Lngj-bywg-civ-cal-015 Me_lng Storage_bywg.xls

  • Uploaded by: HamidAffandy
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Lngj-bywg-civ-cal-015 Me_lng Storage_bywg.xls as PDF for free.

More details

  • Words: 6,286
  • Pages: 56
FEED PROYEK LNG JAWA

: LNGJ-BYWG-CIV-CAL-015 : B :

Doc No PERHITUNGAN PONDASI PERALATAN UTAMA Rev No BANYUWANGI Project No

A

( APPROVED )

B

( APPROVED WITH MINOR COMMENTS)

C

( COMMENTED )

D

( ACTION / OTHER )

Date : .....................

Sign : ..........................

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI (LNG STORAGE)

B A REV.

Issued for Bid Issued for Review TANGGAL

DESKRIPSI

PO DI BUAT

YF DI PERIKSA

DISETUJUI

REV.

TANGGAL

DESKRIPSI

PT. LAPI ITB

PT. PERTAMINA

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

B PAGE :

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

1

COMMENT SHEET DATE

GROUP :

ENGINEERING BIDDER SIGNATURE :

PERTAMINA COMMENT

DISIPLINE :

SIGN

PT. LAPI ITB ANSWER

SIGN

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

B PAGE :

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

1

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

B PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

2

TABLE OF CONTENTS

1.

2.

GENERAL …………………………………………………………………………………………………………

3

1.1 1.2

Scope ………………………………………………………………………………………………………………………… Codes, Standards and References ………………………………………………………………………

3 3

1.3 1.4

Unit …………………………………………………………………………………………………………………………… Major Material ……………………………………………………………………………………………………………

3 3

EQUIPMENT LOADING DATA & DIMENSION …………………………………………

4

2.1

4

LNG Storage Tank ……………………………………………………………………………………………………

3.

ANALYSIS METHOD …………………………………………………………………………………… 3.1 Design Method …………………………………………………………………………………………………………… 3.2 Load Combination …………………………………………………………………………………………………………

5 5 5

4.

LAYOUT PLAN FOR LNG STORAGE TANK ……………………………………………………………

7

5.

CALCULATION ……………………………………………………………………………………………

8

5.1 5.2

Mechanical Data ……………………………………………………………………………………………………… Summary of Allowable Pile Capacity …………………………………………………………………

8 8

5.3

Calculation of Foundation ………………………………………………………………………………………

8

6.

CONCLUSION …………………………………………………………………………………………… 6.1 Typical Foundation for LNG Storage Tank ………………………………………………………

9 9

ATTACHMENT - A

Mechanical Data ……………………………………………………………………

10

ATTACHMENT - B

Summary of Allowable Pile Capacity ………………………………

12

ATTACHMENT - C

Calculation of Foundation ……………………………………………………

14

ATTACHMENT - D

Main Equipment List ………………………………………………………………

25

ATTACHMENT - E

Soil Investigation …………………………………………………………………

27

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

B PAGE

PERHITUNGAN PONDASI PERALATAN 2 UTAMA - BANYUWANGI FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI 1.

3

GENERAL 1.1

Scope This document contains calculation of LNG Storage Tank for Project FEED LNG Jawa

1.2

Codes, Standards and References This design is in accordance with the following Codes and Specification as follow : Codes ASCE/SEI 7-05 : Minimum Design Loads for Buildings and Other Structures ACI 315 : Standard Practice for Detailing Reinforced Concrete Structure Indonesian Code SNI 03-1726-2012

: Seismic Resistance Design Code for Houses and Building Guide

Book References Braja M. Das

: Principles of Soil Dynamic

Project References LNGJ-00-CIV-SPC-001 LNGJ-00-CIV-SPC-006

: Spesifikasi umum sipil : Spesifikasi material dan desain struktur baja

1.3

Unit All units are in metric unless otherwise noted.

1.4

Major Material a. Reinforcing Steel Bar ASTM A615 Grade 60 or SII 0316-84 BJTD 40 or JIS G 3112 Yield Strength of Rebars fy = - Deformed Bar fy = - Round Bar

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

400.00 MPa 240.00 MPa

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI b.

Concrete Concrete strength - Lean Concrete - Structural Concrete

fc' = fc' =

Concrete density Concrete modulus of elasticity Clear Concrete cover Clear Concrete cover Bottom Footing

2.

c.

Grouting Cement Non-shrinking Cement Grout

d.

