2008 SPM TRIAL EXAMINATION Question
2
Marking Scheme Submark
Solution and marking scheme
1.
3 y 2 y 2x 3
x
Full Mark
or P1
Make x or y as the subject
2
3 y 3 y 2 y y 10 2 2 or
2
x 2 x 2 x 3 2 x 3 10 K1
Eliminate x or y
9 6 y y 2 6 y 2 y 2 4 y 2 40 0 or
x 2 2 x 2 3 x 4 x 2 12 x 9 10 0
K1
y = 3.215 , − 3.215 or
Solve quadratic equation N1
x = 3.107 , − 0.107
3 y 2 31 0 31 y2 3 or 2
3x 9 x 1 0 x = 3.107 / 3.108 , − 0.107 / − 0.108 N1
or y = 3.214 / 3.215 , − 3.214 / − 3.215
Answer must correct to 3 decimal places.
3472/2
Additional Mathematics Paper 2
or using formula or completing the square
5
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION Question
3
Marking Scheme Submark
Solution and marking scheme
Full Mark
2(a)
16 ,8 , 4 ,...... a 16
r
1 2
P1
1 7 16 1 2 S7 1 1 2 3 4
K1
Sn
Use
a( 1 r n ) 1 r
= 31
N1
3
or 31.75
(b)
64 ,16 , 4 ,...... a 64
r
1 4
P1
64 1 1 4 1 = 85 3
S
K1
Use
S
a 1 r
N1
or 85.33
3(a)
3
f ( x) x 2 px q 2
2
p p = x 2 px q 2 2 2
3472/2
6
K1
p p2 = x q 2 4
use x² + bx = ( x + b )² – ( b ) 2
p 3 2
use axis of symmetry
36 q 5 4
p = -6
2
2
or N1
b 3 2a
q=4 N1
Additional Mathematics Paper 2
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION Question
4
Marking Scheme Submark
Solution and marking scheme
Full Mark
Alternative solution 2
x 2 px q x 3 5 = x2 6x 9 5 = x2 6x 4
p 6
K1
Comparing coefficient of x or constant term
N1
N1
q=4
3
3(b)
x 2 6 x 4 31 0 x 2 6 x 27 0 K1
( x 9)( x 3) 0 3 x 9
Use f ( x) 31 0 and factorization
N1
2
5
4(a)
cos x 1 sin x sin x cos x = + cos x 1 sin x sin x(1 sin x ) cos 2 x = cos x(1 sin x )
tan x +
sin x sin 2 x cos 2 x cos x(1 sin x) sin x 1 = cos x(1 sin x) 1 = cos x = sec x N1
Use tan x
K1
sin x cos x
=
3472/2
K1
Use identity
sin 2 x cos2 x 1
Additional Mathematics Paper 2
3
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION Question
5
Marking Scheme Submark
Solution and marking scheme
Full Mark
4(b)(i)
y
y
5x 2
3
y 3sin 2 x
O
2
3 2
x
2
–3
P1
Negative sine shape correct. Amplitude = 3
[ Maximum = 3 and Minimum = − 3 ]
Two full cycle in 0 x 2
P1
P1 3
4(b)(ii)
3sin 2 x
5x 2
or
N1
5x y 2 Draw the straight line
y
Number of solutions is 3 .
