seconds.

3.

After t h e launch v e h i c l e i s above 78,000 f e e t , a e r o -

dynamic d r a g w i l l have decreased t o t h e p o i n t where no d e l a y

-more

-

- 27 -

between engine shutdown and r e t r o - a b o r t i s r e q u i r e d f o r suecessful. separation.

Retro-abort w i l l be u s e d u n t i l a v e l o c i t y

of approximately 20,700 f t / s e c (14,000 mph) o r 80 p e r c e n t of t h a t r e q u i r e d t o g e t i n t o o r b i t i s achieved.

F o r r a p i d mal-

f u n c t i o n s , r e t r o - a b o r t will be i n i t i a t e d immediately a f t e r r e c e i p t of two v a l i d cues. s p a c e c r a f t malfunctions,

For slow malfunctions and most

r e t r o - a b o r t w i l l be i n i t i a t e d a t a

f i x e d t i m e i n o r d e r t o l a n d n e a r p r e - p o s i t i o n e d recovery vessels.

I n boost-phase a b o r t s where more t h a n 80 p e r c e n t of v e l o c i t y r e q u i r e d f o r o r b i t has been achieved, t h e normal

spacecraft s e p a r a t i o n sequence is used f o r a l l malfunctions. The most probable cause of a b o r t i n t h i s area would be e a r l y

shutdown of t h e b o o s t e r due t o f u e l d e p l e t i o n .

Also, a b o r t

might be requested by ground monitors i f t h e t r a j e c t o r y ex-

ceeds acceptable l i m i t s .

The g e n e r a l a b o r t p l a n i n t h i s

f l i g h t regime i s t o separate from t h e launch v e h i c l e , assume

r e t r o a t t i t u d e , i n s e r t l a n d i n g area parameters in t h e spacec r a f t computer, r e t r o f i r e , and descend t o a planned recovery

area

. - more -

-

28

-

Inflight There are no single p o i n t f a i l u r e s which would j e o p a r d i z e

crew s a f e t y d u r i n g i n f l i g h t o p e r a t i o n s .

A l l systems and sub-

systems have back-up f e a t u r e s o r t h e r e i s a n a l t e r n a t e method.

The Environmental C o n t r o l System (ECS) c o n t r o l s s u i t and

c a b i n atmosphere, crew and s p a c e c r a f t equipment t e m p e r a t u r e s and p r o v i d e s d r i n k i n g water and a means of d i s p o s i n g of waste

water.

Thespace s u i t i t s e l f I s a back-up system.

Should c a b i n

pressure f a i l , the spacesuit provides l i f e support.

It i s a f u l l p r e s s u r e s u i t which works i n c o n j u n c t i o n w i t h t h e ECS.

Gaseous oxygen i s d i s t r i b u t e d through t h e s u i t

v e n t i l a t i o n system f i r c o o l i n g and r e s p i r a t i o n and p r o v i s i o n s a l l o w the a s t r o n a u t t o t a k e i n d r i n k i n g water w h i l e i n a hard s u i t (pressurized) condition.

A 100-percent oxygen environment a t 5 pounds p e r square

i n c h i n a p r e s s u r i z e d c a b i n or 3.7 p s i a i n a n u n p r e s s u r i z e d c a b i n i s provided i n s p a c e s u i t by the ECS.

-more

-

A d d i t i o n a l oxygen

-

29

-

i s a v a i l a b l e from t a n k s i n t h e r e e n t r y module i n c a s e of emergency and f o r u s e d u r i n g r e e n t r y .

I n e v e n t the f l i g h t must be t e r m i n a t e d b e f o r e mission completion, the Gemini p r o p u l s i o n systems w i l l permit a c o n t r o l l e d l a n d i n g i n a contingency r e c o v e r y area.

Reentry, Landing and Recovery The Reentry Control System ( R C S ) c o n t r o l s t h e s p a c e c r a f t

a t t i t u d e d u r i n g r e t r o r o c k e t f i r i n g and r e e n t r y .

Two complete

and independent systems provide 100 p e r c e n t redundancy.

The

f o u r r e t r o r o c k e t s are w i r e d w i t h d u a l i g n i t e r s .

The O r b i t A t t i t u d e and Maneuver System (OAMS) s e r v e s as

a back-up s a f e t y f e a t u r e should t h e r e t r o r o c k e t s f a i l t o f i r e . I n c a s e of r e t r o r o c k e t f a i l u r e t h e OAMS w i l l have been used t o lower t h e o r b i t t o t h e p o i n t where grav.ity and atmospheric drag would cause s p a c e c r a f t r e e n t r y .

The OAMS i s normally u s e d t o perform t r a n s l a t i o n maneu-

v e r s a l o n g three a x e s of t h e spacecraft and provide a t t i t u d e c o n t r o l d u r i n g o r b i t a l phases of t h e mission.

-

more

-

- 30 -

I n Gemini 4, s h o u l d t h e r e t r o r o c k e t s f a i l , r e e n t r y w i l l occur n e a r Ascension I s l a n d i n t h e South A t l a n t i c .

Parachutes are u s e d f o r d e s c e n t f o l l o w i n g s p a c e c r a f t reentry.

The crew has a n e x c e l l e n t view of parachute de-

ployment through t h e s p a c e c r a f t windows.

If there i s a para-

c h u t e malfunction t h e crew w i l l e j e c t themselves from t h e spacec r a f t and u s e t h e i r p e r s o n a l c h u t e s f o r landing.

Survival

equipment i s carried on t h e backs of t h e e j e c t i o n seats and remains attached t o t h e a s t r o n a u t s u n t i l t h e y land.

Recovery f o r c e s w i l l be provided by t h e m i l i t a r y serv i c e s and d u r i n g mission time w i l l be under t h e o p e r a t i o n a l c o n t r o l of t h e Department of Defense Manager f o r Manned Space F l i g h t Support Operations.

Planned and contingency l a n d i n g areas have been established.

Planned areas are t h o s e where t h e p r o b a b i l i t y of land-

i n g i s s u f f i c i e n t l y h i g h to j u s t i f y p r e - p o s i t i o n i n g of recovery f o r c e s f o r support and recovery of crew and s p a c e c r a f t w i t h i n g i v e n access times.

-

more

-

- 31

-

GEMINI PARACHUTE LANDING SEQUENCE - HIGH ALTITUDE

50,000 FEET

-

21,000FEET

-

10,600 FEET

-

9,600 FEET

-

- PILOT PARACHUTE DEPLOYED - R R SECTION

9,000 FEET

-

- MAIN CHUTE DEPLOYMENT

6,700 FEET

-

SEA LEVEL

-

DROGUE CHUTE DEPLOYED

OPENCABIN VENT VALVE

8,

SEPARATION

TWO -POINT SUSPENSION

2

- SEAL

CABIN WATER CLOSED

TOUCHDOWN

-

-

32

Contingency areas are a l l o t h e r areas a l o n g t h e ground t r a c k where t h e s p a c e c r a f t could p o s s i b l y land.

The p r o b a b i l i t y

of l a n d i n g i n a contingency area i s s u f f i c i e n t l y low t h a t spec i a l search and r e s c u e t e c h n i q u e s w i l l p r o v i d e adequate recovery s u p p o r t .

There are f o u r t y p e s of planned l a n d i n g areas: 1.

P r i m a r y Landing Area

--

Landing w i l l occur w i t h normal

t e r m i n a t i o n of the mission a f t e r 63 o r b i t s .

T h i s area i s i n

t h e A t l a n t i c Ocean, about 400 miles s o u t h of Bermuda. 2.

Secondary Landing Areas

--

where a l a n d i n g would occur

i f it i s desirable t o t e r m i n a t e t h e mission f o r any cause.

S h i p s and a i r c r a f t w i l l be s t a t i o n e d t o p r o v i d e support.

Air-

c r a f t w i l l be able to drop p a r a r e s c u e p e r s o n n e l and f l o t a t i o n

equipment w i t h i n one hour a f t e r s p a c e c r a f t l a n d i n g .

3.

Launch Abort Landing Areas

--

Along t h e launch ground

t r a c k between F l o r i d a and A f r i c a where l a n d i n g s would occur f o l l o w i n g a b o r t s above 45,000

f e e t and b e f o r e o r b i t a l i n s e r t i o n .

S u r f a c e s h i p s w i t h medical p e r s o n n e l and r e t r i e v a l equipment, and s e a r c h and r e s c u e a i r p l a n e s w i t h p a r a r e s c u e p e r s o n n e l , f l o t a t i o n equipment and e l e c t r o n i c s e a r c h c a p a b i l i t y w i l l be s t a t i o n e d i n t h i s area b e f o r e launch.

After t h e s u c c e s s f u l i n -

s e r t i o n of t h e s p a c e c r a f t i n t o o r b i t , some of t h e s h i p s and p l a n e s w i l l deploy t o secondary areas t o p r o v i d e s u p p o r t on a

l a t e r o r b i t , and t h e remainder w i l l r e t u r n t o home s t a t i o n s .

-

more

-

- 33 -

4, Launch

S i t e Landing Area

--

Landing w i l l o c c u r

f o l l o w i n g a n a b o r t d u r i n g countdown, launch and e a r l y powered f l i g h t i n which e j e c t i o n seats are used.

It i n c l u d e s a n area

of approximately 26 miles seaward and t h r e e miles toward t h e

Banana R i v e r from Pad 19.

I t s major a x i s i s o r i e n t e d a l o n g

t h e l a u n c h azimuth.

A s p e c i a l i z e d r e c o v e r y f o r c e of l a n d v e h i c l e s , amphi-

b i o u s c r a f t , s h i p s and b o a t s , a i r p l a n e s and h e l i c o p t e r s w i l l be s t a t i o n e d i n t h i s area from t h e time t h e a s t r o n a u t s e n t e r

t h e s p a c e c r a f t u n t i l l i f t - o f f p l u s f i v e minutes.

Recovery a c c e s s time v a r i e s from 0 minutes f o r a water

1 -

t o 10 minutes f o r a l a n d l a n d i n g .

The a s t r o n a u t s w i l l

be t a k e n t o t h e P a t r i c k A i r Force Base h o s p i t a l f o r examina-

t i o n s a f t e r pickup.

Contingency Landing Areas: Search and r e s c u e a i r c r a f t equipped w i t h e l e c t r o n i c s e a r c h equipment, p a r a r e s c u e men and f l o t a t i o n equipment w i l l be staged a l o n g t h e ground and sea t r a c k so t h a t t h e s p a c e c r a f t w i l l be l o c a t e d and a s s i s t a n c e g i v e n t o t h e a s t r o n a u t s w i t h i n 18 hours

a f t e r t h e r e c o v e r y f o r c e s a r e n o t i f i e d of t h e probable l a n d i n g position.

