Membrane Process For Desalination And Water Reuse

  • Uploaded by: Gerald
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Membrane Process For Desalination And Water Reuse as PDF for free.

More details

  • Words: 1,218
  • Pages: 23
Technion - Israel Institute of Technology Grand Water Research Institute Rabin Desalination Laboratory Chemical Engineering Department

Membrane Processes for Desalination  and Water Reuse and Water Reuse Raphael Semiat

McDonnell International Scholars Academy 2nd International Symposium of Energy and Environment December 8 - 10, 2008 Island Shangri-La Hong Kong 1

2004 Water deficiency

3B

1 5B 1.5B 2004

2025

2004

Source: Seckler et al, 2002

2

2025

Driving Forces for Water R&D

Related Related Documents Documents Need for Water Global need, Industry, Agriculture, Remote L ti Locations, Desertification, D tifi ti Et Etc. Cost Difference - (Industry/Urban - Agriculture) C t Diff Cost Difference - (Thermal (Th lP Processes - Membrane M b Processes) P ) Technologies for Export

3

RDL GWRI Technion

3

RO DESALINATION PLANTS FOR WATER QUALITY IMPROVEMENT

Desalination Sites

PILOT PLANTS

Large g plants: p

600Mm3/y by 2013 750 Mm3/y by 2020 Hadera (100+)

ASHDOD (1988) MEDITERRANEAN SEA

RO DESALINATION PLANTS FOR WATER QUALITY IMPROVEMENT

4

NEOT HAKIKAR (1982) 50 m 3/day

Ceasarea

EIDAN (1983) 50 m 3/day

Tel Aviv Jerusalem

EIN YAHAV (1992) 50 m 3/day

Ashdod LOTAN (1983) 50 m 3/day

NAHAL MORAG (1991) 50 m3/day BEER ORA (1983) 50 m3/day

Brackish inland (50)

Tenders ‐ BOOT projects for  25 years

NEVE ZOHAR (1986) 50 m3 /day

KFAR DAROM (1989) 50 m3/day

Palmahim (30)

Ktziot (3)

EIN BOKEK (1988) 50 m 3/day

Haifa

EILAT (1994) RED SEA

A hd d (100) Ashdod

Ashkelon (100)

MIZPE SHALEM ((1983)) 50 m3/day

NAHAL TANINIM (1997) BRACKISH (SURFACE) WATER

BeerSheva

EILOT (1986) 50 m3/day

KTURA (1983) 50 m3/day GROFIT (1974) 50 m3/day

RO DESALINATION PLANTS FOR WATER SUPPLY

YOTVATA (1973) 50 m3/day

MAAGAN MICHAEL (1994) 1,200 m3/day

MAALE SHACHARUT (1985) 50 m 3/day

BW - SABHA "A" (1978) 25,500 m 3/day

ELIPAZ (1983) 50 m3/day

BW - SABHA "B" (1993) 10,000 m 3/day SW - SABHA "C" (1997) 10,000 m 3/day

YAHEL (1979) 50 m3/day

SAMAR ((1979)) 50 m3/day

Eilat

SDE UVDA 1 (1979) 250 m3/day (RESERV.) SDE UVDA 2 (1980) 500 m3/day (RESERV.)

4

Eilat Plants Eilat Plants

Sabha A: 25,500m3/day BW Sabha B: 10,000 BW Sabha C: 10,000 SW

RDL GWRI Technion 5

5

cent/m3 - feed water

Operational Experience:

Initial Design

Actual Design

Investment Ch i l Chemicals - HCl - NaHSO 3

4.0 58 5.8 2.96 1.16

2.6 24 2.4 1.85

- FeCl3 - NaOCl

0.70 0.99

0.34 0.22

9.8

Saving on chemicals chemicals.

- NaOCl - FeCl3

10.0 9.0

Eilat plants

8.0

-51.7% -78.1%

-78.1% -51.7%

100% - NaHSO3 N HSO3 -100% - HCl

-37.5%

5.0

6.0 -58.6%

5.0

3

cent//m - feed water

5.8

7.0

C H E M I C A L S

Changes % -35.0% -58.6% 58 6% -37.5% -100.0%

40 4.0 3.0 2.0

4.0

1.0

I N V E S T M E N T

24 2.4

-35.0% 2.6

0.0 Initial Design

Actual Design

7

Ashkelon Plant

100,000.000 M3/year 8

Reverse Osmosis  ‐ Membrane Desalination

10

RDL GWRI Technion

Picometer 10-12 m Femtometer 10-15m …

Significant membrane properties Main Characteristic properties: p p Selectivity

Membrane thickness,

Permeability

P Permeability, bilit rejection, j ti

Mechanical stability (creep and compaction)

Size, size distribution

Chemical h i l Stability bili (Hydrolytic ( d l i stability, bili

Anti fouling treatment Anti-fouling

Organic material stability, pH, Microbial resistance, Cl2 attack, etc. •Surface anti-fouling properties (Phtalates, cellulose acetate, Chlorine in water, NaOH in cleaning, IInitial iti l fluxes fl reduction, d ti suspended d d materials t i l andd precipitants (CaCO3, CaSO4, SiO2, CaF2, SrSO4, BaSO4, RDL GWRI Technion etc.)

