Marking Scheme Kedah Spm 2008 Add Maths Trial P2

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Marking Scheme Kedah Spm 2008 Add Maths Trial P2 as PDF for free.

More details

  • Words: 2,413
  • Pages: 17
2008 SPM TRIAL EXAMINATION Question

2

Marking Scheme Submark

Solution and marking scheme

1.

3 y 2 y  2x  3

x

Full Mark

or P1

Make x or y as the subject

2

 3 y   3 y  2     y  y  10  2   2  or

2

x 2  x  2 x  3   2 x  3  10 K1

Eliminate x or y

9  6 y  y 2  6 y  2 y 2  4 y 2  40  0 or

x 2  2 x 2  3 x  4 x 2  12 x  9  10  0

K1

y = 3.215 , − 3.215 or

Solve quadratic equation N1

x = 3.107 , − 0.107

3 y 2  31  0 31 y2  3 or 2

3x  9 x  1  0 x = 3.107 / 3.108 , − 0.107 / − 0.108 N1

or y = 3.214 / 3.215 , − 3.214 / − 3.215

Answer must correct to 3 decimal places.

3472/2

Additional Mathematics Paper 2

or using formula or completing the square

5

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION Question

3

Marking Scheme Submark

Solution and marking scheme

Full Mark

2(a)

16 ,8 , 4 ,...... a  16

r

1 2

P1

  1 7  16 1       2   S7  1 1 2 3 4

K1

Sn 

Use

a( 1  r n ) 1 r

= 31 

N1

3

or 31.75 

(b)

64 ,16 , 4 ,...... a  64

r

1 4

P1

64 1 1 4 1 = 85  3

S 

K1

Use

S 

a 1 r

N1

or 85.33 

3(a)

3

f ( x)  x 2  px  q 2

2

 p  p = x 2  px        q 2 2 2

3472/2

6

K1

p p2  = x   q 2 4 

use x² + bx = ( x + b )² – ( b ) 2



p 3 2

use axis of symmetry 



36  q  5 4

p = -6

2

2

or N1

b 3 2a

q=4 N1

Additional Mathematics Paper 2

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION Question

4

Marking Scheme Submark

Solution and marking scheme

Full Mark

Alternative solution 2

x 2  px  q   x  3  5 = x2  6x  9  5 = x2  6x  4

p  6

K1

Comparing coefficient of x or constant term

N1

N1

q=4

3

3(b)

x 2  6 x  4  31  0 x 2  6 x  27  0 K1

( x  9)( x  3)  0 3  x  9

Use f ( x)  31  0 and factorization

N1

2

5

4(a)

cos x 1  sin x sin x cos x = + cos x 1  sin x sin x(1  sin x )  cos 2 x = cos x(1  sin x )

tan x +

sin x  sin 2 x  cos 2 x cos x(1  sin x) sin x  1 = cos x(1  sin x) 1 = cos x = sec x N1

Use tan x 

K1

sin x cos x

=

3472/2

K1

Use identity

sin 2 x  cos2 x  1

Additional Mathematics Paper 2

3

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION Question

5

Marking Scheme Submark

Solution and marking scheme

Full Mark

4(b)(i)

y

y

5x 2 

3

y  3sin 2 x

O

 2



3 2

x

2

–3

P1

Negative sine shape correct. Amplitude = 3

[ Maximum = 3 and Minimum = − 3 ]

Two full cycle in 0  x  2

P1

P1 3

4(b)(ii)

3sin 2 x 

5x 2 

or

N1

5x y 2  Draw the straight line

y

Number of solutions is 3 .

5x 2 

K1

N1 3

3472/2

Additional Mathematics Paper 2

9

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION Question

6

Marking Scheme

Solution and marking scheme

Submark

Full Mark

7

7

5 (a)

K1

 x  12

 x  240

20

Use x 

x N

N1

The mean X

240  5 + 8 + 10 + 11 + 14 288  25 25

N1

= 11.52

(b)

 x2 20

K1

 122  3

x

2

 3060

N1 Use formula



x N

2

 x2

The standard deviation



3060  52  82  102  112  14 2 2  11.52  25

=

3566 2  11.52  25

=

9.9296

= 3.151

3472/2

K1 For the new x 2 and X



N1

Additional Mathematics Paper 2

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION Question

7

Marking Scheme Submark

Solution and marking scheme

6(a)