Soil and Water - Soil density - Water density

15.00 MPa 25.00 MPa

= =

gc

= = = =

Ec Cc Ccf

B

gs gw

= =

4

153.00 kg/cm2 301.20 kg/cm2 24.00 23,500.00 50.00 75.00

16.00 kN/m³ 9.80 kN/m³

e.

Anchor Bolt Anchor Bolt ASTM A307 Grade A or ASTM A-36 and shall be hot dip galvanized.

f.

Spun Pile Use SP : 300 mm Outer Diameter Inner Diameter Pile Length Yield strength of Spun Pile Elasticity of Pile Modulus Section of Pile Cross section of pile Steel density Unit Weight

OD ID Lpi fy Ep Ip Ap

gst

Wpi

= = = = = = = = =

kN/m³ MPa mm mm

300.00 180.00 6.00 240.00 23,500.00 34,607.78 452.39 78.50 113.00

mm mm m MPa MPa cm4 cm² kN/m³ kg/m

EQUIPMENT LOADING DATA & DIMENSION Based on information from Mechanical and Piping discipline 2.1

LNG STORAGE TANK Skid dimension : - Diameter =

Weight

GROUP :

ENGINEERING

=

13 ft

=

64,308.00 lb

=

DISIPLINE :

4.1 m

286.057 kN

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

ENGINEERING BIDDER DOCUMENT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI 3.

B PAGE

5

ANALYSIS METHOD 3.1

Design Method a. Unfactored loading combination is used for checking the axial and lateral capacity of pile foundation. b.

3.2

Factored loading combination is used for reinforced concrete design of the pile cap.

Load Combination a. Unfactored Loading Combinations

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI b.

Factored Loading Combinations

B PAGE

6

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI where : Ds = Df = De = Do = Dt = Eo = Ee = L W 4.

= =

B PAGE

7

Structure or Equipment dead load Erection dead load is the fabricated weight of process equipment Empty dead load is the empty weight of process equipment Operating dead load is the empty weight of process equipment Test dead load is the empty weight of process equipment Earthquake load considering the unfactored operating dead load and the applicable portion of the unfactored structure dead load Earthquake load considering the unfactored empty dead load and the applicable portion of the unfactored structure dead load Live Load Wind Load

LAYOUT PLAN FOR LNG STORAGE TANK

LNG Storage Tank Location

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

5.

CALCULATION 5.1

Mechanical Data Please refer to Attachment A

5.2

Summary of Allowable Pile Capacity Please refer to Attachment B

5.3

Calculation of Foundation Please refer to Attachment C

B PAGE

8

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI 6.

9

CONCLUSION 6.1

Typical Foundation for LNG Storage Tank

PLAN SECTION

Symbol Description Bpc Diameter Pile Cap ex ey Sx Sy dp

pile distance to edge pile distance to edge Pile distance in x direction Pile distance in y direction pilecap thickness above FGL

Value 4,100.00

Unit mm

1,150.00 1,150.00 1,800.00 1,800.00 300.00

mm mm mm mm mm

h ODpi t Lpi n

GROUP :

ENGINEERING BIDDER DOCUMENT :

pilecap thickness pile diameter = 11.81 in pile thickness pile effective length number of pile

DISIPLINE :

600.00 300.00 60.00 6,000.00 4.00

mm mm mm mm ea

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

10

ATTACHMENT - A

Mechanical Data for : LNG STORAGE TANK

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

11

A.1 Mechanical Data a)

LNG Storage Tank Symbol

Description

Value

HP : Estimated Weight: Pump include motor & skid Baseplate Motor We Wo

Unit

-

empty operating

Remarks

kg kg kg

Ref 1.2.7 assume assume

28,605.66 57,000.00

kg kg

info from Mechanical

3.000

m

16.000

m

Equipment Size: D

Diameter of equipment

H

height of equipment

Anchor Bolt: nb Bolt quantity db Bolt size

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

-

ea in.

