Nais Overture For Brass Quintet

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Nais Overture For Brass Quintet as PDF for free.

More details

  • Words: 5,264
  • Pages: 10
Ouverture des Näis Jean-Philippe Rameau

Allegro

1st Trumpet in Bb

2nd Trumpet in Bb

Horn in F

Trombone

Tuba

Tpt. 2

Hn. F

Trom

Tba.

Tpt. 2

Hn. F

Trom



  



   

     

         

        

     

         

 

mf

  mp

mf

                     mp mf                                 

   

   

  



 

mp

mf





 



  

      mf

 

      



         

         

                         



p

mp

mf

f

p

mp

mf

f

 

  





           



mp

mf

     

        f         f

                                 mp mf f p

     ff                                  ff                      ff mp                                          

 

     

                        

p





                      

             

1.

ff

Tba.

          

  

                        mp mf p                                             

8

Tpt. 1

   

 

5

Tpt. 1

arr. Geoff Colmer

mp

                                ff © 2009 G Colmer ([email protected])





 

   

 

 

   



 

   



 

   

 

 

  

 

2.

2

Tpt. 1

q=h  12     



  



  



   



 

   



  



  



  



    

     



  



  



  



         

          

     



  



  



  



         

          

f

Tpt. 2

f

Hn. F

f

Trom

Tba.

    f

18

Tpt. 1

Tpt. 2

Hn. F

Trom

  





  

























mp

  

   







     

23

Tpt. 1

Tpt. 2

Hn. F

Trom

Tba.

   









mp







 





             

mf





  mf



           

 





 mf











 



 

mf

            mf

mf



       mf

 mf



 

 

     

       



 

        p



p



 



 



mf





mf





p



 

p

 

mf

                   



p





                     

p





       

p

        



 











p

mf

 



p

mf

         

                  



mf



 



  



      



mf

 





  

    mp         

    

 



f

mf

Tba.







p





   

    

  

3

29

Tpt. 1

Tpt. 2

Hn. F

Trom

Tba.

  

Tpt. 2

Hn. F

Trom











 

 



        

    34

Tpt. 1



 

   

39



Tpt. 2





Hn. F

  

Tba.



  









mp

   



p

 



      



 



 

  



mp

  





p





p

  

mp



  p       

 

  





p

  

  





mp

                      

  





 

  

  

mf

  mf







  































 

mp

mp



mp







mf











mp





 





   









mp

 



Hn. F

 

Tba.





Tpt. 2

Trom







  

 





  

42

Tpt. 1



    



 



                                                                           mp                              

 

Trom





mp

mp

Tpt. 1



    

                      

mp

Tba.

 

 



   







     

          mp

mp

mp

mf

  





 f

           

 





 

 

 

 

 



f











  mf



  

f





  f









          

  



           

 





             



   





     



mf

 

mf



         

mp

mp





 





 f

 

4

46

Tpt. 1

 







Tpt. 2







 









 



mf



  

Trom



mf

51

Tpt. 1

 

Tpt. 2



Trom

Tba.

                      

57

Tpt. 1

Tpt. 2

Hn. F

      

  



 









   

mp

f

            f



  

f

 f





  

   











 

 







            

  



                   





f

  mp

f

             

mp



      mp

  



              mp                  mf        f

              

    

                  

    

mp









    

f

mp





 

  

f

      

mp





               

           

mf                   

       

 



f

   

            

mp

Tba.



          

mp

Trom

 

 

         f

mf

                         





f



mf

Hn. F



                          f mf            

Hn. F

Tba.



f

f

  f











   p

     







p

p

p

   



        

  p  



 







 







  

5



62

Tpt. 1

Tpt. 2

Hn. F

Trom

Tba.

Tpt. 1

 

Hn. F

Trom

Tba.

      





67   







mp









  

 



   





  



 





 

 











  







  







  

          

Hn. F



   



ff



 ff





  



ff



 

f

f

p

mp

  

  







p



 

 





mp







  

 



 







 









  







 











 

 

  



  



 

  



  







  







     

 

  



          



 



 



   

 

  

     

           

p

mp

f



 



p







ff



  





p

mp

 

  



 

  

  



f

mf

  

 



  





  





  



mp

    



  mp



                 

    

Tba.