(i)

uuur uuur uuur PR  PO  OR = 6a  15b % %

Full Mark

K1 N1

Use

uuur uuur uuur PR  PO  OR

uuur uuur uuur (ii) OQ  OP  PQ

uuur oruuur uuur OQ  OP  PQ

3 uuur = 6a  OR % 5 N1

= 6a  9b % %

3

(b)

uuur uuur (i) OS  hOQ

= h(6a  9b) % % uuur uuur uuur (ii) OS  OP  PS

N1

uuur = 6a  k PR %

= 6a  k  6a  15b  % % %

N1

h(6a  9b) = 6a  k  6a  15b  % % % % % 6h  6  6k

9h  15k

h  1 k

5 h k 3

K1

5 k  1 k 3 k

3 8

N1

53 5 h   = 38 8

3472/2

Equate coefficient of a or b %and % Eliminate h or k

N1

Additional Mathematics Paper 2

5

8

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

Qn. 7(a)

(ii)

3472/2

Marking Scheme

Submark

Solution and Marking Scheme log y 

log x log y

(b)(i)

8

1 1 log x  log 4k n n

P1

0.18

0.30

0.40

0.60

0.74

0.48

0.54

0.59

0.69

0.76

gradient 1 = n

n=2

N1

N1 N1 N1 N1

K1

Correct axes and scale

N1

All points plotted correctly

N1

Line of best-fit

K1

K1

Full Mark

N1

6

intercept 1 = log 4k n

k = 1.51

Additional Mathematics Paper 2

4

10

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

9

Marking Scheme

log 10 y Graph of log10 y against log10 x 0.9

0.8  0.7



0.6

 

0.5



0.4

39 0.3

0.2

0.1

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log 10 x 3472/2

Additional Mathematics Paper 2

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

Qn. 8. (a)

10

Submark

Solution and Marking Scheme

Use  ( y 2  y1 ) dx

Full Mark

K1

Solving simultaneous equation

P(– 2, 2)

(b)

Marking Scheme

N1

Q(4, 8)

N1

3

K1

x2  ( x  4  2 ) dx Use correct

K1

4

Integrate  ( y 2  y1 ) dx

K1

limit  into 2

x2 x3  4x  2 6

2

x x3  4x  2 6

18

4

N1

Note : If use area of trapezium and



ydx , give the marks

accordingly.

(c)

Integrate   (

x2 2 ) dx 2

K1

4

K1

5

x  =    20 

limit



into

0

 x5     20  8  5

3472/2

Use correct

N1

Additional Mathematics Paper 2

3

10

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

Qn.

11

Marking Scheme

Submark

Solution and Marking Scheme

Full Mark

9(a) Equation of AD :

Use m = – 2 and find K1 equation of straight line

y – 6 = –2 ( x – 2 )

N1

y = –2x + 10 or equivalent

2 (b)

y = –2x + 10 and x – 2y = 0

K1

D(4, 2)

(c)

N1

2

P1

p = 3 or C(8, 4) Substitute (8, 4) into y = 3x + q

K1

q = – 20

(d)

Solving simultaneous equations

N1

Area OABC  4   OAD

3

K1

Using formula 0 4 2 0 1  OAD   2 0 2 6 0

K1

40

Find area of triangle

N1

3 10

Alternative solution :

B(10, 10)

P1

Using formula Area OABC  3472/2

0 8 10 2 0 1  0 4 10 6 0 2

K1

Find area of parallelogram

Additional Mathematics N1 Paper 2

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

12

Marking Scheme

40 Qn. 10(a)

Submark

Solution and Marking Scheme

6   or equivalent  10  K1  POQ  2  

  sin

1 

Full Mark

K1

 POQ 1.287 rad

N1

3

Alternative solution : 122 = 102 + 102 – 2(10)(10) cos  POQ

 10 2 10 2 12 2 POQ  cos 1  2(10)(10) 

   

Using (2π – 1.287)

N1

K1 K1

Major arc PQ = 10 ( 2π – 1.287 ) = 49.96 cm

(c )

Use formula s = r

N1

1 2

3

Lsector =  (10 ) 2  1.287

Ltriangle =

Use cosine rule

N1

 POQ 1.287 rad

(b)

K1

K1

1  (10 ) 2  sin 1.287 2

Using formula Lsector = 12 r2 K1 Using1 formula LΔ = 2 absin C K1

Lsector - LΔ

2

= 16.35 cm 3472/2

N1

Additional Mathematics Paper 2

4

10 [Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

13

Marking Scheme

= 3.9149 cm

Qn. 11 (a)(i)

p=

3 ,p+q=1 5

Use P(X = r) = n Cr prqn–r , p+q=1

3 2 = 5C0( )0( )5 5 5

K1

= 0.01024

b)(i)