Scope by vendor Scope by vendor

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

B PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

12

ATTACHMENT - B Summary of Allowable Pile Capacity

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

13

B.1 Summary Spun Pile Capacity (based on N-SPT data)

Permanent Loading Condition Type of Pipe Pile

SP 300mm

SP 400mm

SP 500mm

Depth (m)

Compression (kN)

Tension (kN)

6 10 12 6 10 12

298.60 335.24 539.85 451.40 459.55 773.14

185.84 318.52 433.87 250.25 428.81 583.45

6 10 12

471.35 268.67 610.75

156.80 219.86 313.60

Allowable Capacity Lateral (kN) Free Head Fix Head 228.25 392.59 238.41 538.62 94.56 128.95 438.42 665.75 502.53 973.66 648.92 1238.84 785.92 1090.15 735.57 1471.15 1013.16 1842.11

Allowable capacity based on Single Pile (Permanent) Q all = 298.60 kN Q tall = 185.84 kN H all = 228.25 kN M all = 367.24 kN.m

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

SP 300mm

-

Moment (kN.m) Free Head Fix Head 367.24 367.24 336.93 367.24 367.24 367.24 847.95 847.95 847.95 847.95 847.95 847.95 1624.86 1482.54 1624.86

6.00 m

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

1624.86 1624.86 1624.86

FEED PROYEK LNG JAWA

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

B PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

14

ATTACHMENT - C

Calculation LNG STORAGE TANK FOUNDATION

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

15

C.1 LNG Storage Tank a)

Pile Foundation Design

PLAN SECTION

Pile spacing, s Propose for Spun Pile, SP

= ODpi =

11.81 in 0.300 m

Lpi =

6.00 m

Driven length of pile (effective pile length)

The minimum spacing for edge pile to edge foundation are use 1.25D = 0.375 m The minimum spacing for center pile to edge foundation

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

=

0.525 m

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI a)

Dimension and Arrangement of Pile Foundation Symbol Description Used spacing of center pile to edge foundation : ex X - direction ey Y - direction Pile spacing a b

X - direction Y - direction

Number of Pile in X & Y Coordinate a number of pile in a coordinate b number of pile in b coordinate Total number of pile b)

Footing Sizing Symbol Bpc footing width = W + space Lpc footing length = L + space Sx Sy dp h

c)

Pile distance in x direction Pile distance in y direction pilecap thickness above FGL pilecap thickness

n

DISIPLINE :

m m

1.800 1.800

m m

4.00 4.00

ea ea

4.00

ea

1.800 1.800 0.300 0.600

Value 343.82

nominal pipe size piling length unit weight of Spun Pile number of pile

PROJECT :

Unit

1.150 1.150

Value #REF! 4.100 #REF!

Foundation Weight Symbol Description Wf foundation weight = Wpc + Wp Wpc pilecap weight = Lpc * Bpc * h * gc Wp pile weight = n * Lpi * Wpi NPS Lpi Wpi

GROUP :

Description

Value

16

Unit m m m m

Remarks

Remarks Min. estimated

m m m m

Unit kN

316.70

kN

27.12

kN

11.81 6.00 113.00 4.00

in m kg/m ea

Remarks

ENGINEERING BIDDER DOCUMENT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI d)

17

Wind Load Calculation Wind load is calculated in accordance with ASCE 7-05 Design Wind Pressure Symbol Description Value P design wind pressure 626.56 = qz * G * Cf Exposure Category C qz velocity pressure 528.09 = 0.613 * Kz * Kzt * Kd * V2 * I Kz velocity pressure exposure coefficient evaluated 0.85 z equipment height above FGL 16.30 = H + dp Kzt topograpic factor 1.00 = (1 + K1*K2*K3)2 K1 multiplier, assumed flat terrain H/Lh = 0 multiplier, assumed flat terrain x/Lh = ¥ K2 multiplier, assumed flat terrain z/Lh = ¥ K3 for H, x, z, Lh abbreviation refer to ASCE, Table 6-4 Kd wind directionality factor 0.90 V basic wind speed 70 mph 31.29 I importance factor 1.15 (included in Category III, ASCE, Table 1-1) G gust effect factor (classified as rigid structure) 0.85 Cf net force coefficients 1.40 H equipment height 16.00 D horizontal dimension of square at Y direction 3.00 =L H/D 5.33 Wwy Awy Mwx

Unit Remarks N/m2 Calculated ASCE, Sec. 6.5.6.3 N/m2 ASCE, Eq. 6-15 unitless ASCE, Table 6-3 m unitless ASCE, Eq. 6-3 unitless ASCE, Fig. 6-4 unitless ASCE, Fig. 6-4 unitless ASCE, Fig. 6-4 unitless ASCE, Table 6-4 m/s unitless ASCE, Table 6-1 unitless ASCE, Sec. 6.5.8.1 unitless ASCE, Fig. 6-19 m m unitless

design wind load at Y direction = P * Awy

30.07

kN

wind load area at Y direction =L*H moment due to wind load at Y direction = Wwy * (H/2 + h)