 



mf



  





   





mf

Tpt. 2

Trom





f

ff

 



         

mf

      

72



mf

     



  



 

 





mp

Tpt. 1

           

              



mp

Tpt. 2

   

 









 

                    f                       f                    f   







 

     

f









 f







6

78

Tpt. 1

 

Tpt. 2



Hn. F

Trom

Tba.

            

Tpt. 2

Hn. F

Trom

Tba.

Tpt. 1





  

84

Tpt. 1

       

  



  

   

   





 



  





     







 







 



   







 



  





  



  



          

 

  



















 













                          



f

 

       



   







   

     





                                     



f







 









 





f













 







f







89                







 

Hn. F

 



Trom

       





  

Tba.



                       



              

Tpt. 2



       

 f





             

      

 



 



            



 

f

                f

                         

f

f







     

f

             mf



 

            

  

  

            

  



mf

 

f

   



mf

             

 

mf



  

     

mf

   

7

95

Tpt. 1

Tpt. 2

Hn. F

 

             mp

    

 

f

  

              

  



  



  



f

mp

               

f

   



mp

100

Tpt. 1

Tpt. 2

Hn. F

  





  



  





     mf

105

Tpt. 1

Tpt. 2

Hn. F

 

 mp

Tba.









 



 





 



 





     



     

 mf















   

mp







  



mf







mf

    

 





 















    







   



  





     

 









   









     

 

    



  

 





                    





mf



 

    



 mf



 



  

       

mf

  

mp

mp



       

                        

 

    



mf

     



 

          

   



f

                 



mp

Trom







mf

Tba.



               

mf

Trom



      

f

mp

Tba.



               

            



mp

Trom





   

         



   





 

      

 

  

8

Tpt. 1

110          

mp

Tpt. 2

Hn. F



 



mp



  

Trom

Tba.

 

mp

   

     



mp

Tpt. 2

Hn. F

Trom

Tba.



  





 f





   



   

   



   



   





 ff 

 

ff

f





    



 

 



  



  



   



  



  



    



  



  



    



     



     

f

ff

   

 



   











                                      f                

  

Tpt. 2







     f







Tpt. 1

Tba.

 



   





 

121

Trom

  







          

f

f

                      

 

Hn. F

 



          

f

f

 

       

     



  

115

Tpt. 1









          

  

  

        



 

f

      

mp

   





 

 

                   

 









 

  





  

 





  









   





ff

ff

ff

ff

  ff

 













  



  



                         

  mf



    f





















                     



9

127

Tpt. 1

Tpt. 2

Hn. F

Trom

Tba.

 







  

132

Tpt. 1

Tpt. 2

Hn. F

Trom

Tba.

Tpt. 1

Tpt. 2

Hn. F

Trom

Tba.

 

 

f

  





  







 f

 



  



 

137   



   

   

   





   



   





  







 









   



mf

f

 



  





 









  

      

         

                         





 

mf

  

    

 

   



     mf





   

  









         

  

  

            



         

f









   

 

 





 









f

 f

 

   

f

               

          

mp

f

 

  

mp

                mp

 





f



 



 

mp

  

  f

mp







 



               



mf

mf





mf

 

   



 

f

    

 

mf

   

   



 

f

  

 

  



   f



 



   f

10

143

   



   



Tpt. 1

 

Tpt. 2



Hn. F

  

Trom

Tba.

 

Tpt. 2

Hn. F

Trom

Tba.

   

    

148

Tpt. 1

  

  







 





 





 



    





 





 





 





   





 





 





  



 

  

   



 

 

      



 

  

 



 



 

 

 

          

 

     

                  







  



    







  

 

 ff

 

  

  







 













 



 



 

 ff















ff

     



 







 





  



 









ff











       

molto rall.

ff





rit.

 



  



Related Documents