5x 2
K1
N1 3
3472/2
Additional Mathematics Paper 2
9
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION Question
6
Marking Scheme
Solution and marking scheme
Submark
Full Mark
7
7
5 (a)
K1
x 12
x 240
20
Use x
x N
N1
The mean X
240 5 + 8 + 10 + 11 + 14 288 25 25
N1
= 11.52
(b)
x2 20
K1
122 3
x
2
3060
N1 Use formula
x N
2
x2
The standard deviation
3060 52 82 102 112 14 2 2 11.52 25
=
3566 2 11.52 25
=
9.9296
= 3.151
3472/2
K1 For the new x 2 and X
N1
Additional Mathematics Paper 2
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION Question
7
Marking Scheme Submark
Solution and marking scheme
6(a)
(i)
uuur uuur uuur PR PO OR = 6a 15b % %
Full Mark
K1 N1
Use
uuur uuur uuur PR PO OR
uuur uuur uuur (ii) OQ OP PQ
uuur oruuur uuur OQ OP PQ
3 uuur = 6a OR % 5 N1
= 6a 9b % %
3
(b)
uuur uuur (i) OS hOQ
= h(6a 9b) % % uuur uuur uuur (ii) OS OP PS
N1
uuur = 6a k PR %
= 6a k 6a 15b % % %
N1
h(6a 9b) = 6a k 6a 15b % % % % % 6h 6 6k
9h 15k
h 1 k
5 h k 3
K1
5 k 1 k 3 k
3 8
N1
53 5 h = 38 8
3472/2
Equate coefficient of a or b %and % Eliminate h or k
N1
Additional Mathematics Paper 2
5
8
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
Qn. 7(a)
(ii)
3472/2
Marking Scheme
Submark
Solution and Marking Scheme log y
log x log y
(b)(i)
8
1 1 log x log 4k n n
P1
0.18
0.30
0.40
0.60
0.74
0.48
0.54
0.59
0.69
0.76
gradient 1 = n
n=2
N1
N1 N1 N1 N1
K1
Correct axes and scale
N1
All points plotted correctly
N1
Line of best-fit
K1
K1
Full Mark
N1
6
intercept 1 = log 4k n
k = 1.51
Additional Mathematics Paper 2
4
10
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
9
Marking Scheme
log 10 y Graph of log10 y against log10 x 0.9
0.8 0.7
0.6
0.5
0.4
39 0.3
0.2
0.1
0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
log 10 x 3472/2
Additional Mathematics Paper 2
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
Qn. 8. (a)
10
Submark
Solution and Marking Scheme
Use ( y 2 y1 ) dx
Full Mark
K1
Solving simultaneous equation
P(– 2, 2)
(b)
Marking Scheme
N1
Q(4, 8)
N1
3
K1
x2 ( x 4 2 ) dx Use correct
K1
4
Integrate ( y 2 y1 ) dx
K1
limit into 2
x2 x3 4x 2 6
2
x x3 4x 2 6
18
4
N1
Note : If use area of trapezium and
ydx , give the marks
accordingly.
(c)
Integrate (
x2 2 ) dx 2
K1
4
K1
5
x = 20
limit
into
0
x5 20 8 5
3472/2
Use correct
N1
Additional Mathematics Paper 2
3
10
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
Qn.
11
Marking Scheme
Submark
Solution and Marking Scheme
Full Mark
9(a) Equation of AD :
Use m = – 2 and find K1 equation of straight line
y – 6 = –2 ( x – 2 )
N1
y = –2x + 10 or equivalent
2 (b)
y = –2x + 10 and x – 2y = 0
K1
D(4, 2)
(c)
N1
2
P1
p = 3 or C(8, 4) Substitute (8, 4) into y = 3x + q
K1
q = – 20
(d)
Solving simultaneous equations
N1
Area OABC 4 OAD
3
K1
Using formula 0 4 2 0 1 OAD 2 0 2 6 0
K1
40
Find area of triangle
N1
3 10
Alternative solution :
B(10, 10)
P1
Using formula Area OABC 3472/2
0 8 10 2 0 1 0 4 10 6 0 2
K1
Find area of parallelogram
Additional Mathematics N1 Paper 2
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
12
Marking Scheme
40 Qn. 10(a)
Submark
Solution and Marking Scheme
6 or equivalent 10 K1 POQ 2
sin
1
Full Mark
K1
POQ 1.287 rad
N1
3
Alternative solution : 122 = 102 + 102 – 2(10)(10) cos POQ
10 2 10 2 12 2 POQ cos 1 2(10)(10)
Using (2π – 1.287)
N1
K1 K1
Major arc PQ = 10 ( 2π – 1.287 ) = 49.96 cm
(c )
Use formula s = r
N1
1 2
3
Lsector = (10 ) 2 1.287
Ltriangle =
Use cosine rule
N1
POQ 1.287 rad
(b)
K1
K1
1 (10 ) 2 sin 1.287 2
Using formula Lsector = 12 r2 K1 Using1 formula LΔ = 2 absin C K1
Lsector - LΔ
2
= 16.35 cm 3472/2
N1
Additional Mathematics Paper 2
4
10 [Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
13
Marking Scheme
= 3.9149 cm
Qn. 11 (a)(i)
p=
3 ,p+q=1 5
Use P(X = r) = n Cr prqn–r , p+q=1
3 2 = 5C0( )0( )5 5 5
K1
= 0.01024
b)(i)
Full Mark
P1
P( X = 0 )
(ii)
Submark
Solution and Marking Scheme
3
N1
Using P( X ≥ 4 ) = P( X = 4 ) + P( X = 5 ) 3 2 3 = 5C4( )4( )1 + ( )5 5 5 5
K1
= 0.337
N1
2
P ( 30 ≤ X ≤ 60 ) 30 35 60 35 =P( ≤Z≤ ) 10 10
use
K1
Z=
X
Use P( – 0.5 ≤ Z ≤ 2.5 ) = 1 – P( Z 0.5 ) – P( Z 2.5 )
K1
= 1- 0.30854 – 0.00621 = 0.68525 (ii) 3472/2
N1
Number of pupils = P( X 60 ) × 483
3
K1
Additional Mathematics Paper 2 N1
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
14
Marking Scheme
2
3
Qn.