48.00

m2

258.64

kN.m

Wind Pressure Area Ww equipment

1/2 H

foundation

h

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI Design Wind Load Symbol Description W design wind load =P*A A wind load area = L * H * 0.75 H height of equipment h pilecap thickness Mw moment due to wind load = W *(H/2 + h) e)

Value 35.41 56.52 16.00 0.60 304.55

18

Unit Remarks kN m² assumed m ### m kN.m

Seismic Load Calculation Seismic load is calculated in accordance with SNI-1726-2012. Response spectrum is obtained from SNI-1726-2012. > Zone = 3 > Soil type = Medium (SD) SNI-1726-2012 will be applied for this design. Based on SNI-1726-2012, the soil class is SD and to have similar response spectrum, spectral response accelerations at short period and at one second period shall be : Maximum Considered Earthquake (MCE) spectral response acceleration > At short period, Ss = 0.700 At one second period, S1 > = 0.300 Based on these parameters, we can calculate the response spectrum as the basis of calculation in conformance with SNI-1726-2012. SMS = Fa * Ss = 1.4 * 0,7 > = 0.980 SM1 = Fv * S1 = 1.90 * 0.3 > = 0.570 SDS = 2/3*SMS > = 0.653 S = 2/3*S > = 0.380 D1 M1 T0 = 0.2 * SD1/SDS > = 0.116 TS = SD1/SDS > = 0.582 Base Shear, V = Cs * W V Cs = SDS / (R/I) with parameter : Cs : Seismic Response coefficient SDS : Design spectral response acceleration for short period R : Response modification factor I : Importance factor W : Weight of structure including components

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI

19

`

Design spectral response acceleration for short period SDS = 0.653 Importance factor I = 1.000 Response modification factor R = 1.250

(Table 9 Page 34, SNI 1726 -2012)

Cs = SDS / (R/I)

Seismic response coefficient

= Base shear

V =

0.523 Cs * W

Based on above parameter : Symbol We Wo

empty weight operating weight

Description

Ee Eo

design lateral force - empty weight - operating weight

Me Mo

moment due to seismic force, E * (H/2 + h) - empty weight - operating weight

Center of Gravity

Value 286.06 570.00

Unit kN kN

= Cs * W 149.51 297.92

1,285.81 2,562.11

kN kN

kN.m kN.m

Remarks see attachment A see attachment A

equipment H/2 + h

foundation

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA BANYUWANGI g)

Summary Load Calculation Symbol De Ds Do W Ee Eo Fo

h)

20

Description Dead Load - equipment weight - foundation weight Operating Load Wind Load Seismic Load - due to empty - due to operation Vibration Load

Axial Load (N)

Hor. Load (H)

Moment Load (M)

W= 28.61 ton Wf = 34.38 ton Wo =

57.00 ton W=

3.54 ton

Mw =

30.46 ton.m

Ee = Eo =

14.95 ton 29.79 ton

Me = Mo =

128.58 ton.m 256.21 ton.m

Load Combinations Unfactored Load Combination (for Pile Capacity Check) Symbol Description Empty/erection LC101 Ds+De LC102 Ds+De+0.6W Operation LC103 Ds+Do+Fo Operation + Wind LC104 Ds+Do+W+Fo Operation + Earthquake LC105 0.9(Ds+Do)+0.7Eo+Fo Use maximum

Axial Load (N) 62.99 ton 62.99 ton 91.38 ton

Hor. Load (H) -

Moment Load (M)

ton 2.12 ton -

-

ton

ton.m 18.27 ton.m -

ton.m

91.38 ton

3.54 ton

30.46 ton.m

82.24 ton

20.85 ton

179.35 ton.m

91.38 ton

20.85 ton

179.35 ton.m

Factored Load Combination (for Concrete Design) Symbol LC201 LC202 LC203 LC204 LC205 LC206

1.4 1.2 1.2 0.9 0.9 0.9

Description (Ds+Do+Fo) (Ds+Do+Fo)+1.6L (Ds+Do+Fo)+ W (Ds+De)+W (Ds+Do)+Eo (Ds+De)+Ee

Use maximum

GROUP :

ENGINEERING

DISIPLINE :