-

more

-

- 34 -

G E M I N I SURVIVAL PACKAGE

The Gemini s u r v i v a l package c o n t a i n s 14 i t e m s designed t o support a n a s t r o n a u t i f he should l a n d o u t s i d e normal recovery a r e a s .

The package weighs 23 l b s . a n d has two s e c t i o n s .

One

s e c t i o n , holding a 33-pound water c o n t a i n e r a n d machete i s mounted by the a s t r o n a u t ' s l e f t shoulder.

The m a i n package,

c o n t a i n i n g t h e l i f e raft, a n d r e l a t e d equipment, i s mounted on t h e back of t h e e j e c t i o n s e a t .

Both packages are a t t a c h e d

t o t h e a s t r o n a u t ' s p e r s o n a l p a r a c h u t e h a r n e s s by a nylon line.

A f t e r e j e c t i o n from t h e s p a c e c r a f t , as t h e s e a t f a l l s

c l e a r a n d t h e parachute deploys, the s u r v i v a l k i t will hang on a l i n e , ready f o r use as soon as t h e a s t r o n a u t l a n d s .

I n f l a t e d , t h e one-man l i f e r a f t i s f i v e a n d one half

ft. long a n d t h r e e ft. wide. inflation.

A CO

2

b o t t l e i s attached f o r

The r a f t i s a l s o equipped w i t h a s e a anchor, s e a

dye markers, and a sun bonnet of nylon m a t e r i a l w i t h a n aluminized c o a t i n g which t h e a s t r o n a u t can p l a c e over h i s head

- more -

- 35 -

I n h i s s u r v i v a l k i t , t h e a s t r o n a u t a l s o has a r a d i o beacon, a combination s u r v i v a l l i g h t , s u n g l a s s e s , a medical k i t , and a d e s a l t e r k i t assembly.

The combination s u r v i v a l l i g h t i s a new development

f o r t h e Gemini k i t , combining many i n d i v i d u a l i t e m s which were c a r r i e d i n t h e Mercury k i t .

About t h e s i z e of a paper-

back novel, i t c o n t a i n s a s t r o b e l i g h t f o r s i g n a l i n g a t n i g h t , a f l a s h l i g h t , and a s i g n a l m i r r o r b u 2 l t in on t h e end of t h e case.

It a l s o c o n t a i n s a small compass.

There a r e t h r e e c y l i n d r i c a l c a r t r i d g e s i n s i d e t h e case.

Two c o n t a i n b a t t e r i e s f o r t h e l i g h t s .

The t h i r d

c o n t a i n s a sewing k i t , 14 f e e t of nylon l i n e , c o t t o n b a l l s a n d a s t r i k e r f o r k i n d l i n g a f i r e , halazone t a b l e t s f o r

water p u r i f i c a t i o n a n d a w h i s t l e .

The d e s a l t e r k i t i n c l u d e s e i g h t d e s a l t e r b r i c k e t t e s ,

a n d a p r o c e s s i n g bag,

Each b r i c k e t t e can desalt one p i n t of

seawater.

- more -

- 36 -

The medical k i t c o n t a i n s a one-cubic-centimeter

f o r pain, a n d a two-cubic-centimeter sickness.

injector

i n j e c t o r f o r motion

There a l s o a r e s t i m u l a n t , p a i n , motion s i c k n e s s ,

and a n t i b i o t i c t a b l e t s and a s p i r i n .

- more -

-

37 -

MANNED SPACE FLIGHT TRACKING NETWORK The Manned Space F l i g h t Network for Gemini 4 i s composed

of s p a c e c r a f t t r a c k i n g and data a c q u i s i t i o n f a c i l i t l e s throughout t h e world, a Mission C o n t r o l Center a t Cape Kennedy,

a r e a l - t i m e (no d e l a y ) computing and communications c e n t e r a t t h e Goddard Space F l i g h t Center, G r e e n b e l t , Md., and a Mission Control Center i n NASA's Manned S p a c e c r a f t Center, Houston.

The b a s i c network c o n s i s t s of seven primary land s i t e s , two s h i p s , ( t h e Rose Knot and C o a s t a l S e n t r y ) s i x a d d i t i o n a l land s t a t i o n s , and remote v o i c e d a t a s w i t c h i n g s i t e s .

This

network and i t s o p e r a t i n g procedures remain unchanged from t h e Gemini 3 mission, however, primary m i s s i o n control and computing r e s p o n s i b i l i t i e s w i l l s w i t c h from t h e Mission Control Center, Cape Kennedy, and Goddard Space F l i g h t Center, to t h e Manned Spacecraft Center.

The l o c a t i o n s of t h e land s t a t i o n s a r e as follows:

Add t i o n a l -

Primary S t a t i o n s . -

Cape Kennedy, F l a . , and down-

range A i r Force Eastern T e s t

Stat .ons

Kano, N i g e r i a Madagascar (Tananarive)

Range sites Bermuda

Canton I s l a n d

Grand Canary I s l a n d

Po3.nt Arguello, C a l i f .

-- more -

- 33 -

Carnarvon, A u s t r a l i a

k h i t e Sands, N.M.

Hawaii

E g l i r i AFB, F l a .

Guaymas , Mexico Corpus C h r i s t i , Tex. Two Ships:

The Rose Knot

and C o a s t a l S e n t r y

Other t r a c k i n g and d a t a a c q u i s i t i o n f a c i l i t i e s , such a s r e l a y a i r c r a f t , i n s t r u m e n t a t i o n s h i p s , communications. r e l a y s t a t i o n s , e t c . , w i - l l be c a l l e d up a s r e q u i r e d and i n t e g r a t e d i n t o t h e b a s i c network.

> Countdown phase--The Goddard Realtime Computing Center .-

w i l l provide back-up computing s u p p o r t to t h e Manned S p a c e c r a f t Center Realtime Computing Complex throughout t h e mission. During t h e pre-launch countdown Goddard w i l l be r e s p o n s i b l e for checking t h e Manned Space F l i g h t Network's r e a d i n e s s to s u p p o r t Gemini 4 through its CADFISS (Computer and Data Flow I n t e g r a t e d Subsystems) T e s t s .

The Goddard Realtli-me Computing Center a l s o w i l l provide prime computer s u p p o r t for a l l netowrk t r a c k i n g and data a c q u i s i t i o n systems ( R a d a r s - D i g i t a l Command System-Pulse Code Modulation t e l e m e t r y and t h e Launch Monitor Subsystem) roll call.

-

more -

- 39

-

Data flow t e s t s from t h e world-wide network to t h e Manned S p a c e c r a f t C e n t e r ' s Realtime Computing Complex w i l l be conducted from

MSC RTCC under t h e d i r e c t i o n o f Goddard's

CADF'ISS Test D i r e c t o r .

Launch Phase--During powered f l i - g h t , Goddard's r ealtime computers w i l l r e c e i v e launch t r a j e c t o r y d a t a from JASA s Bermuc .a t r a c k i n g s t a t i o n , compute t h e t r a j e c t o r y and d i s p l a y t h e data on p l o t b o a r d s and consoles a t Mission C o n t r o l Center,

Cape Kennedy.

O r b i t Phase--During

t h e o r b i t phase, Goddard's computing

c e n t e r w i l l update t h e 0 r b j . t based on d a t a r e c e i v e d from network radars.

Refined o r b i t a l parameters w i l l be d i s p l a y e d a t Mission

Control Center, Cape Kennedy as r e q u i r e d . Mission C o n t r o l Center - Cape Kennedy The Mission Control Center, Cape Kennedy i s t e c h n i c a l l y

s u p e r v i s e d , operated and maintained by Goddard.

4 it

During Gemini

w i l l be f u l l - t i m e back-up to Mission Control Center,

Houston.

It w i l l o p e r a t e on a 24-hour basis i n c o n c e r t with

Houston Mission C o n t r o l requirements.

- more -

-

40 -

During t h e launch phase, Kennedy Mission Control will provide realti-me d a t a d i s p l a y and command c o n t r o l c a p a b i l i t y l'or i.ts flight c o n t r o l team.

I n t h e e v e n t o f communications

breakdown from Houston, t h e Kennedy

f l i g h t - c o n t r o l team w i l l

be a b l e bo assume f l i g h t d i r e c t i o n and c o n t r o l immediately.

Kennedy Mission C o n t r o l a l s o w i l l provide f l i g h t dynamics

data simultaneously to Goddard and Houston computers f o r t h e c r j t i c a l "GO-NO-GO''o r b i t a l i n s e r t i o n d e c i s i o n .

All Gemini

Launch Vehicle and s p a c e c r a f t t e l e m e t r y data a c q u i r e d by A i r Force E a s t e r n T e s t Range s t a t i o n s are processed i n r e a l

time a t Kennedy Mission C o n t r o l and forwarded t o t h e Houston MSC Realtime Computer Complex.

For t h e f i r s t time, Kennedy IvIission C o n t r o l w i l l provlide

a c o n t r o l c e n t e r p o s i t i o n to t h e Gemini s p a c e c r a f t checkout team.

I n t h e p a s t t h i s has n o t been p o s s i b l e because o f

space l i m i t a t i o n s .

The team w i l l be a v a i l a b l e for s p a c e c r a f t

systems a n a l y s i s throughout t h e m i s s i o n .

NASA Communications Network (NASCOM)

This D i v i s i o n , a Goddard r e s p o n s i b i l i t y , w i l l e s t a b l i s h and o p e r a t e t h e w o r l d - w i d e ground communications network t h a t provj-des t e l e t y p e , voice, and d a t a l i n k s between t h e

s t a t i o n s and c o n t r o l c e n t e r s for t k e rletwork.

- more

-

- 41 -

It l i n k s 39 s t a t i o n s , i n c l u d i n g 3°C o v e r s e a s p o i n t s , with message, voice and d a t a communications.

Its c i r c u i t s and

terminals span 100,000 r o u t e m i l e s and 500,000 c l r c u i t m i l e s . F o r Gemini

used i n

h,e"

4 the Communications Network (NASCOM)

same b a s i c c o n f i g u r a t i o n a s for Gemini 3 .

w i l l be

Several

v o i c e a n d data c i r c u i t s between Goddard and Houston Mission

Control have been added t o accommodatc: t h e i n c r e a s e i n t r a f f i c .

During Gemini 3, voice communication w i t h t h e s p a c e c r a f t v i a t h e Syncom I1 communications s a t e l l i t e and NASCOM ground

s t a t i o n s was s u c c e s s f u l l y achieved over t h e I n d i a n Ocean.

For

Gemini 4 a s i m i l a r e x e r c i s e i s planned u s i n g the Syncom I11 communications s a t e l l i t e s t a t i o n e d over t h e P a c i f i c Ocean.