Catalitic reactivity.

Expensive product, 50/50 mm.

A tool for production of the cheapest product on Earth, 5-6 m2

The RO cellulose acetate asymmetric membrane developed Loeb-Sourirajan in the middle 60. The thickness of the active layer is reduced since while improvement of surface properties.

12

Spiral Wound Membranes membranes thickness200 nm and down down. Holes size and size distribution,, membrane properties

RDL 13 GWRI Technion

Bio-Fouling

14

RDL GWRI Technion

Man made polluted waters: Industrial, agriculture and urban effluents

Straining Secondary treatment

Modern Sewage Treatment

Sludge/ solids treatment Adsorption

MBR

15

Micro/UltraFiltration

Concentrate disposal RDL GWRI Technion

Energy

Reverse-Osmosis or Nano-Filtration

Compost

Polishing

16

RDL GWRI Technion

Prof. Moris eizen

17

Performance of new membranes

Rejection of CaCl2 0.1% by different membranes

Re ejection (%)

50 40 30 20 10 0 1

18

2

3

4 5 membrane type

6

7

Module view and sampling Prof Carlos Dozoretz Prof. Carlos Dozoretz

3 7 11

6

1 5

10 15

4 9

14 18

19

2

12

13 17

8

16

Energy usage in Desalination ‐ comparison Subject \ Fuel Subject  \  Fuel Caloric value Kcal/Kg fuel Caloric Value Kwht/Kg fuel Electricity production (45% eff.) Electricity production  (45% eff.)  Kwhe/Kg fuel large Power station Electricity production (80% eff.)  High efficiency gas turbine High efficiency gas turbine  Kwh/Kg fuel Capacity ‐ Seawater Desal (50%  Recovery) m3/ kg fuel Recovery) m3/ kg fuel 80% efficiency Fuel consumption/ ton  Desalinated water Kg fuel /m3 Desalinated  water Kg fuel /m3 80% efficiency How many km can I drive with 1  m3 Desal water fuel consumption? m3 Desal water fuel consumption? How many hours of AC ‐ single  room (2.5 Kw‐h) can I operate?

Gas

Gasoil

Heavy fuel Heavy fuel

Coal

9000 10.5

10750 12.5

10000 11.6

7700 9

4.7

5.6

5.2

4

1.3 1 3 2.4

16 1.6

15 1.5

12 1.2

0.7 0 7 0.4

06 0.6

07 0.7

09 0.9

27 2‐7 

 2‐6 26

8.4

1.4

Household Energy Consumption Electricity, transportation and desalinated water… A small family, consumes water at a rate of 18 m3/month,  1200 KWh f l 1200 KWh of electricity /month, Drives 1500 km/month, consumes  i i / h Di 1500 k / h 160 liter gasoil/month Energy consumption assuming only desalinated seawater used ‐ 140 KWh/ 140 KWh/month (fuel value) th (f l l ) Energy consumption ‐ driving a car ‐ 1500 KWh/month (fuel value) Energy consumption ‐ electricity ‐ 1200/0.45=2667 KWh/month  (f l l ) (fuel value) Energy for desalination/ energy for transportation ‐ gy gy p 9.3% Energy for desalination/ energy for electricity ‐ 2.6% Energy for desalination/ total energy consumption ‐ 3.4% Can we save 3 4% in our household energy consumption? Can we save 3.4% in our household energy consumption? Where we should put our energy for use? In water? In high energy  consuming cars? In overused  AC? 

Desalination and proper water usage p p g

Other costs should be included  besides Energy besides Energy • Cost of water in negligible for regular household • Cost of water is tolerable for most industries • Cost of water is significant in agriculture Cost of water is significant in agriculture Make better usage of water: – Use of greenhouses Use of greenhouses – Use Drip‐Irrigation – save 30‐90% of water  consumption by other irrigation techniques – reduce  consumption by other irrigation techniques  reduce the cost problem

Pushing the Limits of Desalination R d ti off RO d Reduction desalination li ti process costs t

23

Main directions for reducing desalination costs M b Membrane improvement i Permeability, rejection, resistance to fouling Concentration polarization - Flow Improvement of membrane modules Foulingg and scaling gp prevention Optimization of the water recovery level The boron problem Pretreatment – MF, UF etc. Energy aspects Concentrates - Environmental Process optimization RDL GWRI Technion

Related Documents


More Documents from "Shailesh Prajapati"