Axial Load (N) 127.93 ton 109.66 ton 109.66 ton 56.69 ton 82.24 ton 56.69 ton 127.93 ton

Hor. Load 3.54 3.54 29.79 14.95

(H) ton ton ton ton ton ton

Moment Load (M) - ton-m - ton-m 30.46 ton-m 30.46 ton-m 256.21 ton-m 128.58 ton-m

29.79 ton

256.21 ton.m

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

BIDDER DOCUMENT :

DOCUMENT NUMBER : LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA BANYUWANGI i)

21

Pile Capacity Check

Pile resisting My : Pile Coordinate a1 a2 Total Pile =

ni 2 2 4

Xi (m) 1.80 1.80 Σni.Yi2 =

Pile resisting Mx : Pile ni Coordinate b1 2 b2 2 Total Pile = 4

ni.Yi (m2) 6.48 6.48 12.96

Zpy = Σni.Yi2 / Xi (max) =

2

7.20

Maximum Forces due to Unfactored Load Symbol Description LC103 Permanent LC101/LC102 Temporary LC104/LC105 Temporary

Yi (m) 1.80 1.80 Σni.Yi2 =

ni.Xi2 (m2) 6.48 6.48 12.96

Zpx = Σni.Yi2 / Yi (max) =

Axial Load 91.38 62.99 91.38

(N) ton ton ton

Hor. Load (H) - ton 2.12 ton 20.85 ton

7.20

Moment Load (M) - ton.m 18.27 ton.m 179.35 ton.m

Pile properties Symbol NPS ODpi IDpi t A fall Wpi Lpi

GROUP :

ENGINEERING BIDDER DOCUMENT :

Description nominal Pile size out-side diameter of Spun Pile in-side diameter of Spun Pile wall thickness of Spun Pile stress area of Spun Pile allowable stress unit weight of Spun Pile piling length

DISIPLINE :

= 0.6 * fy

Value 11.81 11.81 7.09 2.36 70.06 144.00 118.15 6.00

Unit in in in in in2 MPa kg/m m

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

Remarks

FEED PROYEK LNG JAWA GTO - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA BANYUWANGI Axial Force Permanent Condition Symbol Description Nmax maximum compression in the single pile = Nmax / n Q all allowable compression permanent capacity check capacity = Nmax < Q all fmax check

max. stress fmax < fall

Horizontal Force Temporary Condition Symbol Hmax/n

Value Unit Remarks 22.85 ton Calculated 29.86 ton OK (ratio 0.77)

= P/A

Description

Maximum Forces due to Factored Load Symbol Description LC201 Permanent LC204/LC206 Temporary LC203/LC205 Temporary

22

Value 5.21

Axial Load 127.93 56.69 109.66

(N) ton ton ton

4.96 OK

Mpa

Allowable 22.83

Unit ton

Hor. Load (H) - ton 14.95 ton 29.79 ton

Remarks OK (ratio 0.23)

Moment Load (M) - ton.m 128.58 ton.m 256.21 ton.m

Load Calculation for The Single Critical Pile Symbol Compression LC204/LC206 LC203/LC205

Description N/n + (M/Zx or M/Zy) Compression Compression

Tension LC204/LC206 LC203/LC205

N/n - (M/Zx or M/Zy) tension tension

GROUP :

DISIPLINE :

Value

PROJECT :

Unit

32.03 63.00

ton ton

(3.69) (8.17)

ton ton

Remarks

ENGINEERING BIDDER DOCUMENT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

#REF!

###

ATTACHMENT C Foundation for Booster Pump (P-4004 & P-4008)

ME-WILO-PTPH-CC-CA-0004 Rev. A

Att. C - Page 1

#REF!

###

ATT. C

C.1

Foundation for Booster Pump (P-4004 & P-4008)

Bearing Capacity

FGL.

1% slope

T2

D

B

Soil Bearing Capacity Formula (by Terzaghi) : (square foundation, ref. 1.2.4) Qult = Qc + Qq + Qγ = 1.3 * c * Nc + q * (Nq-1) + 0.4 * γ * B * Nγ

Symbol D

Description foundation depth

B hs

width of foundation = min (Ly,Lx) soil depth above foundation

ME-WILO-PTPH-CC-CA-0004 Rev. A

Value Unit 0.50 ft 3.76 0.00

Remarks assumed

ft ft

Att. C - Page 2

#REF!