Also p a r t of NASCOM i s t h e v o i c e communication n e t .

A switchboard system, w i t h m u l t i p l e d u a l - o p e r a t i n g c o n s o l e s ,

e n a b l e s one o p e r a t o r t o c o n c e n t r a t e on s p e c i a l mission c o n f e r e n c e s . T h i s system i s c a l l e d SCAMA I1 ( S t a t i - o n Conferencing and

Monitoring Arrangement).

SCAMA I1 can now handle 100 l i n e s and

can u l t i m a t e l y be expanded to handle 220 l i n e s .

Both p o i n t -

t o - p o i n t connections and conference arrangements a r e possible.

All l i n e s can be connected i n t o one conference w i t h o u t loss of' quality.

The SCAMA o p e r a t o r can add c o n f e r e e s or remove them.

H e a l s o c o n t r o l s which o f t h e c o n f e r e e s can t a l k and which can l i s t e n only. - more -

- 42

-

The SCAMA has 10 t i m e s t h e c a p a b i l i t y o f t h e network u s e d for Mercury.

S p a c e c r a f t Communications -

All Manned Space F l i g h t Network s t a t l o n s having both h i g h frequency (HF) and u l t r a high frequency (UHF) spacec r a f t communications can be c o n t r o l l e d e i t h e r by t h e s t a t i o n o r remote c o n t r o l l e d by Goddard.

Houston Mission Control

o r Kennedy Mission C o n t r o l .

The following s i t e s w i l l have a Capsule Communicator

who w i l l c o n t r o l s p a c e c r a f t communications a t t h e s i t e :

Canary

I s l a n d ; Carnarvon; Kuai, H a w a i i ; Corpus C h r i s t i ; Guaymas; Rose Knot; and C o a s t a l S e n t r y .

The following s t a t i o n s w i l l n o t h a re Capsule Commi n i c a t o r s

and w i l l be remoted t o t h e a p p r o p r i a t e Mission C o n t r o l Center: Grand Bahama I s l a n d ; Tananarive (Madagascar); Kano, N i g e r i a ; 9ermuda; Grand Turk I s l a n d ; Antigua I s l a n d ; Ascension I s l a n d ; Canton I s l a n d ; Pt. Arguello, C a l i f . ; Range Tracker ( s h i p ) and t h e voice r e l a y a i r c r a l ' t .

- more -

-

43 -

Network Responsibility Goddard Space Flight Center.

NASA's Office of Tracking

and Data Acquisition has centralized the responsibility for the planning, implementation, arid technical operations of

manned space flight tracking and data acquisition at Goddard. Technical operation includes operat-jon, maintenance, modification, and augmentation of tracking and data acquisition facilities as an instrumentation network in response to mission requirements. About 370 persons directly support the network at Goddard.

Manned Spacecraft Center.

The MSC has the overall

management responsibility of the Gemini program.

The direction

and mission control of the network immediately preceding and during a mission simulation or an actual mission is the responsibility of the MSC.

Weapons Research Establishment.

The W E , Department of

Supply, Commonwealth of Australia, is responsible for the maintenance and operation of the netoaork stations in Australia. Contractual arrangements and agreements define this cooperative effort.

- more

-

- 44 -

Department o f Defense.

DOD i s r e s p o n s i b l e f o r the

maintenance and o p e r a t i o n a l c o n t r o l o f t h o s e DOD a s s e t s and f a c i l i t i e s r e q u i r e d to s u p p o r t Gemini.

These i n c l u d e

network s t a t j - o n s a t t h e E a s t e r n T e s t Range, Western Test Range, t h e A i r Proving Ground Center and t h e White Sands Missile T e s t Range.

I

Voice Communications Remote Air to Ground Voice Communications

X

X

Air to Ground Voice Communications

x

X

F1 i g h t C o n t r o l l e r

Telemetry Communica-

tions I

RF Command lDom Range Up Link

I

Digital Command System

1

1

x

I

l x

I

I

x x

x x

x

x x

X

X

-

-

--

x x

xx

X

X

X

x x

X

I

x

X

-

X

Manned

x -

x x

X

x

xx

x

X

X

Ix x -

X

X

Gemini Launch Vehicle Command

X

On Site Data Processor (1218)

Telemetry Real Time Display 1

X

Ix

X

x

xx

xx

xx

xx

xx

Telemetry Receiver & Recorder

X

Acquisition Aid

X

C-Band Radar

x x

IS -Band Radar

X

xx

x X

X X

I

xx

x x

r x

xx n

X

X

X

- 45 -

MEDICAL CHECKS

Medical checks will be based on biomedical t e l e m e t r y a n d voice communications.

T h i s d a t a w i l l be used t o e v a l u a t e

g e n e r a l c o n d i t i o n of t h e crew, blood p r e s s u r e , and o r a l temperature.

Cardiovascular E f f e c t s o f Space Flight

T h i s i s a c o n t i n u a t i o n of experiments d u r i n g P r o j e c t

Mercury a n d Gemini 3 t o e v a l u a t e t h e e f f e c t s of prolonged w e i g h t l e s s n e s s on t h e c a r d i o v a s c u l a r system.

It i s considered

a n o p e r a t i o n a l procedure and no l o n g e r a n experiment.

Comparisons w i l l be made of t h e a s t r o n a u t * s p r e r ' l i g h t a n d p o s t f l i g h t blood p r e s s u r e s ,

and electrocardiograms.

Dlood volumes, p u l s e rates,

Tne data w i l l r e v e a l t h e c a r d i o v a s c u i a r

a n d Plood volume changes due t o n e a t stress, t h e e r f e c t of

prolonged confinement, dehydration, f a t i g u e , a n d p o s s i b l e e f f e c t s of w e i g h t l e s s n e s s .

There a r e no i n f l i g h t requirements.

Measurements w i l l be taken before, during, a n d a f t e r a head-up t i l t of UO degrees I'rom m e h o r i z o n t a l .

- more -

-

47

-

I f t h e astronauts remain i n t h e s p a c e c r a f t while i t

i s h o i s t e d aboard t h e recovery v e s s e l , p o r t a b l e biomedical

r e c o r d e r w i l l be a t t a c h e d t o each one b e f o r e he l e a v e s t h e s p a c e c r a f t , a n d blood p r e s s u r e a n d e l e c t r o c a r d i o g r a m measurements w i l l be taken.

Each a s t r o n a u t then will leave t h e

s p a c e c r a f t a n d s t a n d on t h e s h i p ' s deck.

Blood pressure

a n d e l e c t r o c a r d i o g r a m measurements will be recorded

a u t o m a t i c a l l y before, during, a n d f o r a s h o r t time a f t e r t h e crew l e a v e s t h e s p a c e c r a f t .

The a s t r o n a u t s will t h e n go t o

t h e s h i p ' s medical f a c i l i t y f o r t h e t i l t - t a b l e t e s t s .

- more

-

- 48 -

G E M I N I 4 EXPERIMENTS NASA has scheduled l l e x p e r i m e n t s f o r t h e Gemini 4 flight.

Three of these a r e m e d i c a l experiments, f o u r are

engineering,

two Department of Defense experiments and two

scientific.

Medical Experiments I n - f l i g h t Exercise: Work Tolerance

The a s t r o n a u t s w i l l use a bungee cord to a s s e s s t h e i r c a p a c i t y t o do p h y s i c a l work under space f l i g h t c o n d i t i o n s . The bungee cord r e q u i r e s a 60-pound p u l l t o s t r e t c h i t to i t s

l i m i t of one f o o t .

The cord w i l l be h e l d by l o o p s about t h e

a s t r o n a u t ' s f e e t r a t h e r t h a n being a t t a c h e d t o t h e f l o o r as i n P r o j e c t Mercury t e s t s .

P l a n s c a l l f o r each of the Gemini 4 a s t r o n a u t s tomake t h e 60-pound s t r e t c h once p e r second f o r a minute a t v a r i o u s

times d u r i n g t h e f l i g h t .

Heart and r e s p i r a t o r y rates and b l o o d

p r e s s u r e w i l l be taken b e f o r e and a f t e r t h e e x e r c i s e f o r evaluation.

Time for heart r a t e and blood p r e s s u r e t o r e t u r n t o

pre-work l e v e l s following t h e e x e r c i s e i s an index of t h e g e n e r a l c o n d i t i o n of t h e a s t r o n a u t .

-more -

- 49 -

I n - F l i g h t Phonocardiogram The purpose of t h i s experiment i s to s e r v e a s a s e n s i t i v e i n d i c a t o r o f h e a r t muscle d e t e r i o r a t i o n when compared t o a simultaneous e l e c t r o c a r d i o g r a m .

Heart sounds of t h e Gemini

4 a s t r o n a u t s w i l l be picked up by a microphone on t h e i r c h e s t s and recorded on t h e biomedical r e c o r d e r . be compared w i t h t h e e l e c t r o c a r d i o g r a m to

This w i l l

determine t h e t i m e

i n t e r v a l between h e a r t c o n t r a c t i o n s .

Bone Demineralization X-rays u s i n g a s p e c i a l technique be taken b e f o r e and a f t e r t h e f l i g h t s .

(bone d e n s i t o m e t r y ) w i l l The h e e l bone and

t h e end bone of t h e f i f t h f i n g e r on t h e r i g h t hand of each a s t r o n a u t w i l l be s t u d i e d to determine whether any d e m i n e r a l i z a t i o n has taken p l a c e and, if s o , to what e x t e n t .

The a n t i c i p a t i o n

of p o s s i b l e l o s s o f calcium from t h e bones d u r i n g w e i g h t l e s s f l i g h t i s based on y e a r s o f c l i n i c a l experience w i t h p a t i e n t s confined to bed or i n c a s t s .

The medical experiments a r e sponsored by t h e NASA O f f i c e of Manned Space F l i g h t ' s Space Medicine D i v i s i o n .

- more -

- 50

-

ENGINE;EXING EXPERUVIENTS

E l e c t r o s t a t i c Charge UDp-Sctive

IS to

d e t e c t and measure any accumulated

e l e c t r o s t a t i c charge on t h e s u r f a c e of t h e Gemini s p a c e c r a f t . N a t u r a l charging mechanisms and charged p a r t i c l e s e j e c t e d from r o c k e t engines cah cause a n e l e c t r o s t a t i c p o t e n t i a l , and this must be i n v e s t i g a t e d b e f o r e rendezvous and docking missions a r e attempted.

D i f f e r e n c e s i n p o t e n t i a l between docking space v e h i c l e s can cause an e l e c t r i c a l d i s c h a r g e which could damage t h e v e h i c l e s k i n and e l e c t r o n i c equipment and i g n i t e p y r o t e c h n i c s

aboard t h e s p a c e c r a f t .