Submark
Solution and Marking Scheme
12.
Subst. t = 0 into
(a)
dv dt
10
K1
Full mark
2
a= 15 – 6t N1
15 ms-2
(b) Use
dv 0 and subst. t dt
[t =
in v = 15t – 3t2
K1
5 ] 2
2 75 1 3 ms /18 ms 1 4 4
Integrate s v dt
(c) Use s = 0
N1
15 2 3 t t 2
K1
15 1 / 7 / 7.5 2 2
(d)
Subst. t = 3 or t = 4 in 15 s t 2 t3 2
N1
3
K1
K1
3472/2
K1
S4 – S3
Additional Mathematics Paper 2 N1
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION 15
Note : If use
15
Marking Scheme
1 2
4
3 vdt , give the marks accordingly.
3 10
Qn. 13. (a)
Solution and Marking Scheme
Use I =
P2007 100 P2005
x = 48.6 y = 135 z = 80
3
Value of m : 25, m, 80, 30 or equivalent 120 25+130m+135 80+139 30
P1
I W Use Iˆ i i
Wi 120×25+130m+135×80+139 30 132.1 = 135+m
150.00 x
100 132.1
K1
3
N1
(ii)
Full mark
K1
N2, 1, 0
(b) (i)
Submark
m =65
K1
2 N1
(iii)
3472/2
RM 113.55
I 08 / 05 132.1 (132.1x0.3)
K1
Additional Mathematics Paper 2 N1
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
16
Marking Scheme
171.73
2 10
Qn.
Solution and Marking Scheme
14. (a) (b)
x + y ≤ 80
or equivalent
y ≤ 4x
or equivalent
N1 P1 N1
x + 4y ≥ 120
or equivalent
N1
Submark
Full mark
3
y 100
y = 4x 90
80
x + y = 80 x=30
70
(16,64) 60
50
40
30
20
x + 4y = 12 0 10
x 10
20
30
40
50
60
70
80
90
100
At least one straight line is drawn correctly from inequalities involving x and y K1
All the three straight lines are drawn correctly
Region is correctly shaded (c)
3472/2
(i)
minimum = 23 N1
N1
N1
3
N1
Additional Mathematics Paper 2
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION (ii)
17
Marking Scheme
(16,64) Subst. point in the range
K1
in 20x + 40y RM2880 Qn. 15. (a)
N1
Solution and Marking Scheme Use area △= ½ ab sin c in △BCD 1 20 9.3 6 sin BCD 2
4
10
Submark
Full mark
K1
45o48’ / 45.8o N1
0.74545
4555
N1
(c)
Use cosine rule in ΔBCD BD2 = 9.32 + 62 − 2×9.3×6 cos 45°48’
K1
(b)
K1
Use sine rule in ΔBCD sin CBD sin 45 o 48 ' 9.3 6.685 N1
(d)
4
6.685
94o 10’
2
4444 Obtain ADB by using K1 qqq11111aaaaaaaaaaaaaaaaaa 180o – 85o50’ – 14s4 BAD or equivalent 5.555555 5555
z5555555555555555 K1 Use area ADB =
½ 6.685 13 sin ADB
Sum of area: 3472/2
K1 Additional Mathematics Paper 2
[Lihat sebelah SULIT
2008 SPM TRIAL EXAMINATION
18
20 cm2 + ΔABD 555
102
58.82 cm2
3472/2
Marking Scheme
Additional Mathematics Paper 2
4
[Lihat sebelah SULIT
10