Symbol gs q qc Nk c f Nc Nq Ng Qult

###

Description soil unit weight soil overburden pressure at depth of Df = D * gs average cone resistance at < 2 m of depth cone factor cohesion = qc / Nk soil friction

= 1.3 * c * Nc + q * (Nq-1) + 0.4 * γ * B * Nγ

Bearing Capacity Symbol Description SF safety factor Qall allowable bearing capacity

ME-WILO-PTPH-CC-CA-0004 Rev. A

Value Unit 120.00 lb/ft3 60.00 lb/ft2 6.78 17.00 0.399 807.27 0.000 5.70 1.00 0.00 5,981.87

kg/cm2 unitless kg/cm2 lb/ft2 degree unitless unitless unitless lb/ft2

Value Unit 3.00 unitless 1,993.96 lb/ft2 1.99 kip/ft2 9.73 ton/m2

Remarks

normally consolidation Ref. 1.2.12 assume as clay soil Ref. 1.2.11, table 6.2 Ref. 1.2.11, table 6.2 Ref. 1.2.11, table 6.2

Remarks

Att. C - Page 3

#REF!

C2.

#REF!

Elastic Settlement

Elastic Settlement Formula : ρi = p * B * Iρ * ((1 - (μ ^ 2))/E) Description Table Symbol Description ρi elastic settlement p bearing pressure

Value Unit - in - psi

bf

maximum width

= Lx

Ld μ E mi

maximum length Poisson ratio elastic modulus

= Ly



length-width ratio of shalllow foundation

= Ld/bf influence factor

ME-WILO-PTPH-CC-CA-0004 Rev. A

(Braja, 1991)

5.40 64.80 3.76 0.30 850.00 0.70 1.50 1.07

ft in ft unitless psi unitless unitless unitless

Remarks equal to the allowable bearing capacity (Att.B)

assumed, see following table assumed, see following table

adopted assumed rigid

Att. C - Page 4

#REF!

ME-WILO-PTPH-CC-CA-0004 Rev. A

#REF!

Att. C - Page 5

#REF!

#REF!

Foundation Width bf = 1.6 m = 64.80 in Maximum Elastic Settlement : ρimax = 0.75 in Maximum Bearing Pressure : pmax = ρimax / (B * Iρ * ((1 - (μ ^ 2))/E)) = 0.75 / (64.8 * 1.07 * ((1 - (0.3 ^ 2))/850)) = 10.10 psi = 1,454.93 psf = 7.10 ton/m2 = 1.45 kip/ft2 .: Based on above calculation, soil bearing capacity shall be limited to maximum pressure of 1.45 kip/ft2.

ME-WILO-PTPH-CC-CA-0004 Rev. A

Att. C - Page 6

#REF!

#REF!

C3. Shallow Foundation Calculation 1. Equipment Data Symbol Description Estimated Weight: Wo operating weight

Value

Equipment Size: L length W width H height

Unit

3,461.00

lb

3.40 1.76 0.95

ft ft ft

Remarks

Lx

dp

Ly

A

X

h

A

DF

Y

SECTION A-A

PLAN

2. Footing Size Symbol Description Lx footing length at X direction Ly

footing length at Y direction

h dp Sx

footing thickness footing thickness above ground modulus section of footing = 1/6 * Lx * Ly^2 modulus section of footing = 1/6 * Ly * Lx^2 area of footing footing weight

Sy A Wf

ME-WILO-PTPH-CC-CA-0004 Rev. A

= L + 2ft = W + 2ft

= Lx * Ly = A*h*gc

Value Unit 5.40 ft 5.40 ft 3.76 ft 3.76 ft 1.50 ft 1.00 ft 12.72 ft3 18.27

ft3

20.30 5,775.00

ft2 lb

Remarks adopted adopted

Att. C - Page 7

#REF!

#REF!