If t h e s p a c e c r a f t p o t e n t i a l and

c a p a c i t a n c e i s known, i t w i l l be p o s s i b l e to c a l c u l a t e t h e n e t charge on t h e s p a c e c r a f t and t h e energy a v a i l a b l e f o r an e l e c t r i c a l d i s c h a r g e between t h e s p a c e c r a f t and a n o t h e r space v e h i c l e of known p o t e n t i a l .

Any accumulated charge on t h e s u r f a c e o f t h e Gemini 4 spacec r a f t w i l l be measured by an e l e c t r o s t a t i c p o t e n t i a l meter. experiment w i l l be conducted d u r i n g a l l p e r i o d s of e x t e n s i v e s p a c e c r a f t a t t i t u d e maneuvering and d u r i n g r e t r o f i r e . o b t a i n e d w i l l be t e l e m e t e r e d to ground s t a t i o n s .

- more -

Data

The

- 51 -

The e l e c t r o s t a t i c p o t e n t i a l meter c o n s i s t s of a s e n s o r b

u n i t and an e l e c t r o n i c s unit, Both a r e l o c a t e d i n t h e spacec r a f t ' s adapter section.

The s e n s o r u n i t ' s f a c e i s f l u s h with

t h e o u t e r s u r f a c e of t h e s p a c e c r a f t and o b t a i n s e l e c t r i c a l signals proportional t o the spacecraft potential.

The

e l e c t r o n i c s u n i t p r o c e s s e s t h e information from t h e s e n s o r and a d a p t s . i t t o t h e t e l e m e t r y system.

The data obtained i s

t r a n s m i t t e d t o ground s t a t i o n s v i a t h e s p a c e c r a f t t a p e r e c o r d e r / reproducer system.

The experiment i s c o n t r o l l e d from t h e c a b i n by a s w i t c h . Experiment equipment weighs 1.8 pounds.

It w i l l be a c t u a t e d

by t h e p i l o t , who w i l l r e c o r d on-off t i m e s on t h e voice recorder

.

Proton-Electron Spectrometer The o b j e c t i s t o measure t h e r a d i a t i o n environment immediately o u t s i d e t h e s p a c e c r a f t .

The data w i l l be used

t o c o r r e l a t e r a d i a t i o n measurements made i n s i d e t h e spacec r a f t and t o p r e d i c t r a d i a t i o n l e v e l s on f u t u r e m i s s i o n s .

-

more

-

-

52

-

The number and energy o f t h e e l e c t r o n s and p r o t o n s w i l l

be measured by a p r o t o n - e l e c t r o n spectrometer l o c a t e d i n t h e equipment a d a p t e r sectli.on.

The s e n s o r f a c e w i l l l o o k to t h e

r e a r of t h e s p a c e c r a f t .

The spectrometer w i l l be operated w h i l e t h e s p a c e c r a f t i s

p a s s i n g through t h e r e g i o n known as t h e South A t l a n t i c Geomagnetic Anomaly.

It i s bounded by 30 degrees e a s t and 60 d e g r e e s west

l o n g i t u d e , and 15 d e g r e e s s o u t h and 55 d e g r e e s south l a t i t u d e . 'Ibis i s t h e r e g i o n i n which t h e i n n e r Van Allen r a d i a t i o n b e l t

d i p s c l o s e to t h e E a r t h ' s s u r f a c e because o f t h e i r r e g u l a r s t r e n g t h of t h e E a r t h ' s magnetic f i e l d .

Data obtained w i l l

be telemetered to t h e ground.

The spectrometer i s operated by t h e p i l o t by means o f

a switch.

H e w i l l r e c o r d on-off t i m e s on t h e voice r e c o r d e r .

Equipment f o r t h e experiment weighs approximately 12.5 pounds.

- more

-

-

53 -

T r i.-Axis Flux-Gate Magnetometer

O b j e c t i v e i s to monitor t h e d i r e c t j o i i arid amplitude o r t h e E a r t h ’ s magnetic f i e l d w i t h rlespect to t h e s p a c e c r a r t . The data w i l l be used to c o r r e l a t e racliatrioii measurements made by t h e Proton-Electron Spectrometer experlment.

The s p e c t r o m e t e r cannot determine the d i r e c t i o n a l d j s t r j b u t ; o n oi” t h e trapped radliat !.on

a t spacecraft a l t l tudes.

I n a d d i t i o n , s p a c e c r a f t a t t i t u d e data : j s n o t adequate to determi.ne t h e r e l a t i v e o r i - e n t a t i o n of the E a r t h ’ s geomagnetic f i e l d during driftj..ng f l i g h t .

Both t y p e s of‘ i n f o r m a t i o n a r e

necessary t o c o r r e l a t e t h e r a d f a t i o n measurements.

A t r i - a x i s f l u x - g a t e magnetometer w i l l be used for this

experiment.

It c o n s i s t s o f an e l e c t r o n i c s unit and seiisors

l o c a t e d i n t h e equipment a d a p t e r s e c t i o n , w i t h t h e s e n s o r s ?acing aft.

The s e n s o r s a r e on a boom which can be exteiided

beyond khe end o f t h e d a p t e r .

The magnetometer w i l l be o p e r a t e d j.n the same r e g i o n and

a t t h e same time as t h e s p e c t r o m e t e r experLment.

The s e n s o r s

w i l l measure v e c t o r components o f t h e magnetic f i e l d .

By

measuring each component, t h e d i r e c t i o n o f the f i e l d l i n e s can be r e f e r e n c e d to t h e s p a c e c r a f t and t h e s p e c t r o m e t e r experiment.

With f i e l d line d i r e c t i o n and p i t c h a n g l e Of ’che

-

- 54

charged particles known, interpolation of data from spectrometer can be related to the total charged particles incident on the spacecraft. Data obtained will be telemetered to the ground. The pilot operates the experiment with two switches. One switch actuates the boom and is a one-time operation since the boom will not be retracted.

The second switch operates

both the spectrometer and magnetometer experiments.

The

magnetometer experiment weighs approximately 3.5 pounds. The preceding three experiments will be conducted by the Radiation and Fields Branch of the Advanced Spacecraft Technology Division of the Manned Spacecraft Center.

It

is sponsored by the Office of Manned Space Flight. Two-Color Earth's Limb Photography Objective is to photograph the Earth's limb in an effort to determine the excess elevation of the blue limb over the red.

The limb is the Earth's outer edge of brightness,

and this experiment is an extension of the horizon definition experiments begun in Project Mercury. Postflight measurements of the photographs will be used to determine if the elevation of the Earth's limb can be a reliable aid in future manned space flight guidance and navigation sightings.

-

more -

- 55 -

The p i l o t w i l l use a hand-held Hasselhlad camera, black

a n d white i ' : l m ,

and a s p e c i a l r i l t e r mosaic which w l l l allow

each p i c t u r e to be taken p a r t l y through a r e d f j l t c r alid p a r t l y through a b l u e f ' j - l t e r .

The modified f i l m magazii;e has a

two-color P i l t e r mounted j u s t i n front o r t h e f i l m p l a n e . The c e n t r a l p o r t i o n of each p i c t u r e w i l l be through the r e d

f i l t e r and the s i d e p o r t i o n s through t h e b l u e f i l t e r .

The experiment w i l l be conducted d u r i n g t h e day-side p o r t i o n o f one o r b i t .

A s t h e s u n l i t E a r t h ' s l i m b becomes

v i s i b l e , t h e p i l o t w i l l t a k e t h r e e photographs i n succession, aiming t h e camera a t t h e horizon d i r e c t l y i n f r o n t or t h e s p a c e c r a f t along t h e l i n e - o f f - f l i g h t .

In a b o u t f i v e

minutes, he w i l l again-take a group of t h r e e pictures. Nine or more such groups may be o b t a i n e d d u r i n g t h e day-side

p o r t i o n of t h e o r b i t i n which t h e s u n l i t l i m b i s v i s i b l e .

The p i l o t may perform o t h e r t a s k s between t h e groups o f photographs, b u t t h e experiment f i l m magazine must not be removed from t h e camera and t h e s e t t i n g s must n o t be a l t e r e d . If t h e experiment i s i n t e r r u p t e d ,

t h e s e r i e s may be continued

i n t h e similar p o r t i o n o f a l a t e r day-side o r b i t , but t h e f i l m magazine must n o t be removed u n t i l t h e experiment i s completed.

The magazine c o n t a i n s aPProximately 36 rrames, a l l o w i n g up t o n i n e exposures if t h e a s t r o n a u t s wish t o r e c o r d a n u n r e l a t e d phenomenon d u r i n g t h i s experiment. - more -

- 56

-

The experj-metit does n o t r e q u i r e a t t i t u d e maneuvering other

than t o o r i e n t t h e s p a c e c r a f t a l o n g the o r b i t a l t r a c k while each s e r i e s o f photographs i s being taken.

The e x p e r i m e n t a l f i l m magazine weighs approximately one

pourid,

The experiment w i l l be conducted by t h e I n s t r u m e n t a t i o n

Laboratory, Department o f Aeronautics and A s t r o n a u t i c s , Massachusetts I n s t i t u t e of Technology, Cambridge, i s t h e O f f i c e o f Manned Space F l i g h t ,

-

more

-

Sponsor

- 57 -

SCIENTIFIC EXPERIMENTS

S y n o p t i c T e r r a i n Photography Experiment

Primary o b j e c t i v e i s t o g e t h i g h - q u a l i t y p i c t u r e s of

l a r g e land areas t h a t have been p r e v i o u s l y well-mapped by

a e r i a l photography.

Such photographs can s e r v e as a s t a n d a r d

f o r i n t e r p r e t a t i o n of p i c t u r e s of unknown a r e a s on E a r t h , t h e Moon, and o t h e r p l a n e t s .

A secondary o b j e c t i v e i s t o o b t a i n h i g h - q u a l i t y p i c t u r e s

of r e l a t i v e l y poorly-mapped a r e a s of t h e E a r t h f o r s p e c i f i c

s c i e n t i f i c purposes.

F o r example, g e o l o g i s t s hope t h a t such

photographs can h e l p to answer q u e s t i o n s of c o n t i n e n t a l d r i f t , s t r u c t u r e of t h e E a r t h ' s mantle, and o v e r a l l s t r u c t u r e of t h e continents.

The c o n t i n e n t a l United States w i l l be t h e p r i o r i t y photo-

g r a p h i c o b j e c t i v e , followed by t h e Arabian Peninsula and E a s t A f r i c a , and t h i r d , o t h e r p a r t s of A f r i c a .