Full Mark

P1

P( X = 0 )

(ii)

Submark

Solution and Marking Scheme

3

N1

Using P( X ≥ 4 ) = P( X = 4 ) + P( X = 5 ) 3 2 3 = 5C4( )4( )1 + ( )5 5 5 5

K1

= 0.337

N1

2

P ( 30 ≤ X ≤ 60 ) 30  35 60  35 =P( ≤Z≤ ) 10 10

use

K1

Z=

X  

Use P( – 0.5 ≤ Z ≤ 2.5 ) = 1 – P( Z  0.5 ) – P( Z  2.5 )

K1

= 1- 0.30854 – 0.00621 = 0.68525 (ii) 3472/2

N1

Number of pupils = P( X  60 ) × 483

3

K1

Additional Mathematics Paper 2 N1

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

14

Marking Scheme

2

3

Qn.

Submark

Solution and Marking Scheme

12.

Subst. t = 0 into

(a)

dv dt

10

K1

Full mark

2

a= 15 – 6t N1

15 ms-2

(b) Use

dv  0 and subst. t dt

[t =

in v = 15t – 3t2

K1

5 ] 2

2 75 1 3 ms /18 ms 1 4 4

Integrate s   v dt 

(c) Use s = 0

N1

15 2 3 t t 2

K1

15 1 / 7 / 7.5 2 2

(d)

Subst. t = 3 or t = 4 in 15 s  t 2  t3 2

N1

3

K1

K1

3472/2

K1

S4 – S3

Additional Mathematics Paper 2 N1

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION 15

Note : If use

15

Marking Scheme

1 2

4

3 vdt , give the marks accordingly.

3 10

Qn. 13. (a)

Solution and Marking Scheme

Use I =

P2007  100 P2005

x = 48.6 y = 135 z = 80

3

Value of m : 25, m, 80, 30 or equivalent 120  25+130m+135  80+139  30

P1

I W Use Iˆ  i i

 Wi 120×25+130m+135×80+139  30 132.1 = 135+m

150.00 x

100 132.1

K1

3

N1

(ii)

Full mark

K1

N2, 1, 0

(b) (i)

Submark

m =65

K1

2 N1

(iii)

3472/2

RM 113.55

I 08 / 05  132.1  (132.1x0.3)

K1

Additional Mathematics Paper 2 N1

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

16

Marking Scheme

171.73

2 10

Qn.

Solution and Marking Scheme

14. (a) (b)

x + y ≤ 80

or equivalent

y ≤ 4x

or equivalent

N1 P1 N1

x + 4y ≥ 120

or equivalent

N1

Submark

Full mark

3

y 100

y = 4x 90

80

x + y = 80 x=30

70

(16,64) 60

50

40

30

20

x + 4y = 12 0 10

x 10

20

30

40

50

60

70

80

90

100

At least one straight line is drawn correctly from inequalities involving x and y K1

All the three straight lines are drawn correctly

Region is correctly shaded (c)

3472/2

(i)

minimum = 23 N1

N1

N1

3

N1

Additional Mathematics Paper 2

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION (ii)

17

Marking Scheme

(16,64) Subst. point in the range

K1

in 20x + 40y RM2880 Qn. 15. (a)

N1

Solution and Marking Scheme Use area △= ½ ab sin c in △BCD 1 20   9.3  6  sin BCD 2

4

10

Submark

Full mark

K1

45o48’ / 45.8o N1

0.74545

4555

N1

(c)

Use cosine rule in ΔBCD BD2 = 9.32 + 62 − 2×9.3×6 cos  45°48’

K1

(b)

K1

Use sine rule in ΔBCD sin CBD sin 45 o 48 '  9.3 6.685 N1

(d)

4

6.685

94o 10’

2

4444 Obtain  ADB by using K1 qqq11111aaaaaaaaaaaaaaaaaa 180o – 85o50’ – 14s4 BAD or equivalent 5.555555 5555

z5555555555555555 K1 Use area  ADB =

½  6.685  13  sin ADB

Sum of area: 3472/2

K1 Additional Mathematics Paper 2

[Lihat sebelah SULIT

2008 SPM TRIAL EXAMINATION

18

20 cm2 + ΔABD 555

102

58.82 cm2

3472/2

Marking Scheme

Additional Mathematics Paper 2

4

[Lihat sebelah SULIT

10

Related Documents