3. Load a. Wind Load Calculation Ww equipment

1/2 H

foundation

h

X direction Symbol Description P design wind pressure for other structure = qz * G * Cf Exposure Category qz velocity pressure = 0.00256 * Kz * Kzt * Kd * V2 * I Kz velocity pressure exposure coefficient evaluated at height z z equipment height above FGL = H + dp Kzt topograpic factor = (1 + K1*K2*K3)2 K1 multiplier, assumed flat terrain H/Lh = 0 multiplier, assumed flat terrain x/Lh = ¥ K2 multiplier, assumed flat terrain z/Lh = ¥ K3 for H, x, z, Lh refer to ASCE, Table 6-4 Kd wind directionality factor V basic wind speed I importance factor (included in Category IV, ASCE, Table 1-1) G gust effect factor (classified as rigid structure) Cf net force coefficients H equipment height D horizontal dimension of square at X direction =W H/D Wwx design wind load at X direction = P * Awx Awx wind load area at X direction =W*H Mwy moment due to wind load at X direction = Wwx * (H/2 + h) * Table & figure see Att. E

ME-WILO-PTPH-CC-CA-0004 Rev. A

Value 3.83

Unit psf

Remarks ASCE, Eq. 6-25

C 3.60

psf

ASCE, Sec. 6.5.6.3 ASCE, Eq. 6-15

0.85

unitless ASCE, Table 6-3

1.95

ft

1.00

unitless

0.00 0.00 0.00

unitless ASCE, Fig. 6-4 unitless ASCE, Fig. 6-4 unitless ASCE, Fig. 6-4

0.90 40.00 1.15

unitless ASCE, Table 6-4 mph unitless ASCE, Table 6-1

0.85 1.25 0.95 1.76

unitless ASCE, Sec. 6.5.8.1 unitless ASCE, Fig. 6-19 ft ft

0.54 0.01

unitless kip

1.67

ft2

0.02

kip-ft

Att. C - Page 8

#REF!

Y direction Symbol Description P design wind pressure for other structure = qz * G * Cf Exposure Category qz velocity pressure = 0.00256 * Kz * Kzt * Kd * V2 * I Kz velocity pressure exposure coefficient evaluated at height z z equipment height above FGL = H + dp Kzt topograpic factor = (1 + K1*K2*K3)2 K1 multiplier, assumed flat terrain H/Lh = 0 multiplier, assumed flat terrain x/Lh = ¥ K2 multiplier, assumed flat terrain z/Lh = ¥ K3 for H, x, z, Lh abbreviation refer to ASCE, Table 6-4 Kd wind directionality factor V basic wind speed I importance factor (included in Category IV, ASCE, Table 1-1) G gust effect factor (classified as rigid structure) Cf net force coefficients H equipment height D horizontal dimension of square at Y direction =L H/D Wwy design wind load at Y direction = P * Awy Awy wind load area at Y direction =L*H Mwx moment due to wind load at Y direction = Wwy * (H/2 + h) * Table & figure see Att. E

ME-WILO-PTPH-CC-CA-0004 Rev. A

#REF!

Value 3.81

Unit psf

Remarks ASCE, Eq. 6-25

C 3.60

psf

ASCE, Sec. 6.5.6.3 ASCE, Eq. 6-15

0.85

unitless ASCE, Table 6-3

1.95

ft

1.00

unitless ASCE, Eq. 6-3

0.00 0.00 0.00

unitless ASCE, Fig. 6-4 unitless ASCE, Fig. 6-4 unitless ASCE, Fig. 6-4

0.90 40.00 1.15

unitless ASCE, Table 6-4 mph unitless ASCE, Table 6-1

0.85 1.24 0.95 3.40

unitless ASCE, Sec. 6.5.8.1 unitless ASCE, Fig. 6-19 ft ft

0.28 0.01

unitless kip

3.23

ft2

0.01

kip-ft

Att. C - Page 9

#REF!

#REF!

b. Seismic Load Calculation Design Seismic Load Symbol Description V design lateral force k C Seismic zone Z seismic zone factor S site coeficient I importance factor R T Ct hn Wo Mv

Value = k*Wo

2.90 0.04

Unit Remarks kip ton unitless unitless Ref 1.2.1 unitless Table 16I,UBC 1997 unitless Ref 1.2.1 unitless Table 16K number 1, UBC 1997 unitless Table 16P number 11, UBC 1997

0.02 2.45 3.46 1.22 0.17

unitless UBC sec. 1630.2.2 ft kip kip-ft Calculated ton-m

0.62 0.28 0.18 2.75 2A 0.15 1.50 1.25

= Z*I*C/R = 1.25*S/(T)^(2/3) < 2.75

seismic reduction factor fundamental period of vibration = Ct*(hn)^(3/4) numerical coeficient height from level to base shear =h+H operating weight moment due to seismic force = V * (H/2+h)