Of particular in-

t e r e s t are rift v a l l e y s which are g e o l o g i c a l l y analogous t o t h e r i l l s found on t h e Moon.

These r i f t v a l l e y s extend from

Turkey, through S y r i a , Jordan, t h e Red Sea a r e a and e a s t e r n A f r i c a as f a r southasMozambique. By photographing these rift v a l l e y s , g e o l o g i s t s f e e l t h a t may g a i n a b e t t e r u n d e r s t a n d i n g

- more -

-

58

-

of t h e c r u s t and u p p e r mantle of t h e E a r t h as w e l l as the r i l l s

on t h e Moon.

A d d i t i o n a l l y , t h i s area p a r t i c u l a r l y i n t h e Sahara d e s e r t , has many wind-blown

sand dunes, c a l l e d seif dunes, which are

s e v e r a l hundred f e e t high and extend many hundreds of miles i n There has been some s c i e n t i f i c s p e c u l a t i o n t h a t t h e

length,

familiar c a n a l s on Mars may be a type of s e i f , o r sand dunes. Photographs of these dunes from t h e Gemini 4 f l i g h t are expected t o a l l o w s c i e n t i s t s t o b e t t e r i n t e r p r e t photographs from

the upcoming ( J u l y 14, 1965) Mariner N f l y - b y of Mars.

Addi-

tionally, it should r e s u l t i n b e t t e r i n t e r p r e t a t i o n of photographs t a k e n of Mars by Earth-based t e l e s c o p e s .

Photography w i l l be performed d u r i n g p e r i o d s of maximum d a y l i g h t , from 9 A.M.

t o 3 P.M.

l o c a l time.

If cloud c o v e r

i s over 50 p e r c e n t i n t h e p r i o r i t y areas, t h e a s t r o n a u t s w i l l photograph s u b j e c t s of opportunity-any

i n t e r e s t i n g l a n d areas.

A 70-mm modifiedHasseIblad (Swedish make), Model 500C w i l l be u s e d ,

roll.

The magazine c a p a c i t y of t h i s camera i s 55 frames p e r

The nose of t h e Gemini 4 s p a c e c r a f t w i l l be t i l t e d

s t r a i g h t down.

Normally, t h e camera w i l l be i n u s e from f i v e

t o 10 minutes, t a k i n g a photograph e v e r y six seconds of a 100mile-wide area, t h u s g i v i n g continent-wide coverage when t h e i n d i v i d u a l frames are mounted as a continuous photogrip h i c strip

- more -

- 59 -

Space photography,

i n comparison w i t h a e r i a l photography,

i s thought t o have t h e advantage of providing g r e a t e r p e r -

s p e c i m e , wider coverage, g r e a t e r speed, and r a p i d r e p e t i t i o n of coverage.

These f a c t o r s s u g g e s t a p p l i c a t i o n s i n many areas

of geology, weather, topography, hydrology and oceanography.

For example: 1.

Geologic reconnaissance can t e l l u s more of our own

p l a n e t , l e a d i n g t o b e t t e r i n t e r p r e t a t i o n of t h e geology of t h e Moon and o t h e r p l a n e t s . 2.

Topographic mapping of E a r t h can g i v e u s newer and b e t t e r

maps w i t h a s c a l e of 1:1,000,000.

3.

Hydrology mapping could, for example, p e r m i t estimates

of the amount of s n o w f a l l i n p a r t i c u l a r r e g i o n s and what t h e amount of run-off would be i n the s p r i n g t i m e , of great i n t e r e s t

i n f l o o d p r e v e n t i o n and c o n t r o l .

4.

Oceanographic mapping Could, among o t h e r t h i n g s , show

t h e d i s t r i b u t i o n and temperature of ocean c u r r e n t s ; the l o c a t i o n of i c e of danger t o shipping.

Space photography a l s o shows p o t e n t i a l f o r f o r e s t r y mapping, f o r example, n o t i n g v e g e t a t i o n changes.

It a l s o can

supplement t h e TV-type photography of o u r weather s a t e l l i t e s s i n c e f i l m p r o v i d e s greater r e s o l u t i o n .

- more -

-

60

-

The experiment i s being conducted by Dr. Paul D. Lowman, Jr.,

a g e o l o g i s t a t NASA's Goddard Space F l i g h t Center, Greenbelt, Md

Synoptic Weather Photography Experiment The Synoptic Weather Photography experiment i s designed

t o make u s e of man's a b i l i t y t o photograph cloud systems selectively-in

c o l o r and i n greater d e t a i l t h a n can be o b t a i n e d

from t h e c u r r e n t TIROS m e t e o r o l o g i c a l s a t e l l i t e .

The Gemini 4 crew w i l l photograph v a r i o u s cloud systems.

They w i l l be u s i n g t h e same 70-mm Hasselblad camera and Ektachrome f i l m as f o r t h e Synoptic T e r r a i n Photography experiment.

A primary purpose of t h e experiment i s t o augment i n f o m a -

t i o n from m e t e o r o l o g i c a l s a t e l l i t e s .

Observations from meteoro-

l o g i c a l s a t e l l i t e s a r e c o n t r i b u t i n g s u b s t a n t i a l l y t o knowledge of t h e E a r t h ' s weather systems,

I n many a r e a s t h e y provide i n -

f o r m a t i o n where f e w o r no o t h e r o b s e r v a t i o n s e x i s t .

Such p i c -

t u r e s , however, are e s s e n t i a l l y t e l e v i s i o n views of l a r g e a r e a s t a k e n from a n a l t i t u d e of 400 miles o r more.

They l a c k the de-

t a i l which can be o b t a i n e d i n photographs taken from t h e Gemini h e i g h t of about 100 miles.

- more -

- 61

-

One of t h e aims of t h e S-6 experiment i n t h e Gemini4 and subsequent f l i g h t s i s to g e t a b e t t e r l o o k a t some of t h e cloud 1

p a t t e r n s seen on TIROS p i c t u r e s , b u t n o t f u l l y understood.

There

are c e l l u l a r p a t t e r n s , cloud bands r a d i a t i n g from a p o i n t , app a r e n t shadows of i n d i s t i n g u i s h a b l e h i g h c l o u d s on low cloud decks, and small v o r t i c e s sometimes found i n t h e l e e of mountainous islands.

Another o b j e c t i v e i s to g e t p i c t u r e s of a v a r i e t y of storm systems, such a s weather f r o n t s , s q u a l l l i n e s , o r t r o p i c a l d i s t u r b a n c e s , s o t h a t t h e i r s t r u c t u r e can be b e t t e r understood.

F i n a l l y , t h e experimenters hope t o g e t s e v e r a l sets of

views of t h e same area on subsequent p a s s e s o f t h e s p a c e c r a f t t o see how v a r i o u s weather phenomena move and develop.

The e x p e r i m e n t e r s a r e Kenneth M. Nagler and S t a n l e y D. Soules, b o t h of t h e Weather Bureau's N a t i o n a l Weather S a t e l l i t e Center. Nagler has a d u a l r o l e i n t h e Gemini

11

spaceflight, serving both

as a n experimenter i n t h e weather photography e f f o r t and as Head of t h e S p a c e f l i g h t Meteorology Group which p r o v i d e s N A S A t h e

f o r e c a s t i n g support f o r i t s manned s p a c e f l i g h t programs.

i s w i t h t h e Meteorological S a t e l l i t e Laboratory.

- more -

Soules

He p r e v i o u s l y

- 62 -

p r e p a r e d photographic experiments conducted by Astronauts

S c h i r r a and Cooper i n t h e i r Mercury f l i g h t s .

I n these t h e

Earth and its cloud systems were viewed i n d i f f e r e n t portions of t h e v i s u a l and i n f r a r e d s p e c t r a .

The experiment monitor

i s Capt. Robert D. Mercer, USAF, a s s i g n e d t o t h e NASA Manned

S p a c e c r a f t Center.

-

more

’-

- 63 -

The meals planned for t h e Gemini 4 crew c o n t a i n

different i t e m s .

49

E e r e a y e some d i f f e r e n c e s i n t h e menus f o r

each a s t r o n a u t , >asec;

or1

imdividual p r e f e r e n c e s , b u t t h e

c a l o r i e balance i s t h e same.

The a s t m n a u t s w i l l . e a t f o u r meals a day.

The meals a r e

s t o r e d i n 1-8 packages, 14 two-man meals and f o u r one-man meals, i n a compartment above t h e command pilot's l e f t s h o u l d e r .

They

a r e marked by day and meal and a r e placed i n t h e compartment i n o r d e r s o t h a t t h e f i r s t day meal i s on t o p ,

The packages

a r e connected by a nylon lanyard which p r e v e n t s them from

g e t t i n g o u t o f o r d e r when f l o a t i n g i n s i d e t h e compartment.

The food c o n s i s t s o f f r e e z e - d r i e d items, dehydrated items

i n powder form and compressed b i t e - s i z e d items.

The dehydrated

food and some of t h e f r e e z e d r i e d items w i l l be r e c o n s t i t u t e d by adding water w i t h a s p e c i a l water gun.

The compressed

items do n o t need water.

Each package of f r e e z e - d r i e d food c o n t a i n s a d i s i n f e c t a n t t a b l e t which i s placed i n t h e food pouch a r t e r t h e a s t r o n a u t has eaten.

The t a b l e t a c t s chemically to prevent s p o i l a g e of t h e

remaining food. - more

-

- 54 -

The food forrnulation concept was developed by t h e U . S .

A r m y L a b o r a t o r i e s , Natick, Mass.

Overall food procurement,

p r o c e s s i n g , and packaging w a s performed by the Whirlpool Corp.,

S t . Joseph, Mich.

S w i f t and Co.,

P r i n c i p a l food c o n t r a c t o r s a r e

Chicago, and P i l l s b u r y Co., Minneapolis.

- more

-

- 65 GEMINI 4 MENU

F i r s t Day White

Mc Div it t

Calories

Calories MEAL A

& Egg B i t e s

Bread Cubes

T i T ? I i I S t a r Cereal

91 283

Bacon & Egg B i t e s Toasted Bread Cubes (R) Orange J u i c e

165

( R ) Orange J u i c e

91

283 165 83

022 148

I1 B B R

105 78

Toast F r u i t c a k e (Date) Tea

202

( R ) Tea

220

220

238 78

237 78 86 -83

86

83

( R ) Orange J u i c e

704

705

mAL D r u i t Jc.

83 184 156

Jc. 83

719

719

184

156

296

296

Total Calories 2611 Food O n l y Weight 549.8 g m

Total Calories 2610 Food Only Weight 550.8 gm

1 ounce ( a v o i r d u p o i s ) e q u a l s

( R ) R e c o n s t i t u t e d w i t h water

28.3 grams 1 gram e q u a l s .035 ounce

( B ) B i t e size, no water added NOTE:

The same menu w l l l be used by t h e back-up crew, i f necessary.

-

more

-

- 56 -

Second Day White

IvIcDivitt Calories B R B R

ii

Apricot Cereal B a r s Ham & Applesauce Cinnamon Toast Cocoa

Beef B i t e s P o t a t o Salad Fruitcake (Pineapple) Orange J u i c e Banana Pudding Chicken Salad

Calories Apricot Cerea.1 Bars 154 Ham & Applesauce 127 Toast . 76

154 127

75 186

186

m

m

161

Beef B i t e s 167 P o t a t o Salad 145 Fruitcake (Pineapple)211 83 Orange J u i c e

145 211

83

Em

606

Banana Pudding Chicken Salad

141 237

237

68

68

202

202

m P o t a t o Soup Chicken & Gravy

141

648

222

202

91 78

Chicken & Gravy

91 78 296

296 32

32

Total Calories 2516 Food Only Weight 521.8 gm

Total Calories 2516 Food Only Weight 521.8 gm

-

719

719

( R ) R e c o n s t i t u t e d w i t h water ( B ) B i t e s i z e , no water added

1 ounce ( a v o i r d u p o i s ) e q u a l s 28.3 grams 1 gram e q u a l s .035 ounce

-

more

-

- 67

-

T h i r d Day

McDivitt

Whit e

Calories Sugar F r o s t e d F l a k e s 139 Bacon Squares( D b l . Serv)203 76 Cinnamon Toast Orange-Grapefruit Jc. 83

Calories Sugar F r o s t e d F l a k e s 139 Sausage P a t t i e s 202 Cinnamon Toast 78 Orange-Grapefruit J c . 83

501

Tuna S a l a d Cheese Sandwich A p r i c o t Pudding R ) Orange J u i c e

502

Beef & Gravy Cheese Sandwich Apricot Pudding Orange J u i c e

204 231

147

116 Toasted Bread Cubes Pineapple Cubes

74 165

Toasted Bread Cubes Pineapple Cubes

Total Calories 2574 Food O n l y Weight 542.9 g m .

( R ) R e c o n s t i t u t e d w i t h water

(B) B i t e s i z e , no water added 1 ounce ( a v o i r d u p o i s ) e q u a l s 28.3 grams 1 gram e q u a l s

.a35 oucne

- more -

148 231

147 83

609 116 74

165

Total Calories 2519 Food O n l y Weight 537.9 gm

- 68

-

F o u r t h Day White

McDivitt

Calories Orange J u i c e Beef Sandwiches

Orange J u i c e Beef Sandwiches

20 2

543

B e e f Sandwich

Gingerbread Cho co l a t e Pud d i ng

202

m

Beef' Sand wich

Gingerbread Pudding, Chocolate

793

Chicken

&

156 793

Vegetables

Toasted Bread Cubes

85

113

Spaghetti

7%

28 1 (R)

Tea

5%

Total Calories 2520 Food Only Weight 542.5 rn

(R)

Reconstituted with water

(B)

B i t e s i z e , no water added

1 ounce ( a v o i r d u p o i s ) ei1uaI.s 28.3 grams 1 gram equals .035 ounce

(R)

&

Meat Sauce

Apri cot Cubes Tea

281 32

737

T o t a l Calories 2501 Food Only Weight 532.5 gm

-

69

-

GEMINI SPACECRAFT The Gemini s p a c e c r a f t i s c o n i c a l 18 f e e t , 5 inches long, 10 f e e t a c r o s s a t t h e base and 39 i n c h e s a c r o s s a t the top.

It has two major

s e c t i o n s , t h e r e e n t r y module

and t h e a d a p t e r s e c t i o n .

Reentry --.

Module

The r e e n t r y module i s 11 f e e t high and

diameter a t its base.

7$ f e e t i n

It has t h r e e primary s e c t i o n s : (1)

rendezvous and recovery s e c t i o n (R&R) ; ( 2 ) r e e n t r y c o n t r o l s e c t i o n (RCS);

(3) cabin section.

The rendezvous -

and -----recovery s e c t i o n i s t h e forward (small)

p o r t i o n of t h e s p a c e c r a f t .

Housed i n t h i s s e c t i o n are the

drogue, p i l o t and main p a r a c h u t e s and t h e rendezvous radar. However, t h e rendezvous radar w i l l n o t be c a r r i e d on Gemini 4.

The r e e n t r y c o n t r o l system i s l o c a t e d between t h e rendezvous

and recovery s e c t i o n and t h e c a b i n s e c t i o n .

It c o n t a i n s f u e l

and o x i d i z e r tanks, v a l v e s , t u b i n g and t h r u s t chamber a s s e m b l i e s (TCA).

A parachute a d a p t e r assembly I s on t h e forward f a c e

f o r t h e main parachute attachment.

-

more

-

- 70 -

The c a b i n s e c t i o n

i s l o c a t e d between t h e r e e n t r y

c o n t r o l s e c t i o n and t h e a d a p t e r s e c t i o n . seated side-by-side,

It houses t h e crew

e l e c t r i c a l and l i f e s u p p o r t equipment and

e x p e r i m e n t a l devj-ces.

Above each s e a t i s a h a t c h opening f o r

e n t e r i n g and l e a v i n g t h e c a b i n .

Th5 crew compartment i s

p r e s s u r i z e d and spaces c o n t a i n i n g equipment t h a t r e q u i r e no p r e s s u r i z a t i o n o r which a r e i n t e r n a l l y p r e s s u r i z e d are l o c a t e d between t h e p r e s s u r i z e d s e c t i o n and t h e o u t e r s h e l l .

The

o u t e r s h e l l i s covered w i t h overlapping s h i n g l e s t o provide aerodynamic and h e a t p r o t e c t i o n .

A dish-snaped heat s h i e l d

forms t h e l a r g e end of t h e c a b i n s e c t i o n and r e e n t r y module. Adapter S e c t i o n

The a d a p t e r i s

t h e base.

7$ f e e t high and

10 f e e t i n diameter a t

It c o n s i s t s o f a r e t r o g r a d e s e c t i o n and a n equipment

s e c tion.

The ret=rade ----s e c t i o n c o n t a i n s r e t r o g r a d e r o c k e t s and

--

p a r t of t h e r a d i a t o r f o r t h e c o o l i n g system,

- more -

LIQUID ROCKET SYSTEMS GENERAL ARRANGEMENT 25 LB ATTITUDE THRUST CHAMBER (TYPICAL 8 PLACES) OXIDIZER HELIUM% /-b/ 85 LB DECELERATE THRUST CHAMBER / n (TYPICAL 2 PLACES)

FUEL^^ I

II

I

'

\

H/v //I

I

\A

er-\

,/ j

\

LB MANEUVER THRUST CHAMBER ,(TYPICAL 6PLACES)

ORBIT ATTITUDE AND

25 LB THRUST CHAMBER (TYPICAL 16 PLACES)

REENTRY CONTROL SYSTEM

THRUST CHAMBER ARRANGEMENT ATTITUDE CONTROL 25 LBS. THRUST PER UNIT

Z

MANEUVER CONTROL 100 LBS. THRUST PER UNIT * 85 LBS. THRUST PER UNIT AFT

MANEUVERING CONTROL VERTICAL

I

-4

w I

LATERAL

AFT

SPACECRAFT RESPONSES TO ORBIT ATTITUDE CONTROL THRUST

I

2 I

- 75 -

Z

- 76 -

The equipment

s e c t i o n holds b a t t e r l e s for e l e c t r i c a l 1

power, f u e l f o r t h e orbit a t t l t u d e and maneuver system ( O A M S ) , t h e p r i n a r y oxygen f o r t h e environmental c o n t r o l s.jstem.

It a l s o serves a s a r a d i a t o r Tor t h e s p a c e c r a f t ' s c o o l i n g system which i s contained i n the s e c t i o n .

The equi.pment

s e c t i o n i s j e t t i s o n e d immediately b e f o r e the r e t r o r o c k e t s a r e f'lred f o r r e e n t r y and t h e r e t r o g r a d e section i s j e t t i s o n e d

a f t e r t h e r e t r o r o c k e t s are f i r e d .

The Gemini s p a c e c r a f t weighs approxS.mately 7,000 pounds

a t launch,

The r e e n t r y module

weighs about 4,700 pounds when

i t lands.

McDonnell A i r c r a f t Corp., S t Tor t h e Gemini s p a c e c r a f t .

Louis, i s prime c o n t r a c t o r

-

77

G E M I NI-LAUNCH --

VXHICL!.<

The Gemini Launch Vehic1.e i s a m o d i f i e d U . S . A i r Force T i t a n I1 i n t e r c o n t i n e n t a l b a l l i s t i c m i s s i l e c o n s i s t i n g o f two stages.

The f i r s t stage i s 63 f e e t high and t h e second s t a g e i s

27 f e e t h i g h

D i a m e t e r o f both s t a g e s ris 10 f e e t .

Overall

h e i g h t of the launch v e h i c l e p l u s t h e sL:acecraft i s 109 f e e t .

Launch weight i n c l u d i n g t h e s p a c e c r a f t i s about 3'cO,OOO pounds

The first s t a g e has two r o c k e t engines and t h e second

s t a g e has a s i n g l e engine.

A l l engines burn a 50-50 blend

o f monomethyl hydrazine and unsymmetrical-dlmethyl hydrazine

a s f u e l w i t h n i t r o g e n t e x t r o x i d e as o x i d i z e r .

The f u e l i s

h y p e r g o l i c , t h a t i s it i g n i t e s spon"dneous1y when i t comes i n c o n t a c t w i t h the o x i d i z e r , and i s sgorable.

Tile

i'irst s t a g e erigiiies produce a com'uiirieu 430,000 pounds

o f t h r u s t a t 1;-f't-off and t h e second stage engine produces

about 100,000 pounds t h r u s t a t a l t i t u d e .

T i t a n I1 was choser, f o r t h e Gemini program because of i t s s.imp1:i.fied o p e r a t i o n , t h r u s t and a v a l l a b l l i t y .

The following

m o d i f i c a t i o n s were made i n t h e T i t a n I1 t o make i t s u i t a b l e f o r manned space f l i g h t launches:

- more -

- 78 1.

-

Addition of a malfunction d e t e c t i o n system t o d e t e c t

and t r a n s m i t information or problems i n t h e b o o s t e r system t o t h e crew.

2.

M o d i f i c a t i o n o f t h e f l i g h t c o n t r o l system t o provide

a back-up system shou1.d t h e primary system fail i n f l i g h t .

3.

M o d i f i c a t i o n o f t h e e l e c t r i c a l system.

4. S u b s t i t u t i o n

o f r a d i o guidance for i n e r t i a l guidance.

5.

D e l e t i o n o f r e t r o r o c k e t s and v e r n i e r r o c k e t s .

5.

N e w second s t a g e equipment truss.

7. N e w second s t a g e forward o x i d i z e r 8.

s k i r t assembly.

S i m p l i f i c a t i o n of t r a j e c t o r y t r a c k i n g requirements

I

9. M o d i f i c a t i o n o f h y d r a u l i c system.

10.

M o d i f i c a t i o n of i-nstrwnent system.

Gemini Launch Vehicle program management for NASA i s under t h e d i r e c t i o n o f t h e Space Systems D i v i s i o n o f t h e Air Force Systems Command

C o n t r a c t o r s include: - more

-

- 79 -

A J . r Frame and system i n t e g r a t i o n , Martin C o . , Baltimore

D i v i s i o n s , Baltimore.

Propulsion systems, Aerojet-General Corp., Sacramento, Calif.

Radio command guidance system, General E1ectrS.c Co., Syracuse, N . Y .

Ground guidance computer, Burroughs Corp., P a o l i , P a .

Systems e n g i n e e r i n g and

t e c h n i c a l d i r e c t i o n , Aerospace

Corp., E l Segundo, Calif.

- more -

* E q u i ~ m ~bay ~ tcontains: 0

Batteries'

0

Malfunction d ~ t ~ t i osystem n MDSI units Range safety c o m ~ a n dcontrol system

0

e

~r~rammer Three-axis reference system (TARS)

0

Radio guldance system ( R G 5 l

0

e Autopl~~t

I nstrument~lon and ~ @ l ~ ~system ~ t r y

- 81

-

G E M I N I SPACE S U I T

Gemini e x t r a v e h i c u l a r s u i t

will be worn by t h e G e m i n i 4

crew t o e v a l u a t e a n d f l i g h t - q u a l i f y i t .

This i s t h e s u i t

planned f o r a c t i v i t y o u t s i d e t h e s p a c e c r a f t .

The e x t r a v e h i c u l a r s u i t d i f f e r s from t h e r e g u l a r G e m i n i space s u i t i n t h r e e ways: 1.

An e x t r a l a y e r f o r thermal a n d micrometeroid

p r o t e c t i o n has been added t o t h e b a s i c s u i t . i n t e g r a l part of t h e s u i t .

It i s a n

T h e e x t r a l a y e r weighs about

3 3/4 pounds a n d i s white, t h e same c o l o r as t h e b a s i c s u i t . It i s made of a cover l a y e r of h i g h temperature nylon and l a y e r s of aluminized mylar a n d f e l t . 2.

Two e x t e r n a l v i s o r s have been a d d e d t o t h e helmet.

The i n n e r v i s o r i s m a d e of a m a t e r i a l c a l l e d Lexan, which i s about 30 t i m e s s t r o n g e r t h a n t h e p l a s t i c used i n a i r c r a f t canopies.

It i s coated w i t h a s p e c i a l s o l u t i o n which p r e v e n t s

heat leak from the s u i t i n t o a vacuum.

This v i s o r p r o v i d e s

micrometeroid a n d thermal p r o t e c t i o n f o r t h e f a c e p l a t e .

The

o u t e r v i s o r i s t i n t e d and provides g l a r e p r o t e c t i o n f o r t h e astronaut.

- more -

-

3.

82 -

A s t r a i n r e l i e f z i p p e r has been a d d e d beneath t h e

p r e s s u r e s e a l i n g z i p p e r of the s u i t .

The new z i p p e r i s

designed t o take t h e s t r a i n from t h e p r e s s u r e s e a l i n g z i p p e r d u r i n g opening a n d c l o s i n g of t h e s u i t .

The b a s i c Gemini suit i s a c l o s e f i t t i n g f u l l p r e s s u r e s u i t w i t h a n i n n e r l a y e r of a rubberized material covered by a nylon m a t e r i a l .

The helmet a n d g l o v e s may be removed

i n flight.

Oxygen i n l e t a n d o u t l e t connections are l o c a t e d a t

waist l e v e l .

The s u i t i s e n t e r e d through a z i p p e r opening

which runs from t h e c r o t c h up t h e e n t i r e back of t h e s u i t .

A small b a t t e r y pack a n d i n d i v i d u a l f i n g e r t i p l i g h t s

are mounted on each glove so that t h e a s t r o n a u t s can read i n s t r u m e n t s on the n i g h t s i d e of the E a r t h while the c a b i n light i s off.

The s u i t has been developed by MSCIs C r e w Systems Division.

Prime c o n t r a c t o r i s t h e D a v i d Clark Co., Worcester,

Mass.

-

more

-

-

83 -

CREW BIOGRAPHIES James A .

( f o r A l t o n ) McDivitt, Gemini 4 command

pilot

Born: Chicago, June 10, 1929

HEIGHT: ?ft, 11 i n . , WEIGHT: 155

l b s ; Brown h a i r ,

blue eyes. EDUCATION:

MARITAL STATUS:

CHILDREN:

Married to t h e former P a t r i c i a Ann Haas o f Cleveland, Ohio

Michael A . , Apr. 16, 195'7; Ann Lynn, J u l y 21, 19%; Patri-c W . , Aug. 3 0 , 1960

PROFESSIONAL

EXPERIENCE:

Bachelor o f Science degree i n a e r o n a u t i c a l e n g i n e e r i n g from t h e U n i v e r s i t of' Michigan 1959 ( g r a d u a t e d f i r s t i n c l a s s y . Attended Jackson J u n i o r College, 1948-1950.

ORGANIZATIONS:

Member, S o c i e t y of Experimental T e s t P i l o t s and American I n s t i t c h ? o f Aeronautics and A s t r o n a u t i c s

McDivitt, a n Air Force M a j o r , j o i n e d the A i r Force i n 1951. He flew 145 combat missions and F-861s. durring t h e Korean a c t i o n i n F - 8 0 ' ~ H e was awarded t h r e e D i s t i n g u i s h e d F l y i n g Crosses, f i v e Air Medals, and t h e Choo Moo Medal from South Korea.

He is Pilot Pilot Base,

a g r a d u a t e of t h e USAE Experimental Test School and t h e USAF Aerospace Research c o u r s e . H e served a t Edwards A i r Force C a l i f . , as an experimental t e s t p i l o t .

McDlvitt has logged more than 3,000 hours f l y i n g time, i n c l u d i n g 2,500 hours i n j e t a i r c r a f t , CURRENT ASSIGNMENT:

M c D i v i t t J . s son

McDivitt was s e l e c t e d as a n a s t r o n a u t by NASA i n September 1952. I n a d d i t i o n to participating i n the overall astronaut t r a i n i n g program he has had a d d i t i o n a l s p e c i a l i z e d d u t i e s . These d u t i e s i n c l u d e monitoring t h e d e s i g n and development of t h e guidance and n a v i g a t i o n systems for t n e Gemini and Apollo s p a c e c r a f t , as w e l l as monitoring t h e o v e r a l l Apollo Command and S e r v i c e Modules.

of M r . & Mrs. James McDivitt, Jackson, Mich. - more -

- 84 -

Edward H. BORN:

(for Higgins) White 11, Gemini 4 p i l o t

San Antonio, Tex., Nov. 1 4 , 1930

HEIGHT: 6 ft.; WEIGHT: 171 l b s . ; Brown-hair, Brown eyes EDUCATION:

Bachelor o f Science degree from United S t a t e s M i l i t a r y Academy, 1952, Master o f Science degree i n a e r o n a u t i c a l e n g i n e e r i n g , U n i v e r s i t y of Michigan, 1959

MARITAL STATUS:

CHILDREN:

Married t o former P a t r i c i a E i l e e n o f Washington, D.C.

Edward, May 15,

PROFESSIONAL ORGANIZATIONS:

EXPERIENCE:

Finegan

1953; Bonnie Lynn, Sept. 15, 1956 A s s o c i a t e member of I n s t i t u t e of Aero-space Sciences; Member o f Sigma Delta P s i , a t h l e t i c honorary; and Member o f Tau Beta P i , e n g i n e e r i n g honorary

White, an A i r Force Major, r e c e i v e d f l i g h t t r a i n i n g i n F l o r i d a and Texas, following h i s g r a d u a t i o n from West Point. He s p e n t 37 y e a r s i n Germayy w i t h a f i g h t e r squadron, f l y i n g F - 8 5 ' s and F-100 S. He a t t e n d e d t h e A i r Force T e s t P i l o t School a t Edwards A i r Force Base, C a l i f . , i n 1959. White was l a t e r a s s i g n e d t o Wright-Patterson A i r Force Base, Ohio, as a n experimental t e s t p i l o t w i t h the Aeronautical SystemDivision. In this assignment he made f l i g h t t e s t s f o r r e s e a r c h and weapons systems development, wrote t e c h n i c a l e n g i n e e r i n g r e p o r t s , and made recommendations f o r improvement i n a i r c r a f t d e s i g n and c o n s t r u c t h n . He has logged more t h a n 3,600 hours f l y i n g time, i n c l u d i n g more than 2,200 hours i n jet a i r c r a f t .

CURRENT ASSIGNMENT:

White i s t h e son S t . Petersburg, Fla.

White i s a member o f t h e a s t r o n a u t team s e l e c t e d by NASA i n September 1962. of M a j . Gen. and Mrs. Edward H. White,

- more

-

- 85

Frank Borman, Gemini

-

4 back-up crew, Command P i l o t

Gary, Ind. , Mar. ill, 1928

BORN: HEIGHT:

5 Y t . , 10 i n . ; WEIGHT: 163

l b s . ; Blonde h a i r , b l u e

cycs

EDUCATION:

Bachelor o f Science degree, United S t a t e s M i l i t a r y Academy, 1950; Master o f Science degree i n a e r o n a u t i c a l e n g i n e e r i n g , C a l i f o r n i a I n s t i t u t e o f Technology, 1957.

MARITAL STATUS: CHILDREN: EXPERIiZNCE:

Married to t h e former Susan Bugbee o f Tucson, Ariz.

F r e d e r i c k , Oct. 4, 1951; Edwin, J u l y 20, 1953 Upon g r a d u a t i o n from West P o i n t , Borman, now a n A i r Force Major, chose a n A i r Force Career and r e c e i v e d h i s p i l o t t r a i n i n g a t Williams A i r Force Base, C a l i f . From 1951 to 1956 he served w i t h f i g h t e r squadrons i n t h e United S t a t e s and i n t h e P h i l i p p i n e s and was a n i n s t r u c t o r a t t h e A i r Force Fighter IqJeapons School. From 1957 t o 1950 he was a n i n s t r u c t o r o f thermodynamics and f l u i d mechanics a t t h e U . S . M i l i t a r y Academy. He was graduated €rom t h e USAF Aerospace Research P i l o t s School i n 1960 and latei- served there as a n i n s t r u c t o r . I n t h i s c a p a c i t y he prepared and d e l i v e r e d academic l e e t u r e s and s i m u l a t o r b r i e f i n g s , and f l i g h t t e s t b r i e P i n g s on t h e t h e o r y and p r a c t i c e 0 : ' s p a c e c r a f t t e s t i n g . Borrnan has logged more t h a n lC,400 hours f l y i n g t i m e , i n c l u d i n g more t h a n 3,500 hours i n j e t aircraft.

CURRENT ASSIGNMENT:

Borman was one of t h e n i n e a s t r o n a u t s named' by NASA i n September 1962.

Borman i s t h e son

of' M r . & Mrs. Edwin Borman, Phoenix,

Ariz.

- more -

- 86 -

(for A r t h u r ) Lovell, J r . , G e m i n i 4 back-up

James A . crew p i l o t BORN:

Cleveland, Ohio, March 25, 1928

6 f t . ; wSIGHT: 165 lbs.;-Blond hair,

HEIGHT: b l u e eyes EDUCATION:

Bachelor of Science degree from t h e United S t a t e s Naval Academy, 1952; a t t e n d e d U n i v e r s i t y of Wisconsin,

1946-1948.

MARITAL STATUS: CHILDREN:

EXPERIENCE:

Married to t h e former N a r i l y n Gerlach of Milwaukee

Barbara Lynn, Oct. 13, 1953; James A . , 1955; Susan Kay, J u l y l&, 1958

Feb. 15,

Lovell, a Navy L i e u t e n a n t Commander, r e c e i v e d f l i g h t t r a i n i n g Tollowing h i s g r a d u a t i o n from Annapolis. H e served i.n a number of Naval a v i a t o r assignments including a three-year t o u r as a t e s t p i l o t a t t h e Naval A i r T e s t Center a t Patuxent River, Md. H i s d u t i e s t h e r e included s e r v i c e as program manager :or t h e F4H Weapon System E v a l u a t i o n .

L o v e l l was graduated from t h e Aviation S a f e t y S c h o o l of t h e U n i v e r s i t y o f Southern C a l i f o r n i a .

He served a s f l i g h t i n s t r u c t o r and s a f e t y o f f i c e r w i t h F i g h t e r Squadron 101 a t t h e Naval A i r S t a t i o n a t Oceana, V a . L o v e l l has logged 3,000 hours f l y i n g t i m e , more than 2,000 hours i n jet a i r c r a f t . CURRENT ASSIGNMENT:

ove 1 i

mgewajer $ea&,

including

L o v e l l was s e l e c t e d as a n a s t r o n a u t by NASA i n September 1962. I n a d d i t i o n to p a r t i c i p a t i n g i n the overall astronaut t r a i n i n g program, he has been a s s i g n e d s p e c i a l d u t i e s monitoring desj-gn and development o f recovery and i n c l u d i n g crew l i f e support systems and developing techniques for l u n a r and e a r t h l a n d i n g s and r e c o v e r y .

th son of M r . & Mrs. James A. L o v e l l , Sr., FTa. - more -

- 87

-

PROJECT OFFICIALS

George E. M u e l l e r

Associate Administrator, O f f i c e of Manned Space Flight, NASA Headquarters. ActLng D i r e c t o r , Gemini Program.

W i l l i a m C. Schneider

Deputy D i r e c t o r , Gemini Program, O f f i c e of Manned Space F l i g h t , NASA Headquarters.

E. E. C h r i s t e n s e n

D i r e c t o r , Missions Operat i o n s , NASA Headquarters

Charles W. Mathews

Gemini Program Manager, Manned S p a c e c r a f t Center, Houston

C h r i s t o p h e r C . Kraft

Mission D i r e c t o r , Manned S p a c e c r a f t Center, Houston

Lt. Gen. Leighton I. Davis

USAF, N a t i o n a l Range D i v i s i o n Commander and DOD Manager of Manned Space F l i g h t Support Operations.

M a g . Gen. V. G. Huston

USAF, Deputy DOD Manager

Col. Richard C . Dineen

Director, Directorate Gemini Launch V e h i c l e s , Space Systems D i v i s i o n , A i r Force Systems Command.

L t . Col. John G . Albert

Chief, Gemini Launch D i v i s i o n , 6555th Aerospace T e s t Wing, A i r Force M i s s i l e Test Center, Cape Kennedy, F l a .

R. Admiral B. W. S a r v e r

USN,

. Commander Task Force

140

- more

-

- 88 -

PREVIOUS GEMINI FLIGHTS Gemini 1, A p r i l 8, 1964 T h i s w a s a n unmanned o r b i t a l f l i g h t t o t e s t t h e Gemini

launch v e h i c l e performance and t h e a b i l i t y of t h e s p a c e c r a f t and launch v e h i c l e t o w i t h s t a n d t h e launch environment.

f i r s t p r o d u c t i o n Gemini s p a c e c r a f t was u s e d .

The

It w a s equipped

w i t h i n s t r u m e n t a t i o n designed t o o b t a i n d a t a on e x i t h e a t i n g ,

s t r u c t u r a l l o a d s , temperatures, v i b r a t i o n s and p r e s s u r e s .

The

launch v e h i c l e was e s s e n t i a l l y t h e same c o n f i g u r a t i o n a s w i l l be flown on a l l Gemini missions.

P r i m a r y o b j e c t i v e s of Gemini 1, a l l s u c c e s s f u l l y accomplished: 1.

Demonstrate and q u a l i f y Gemini launch v e h i c l e p e r -

f ormance. 2.

Determine e x i t h e a t i n g c o n d i t i o n s on t h e s p a c e c r a f t

and launch v e h i c l e .

3.

Demonstrate c o m p a t i b i l i t y of t h e launch v e h i c l e and

s p a c e c r a f t through o r b i t a l i n s e r t i o n .

4.

Demonstrate o r b i t a l i n s e r t i o n .

The combined s p a c e c r a f t and launch v e h i c l e second stage

o r b i t e d f o r about f o u r days.

Recovery was n o t attempted.

- more -

- 89 -

Gemini 2, Jan. 19, 1965 T h i s was an unmanned b a l l i s t i c f l i g h t to q u a l i f y space-

c r a f t r e e n t r y h e a t p r o t e c t i o n and t e s t t h e major Gemini systems r e q u i r e d f o r manned o r b i t a l f l i g h t s . P r i m a r y o b j e c t i v e s o f Gemini 2, a l l s u c c e s s f u l l y accom-

plished : 1,

Demonstrate t h e adequacy of t h e s p a c e c r a f t a f t e r b o d y

h e a t p r o t e c t i o n d u r i n g a maximum h e a t i n g r a t e r e e n t r y . 2.

Demonstrate s p a c e c r a f t s e p a r a t i o n from t h e launch ve-

h i c l e and s e p a r a t i o n of t h e equipment and r e t r o g r a d e s e c t i o n s .

3.

Q u a l i f y a l l s p a c e c r a f t and launch v e h i c l e systems

as r e q u i r e d f o r manned o r b i t a l f l i g h t s .

4.

Demonstrate combined s p a c e c r a f t and launch v e h i c l e

checkout and launch procedures

5.

.

Demonstrate s p a c e c r a f t r e c o v e r y systems and r e c o v e r

the spacecraft. The Gemini 2 f l i g h t was d e l a y e d t h r e e t i m e s by a d v e r s e

weather--damage

t o t h e e l e c t r i c a l systems by l i g h t n i n g i n

August 1964, by Hurricanes Cleo and Dora i n September.

In

December t h e attempted launch was t e r m i n a t e d because of a hyd r a u l i c component f a i l u r e .

The v e h i c l e had s h i f t e d t o t h e

-

more

-

- 90

-

back-up h y d r a u l i c system b u t t h e man-rating c a p a b i l i t y of t h e launch v e h i c l e p r o h i b i t s l i f t o f f ' when t h e v e h i c l e i s o p e r a t i n g on a back-up system.

Gemini 3, March 23,1965 T h i s w a s t h e f i r s t manned f l i g h t .

Astronauts Virgil I.

Grissom and John W. Young made t h r e e o r b i t s of t h e E a r t h i n f o u r hours and 53 minutes.

The s p a c e c r a f t landed about 50

miles s h o r t of t h e planned l a n d i n g area i n t h e A t l a n t i c Ocean because t h e s p a c e c r a f t d i d n o t provide a s much l i f t as expect e d d u r i n g t h e r e - e n t r y and l a n d i n g phase.

O b j e c t i v e s of t h e Gemini 3 mission: 1.

Demonstrate manned o r b i t a l f l i g h t i n t h e Gemini space-

c r a f t and q u a l i f y i t f o r long-duration missions. 2.

Evaluate t h e Gemini d e s i g n and i t s e f f e c t s on crew

performance c a p a b i l i t i e s f o r t h e mission p e r i o d .

3.

Exercise t h e o r b i t a l o r i e n t a t i o n and maneuvering s y s -

tem.

4. Evaluate c o n t r o l l e d

f l i g h t p a t h r e e n t r y by c m t r o l l i n g

t h e s p a c e c r a f t r o l l and u t i l i z i n g t h e f o r c e r e s u l t i n g from a n

o f f s e t i n t h e s p a c e c r a f t c e n t e r of g r a v i t y .

5.

Conduct experiments.

-

more-

-

91 -

ORBITS - REVOLUTIONS During long-duration Gemini f l i g h t s the s p a c e c r a f t ' s course i n space may be measured i n e i t h e r o r b i t s or r e v o l u t i o n s . O r b i t s a r e space r e f e r e n c e d and t a k e i n t o account E a r t h

rotation.

Gemini 4 i s a planned 97-hour-and-fifty-minute

flight.

The planned o r b i t a l p e r i o d i s about 90 minutes o r 16 o r b i t s e v e r y 24 hours.

Revolutions w i l l be measured each time Gemini

4

passes

over 80 degrees west l o n g i t u d e , about once e v e r y 96 minutes.

This method of measurement r e s u l t s i n about 15 r e v o l u t i o n s p e r day, o r l e s s r e v o l u t i o n t h a n o r b i t s .

The longer time f o r r e v o l u t i o n s i s caused by t h e r e t a t i o n of t h e E a r t h .

A s the spacecraft o r b i t s , the Earth turns

underneath i t s o t h a t on each ascending pass a c r o s s t h e e q a a t o r t h e s p a c e c r a f t r e g r e s s e s about 22.5 degrees, about

s i x minutes i n time.

- end -

Related Documents