* Table & figure see Att. E b. Center of Gravity equipment H/2 + h

foundation 4. Design Load Symbol D O Wwx Wwy V

Description Dead Load

Axial Load (N) We 3.5 Wf 5.8 Operating Load Wo 3.5 Wind Load at X direction Wind Load at Y direction Seismic Load

Horizontal Load (H)

Wwx Wwy V

0.0 0.0 0.6

Moment Load (M)

Mwy Mwx Mv

0.0 0.0 0.2

Unit kips (for axial & horizontal) kips-ft (for moment)

5. Load Combination Unfactored Load Combination (for Foundation Check) Description Axial Load (N) Empty/erection 1. D 9.24 2x. D + (Wwx or V) 9.24 2y. D + (Wwy or V) 9.24 Operation 3. D + O 9.24 Operation + Wind 4x. D + O + Wwx 9.24 4y. D + O + Wwy 9.24 ME-WILO-PTPH-CC-CA-0004 Rev. A

Horizontal Load (H)

Moment Load (M)

0.62 0.62

0.17 0.17

-

-

0.01 0.01

0.02 0.01

Unit

kips (for axial & horizontal) kips-ft (for moment) Att. C - Page 10

kips (for axial & horizontal) kips-ft (for moment)

#REF!

#REF!

Operation + Earthquake 5. D + O + V

9.24

0.62

0.17

Soil Bearing Capacity Symbol

qall

Description

Value

allowable bearing capacity

1,454.93

Maximum Forces due to Unfactored Load at X direction Description P Hx My kip kip kip-ft 3. Permanent 9.24 1&2x. Temporary 9.24 0.62 0.17 4x&5. Temporary 9.24 0.62 0.17 Soil Pressure Check due to Unfactored Load at X direction Description qmax qmin qall kip/ft2 kip/ft2 kip/ft2 3. Permanent 0.45 0.45 1.45 1&2x. Temporary 0.46 0.45 1.45 4x&5. Temporary 0.46 0.45 1.45 Maximum Forces due to Unfactored Load at Y direction Description P Hx My kip kip kip-ft 3. Permanent 9.24 1&2y. Temporary 9.24 0.62 0.17 4y&5. Temporary 9.24 0.62 0.17

Unit

psf

e ft

Lx/6 0.90 0.90 0.90

0.02 0.02

check qmax
check qmin
e ft

Ly/6 0.63 0.63 0.63

0.02 0.02

Soil Pressure Check due to Unfactored Load at Y direction Description qmax qmin qall check kip/ft2 kip/ft2 kip/ft2 qmax
Remarks

check qmin
e
all q>0 compression compression compression

e
all q>0 compression compression compression

Sliding Check due to Unfactored Load Symbol

Description

Hall f

allowable sliding capacity friction factor

Hmax

max. horizontal load check Hall > Hmax

ME-WILO-PTPH-CC-CA-0004 Rev. A

Value

= (Wo + Wf) * f

Unit

4.62 0.50

kips

0.78 OK

kips

unitless

Remarks concrete and soil, ref. 1.2.1

Att. C - Page 11

#REF!

#REF!

6. Foundation Reinforcement b

equipment weight

foundation weight

h

d

As

2 in

contact pressure

Foundation footing is behave as concrete block. Reinforcement bar upper & bottom for both X calculated with minimum reinforcement. Symbol Description Value b strip width 1.00 c concrete cover 2.00 frebar rebar dia. designed =# 4 0.50 h thickness of foundation 1.50 d pilecap effective thickness = h-c-1.5*frebar 1.27 rmin minimum reinforcement ratio 0.0018 distance spacing of rebar designed 6.00 As total area 0.40 r reinforcement ratio = As/(b*d) 0.0022 check rmin < r OK a concrete stress block depth = As*fy/(0.85*fc'*b) 9.41 Mn Moment nominal = 0.85*fc'*b*a*(d-a/2) 253.06 Mu Moment ultimate = 0.9*Mn 227.75 Use #4- 6"

ME-WILO-PTPH-CC-CA-0004 Rev. A

& Y direction are Unit ft in in ft ft % in in2 %

Remarks assumed Ref. 1.2.1

Ref. 1.2.1

assumed assumed

in kip-ft kip-ft

Att. C - Page 12

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI J)

23

Pile Cap Reinforcement b equipment weight

foundation weight

As

h

d h-c-1.5*ørebar

L Symbol b q q

eq. foot.

L Mc M c frebar h d rmin b rb rmax distance As r a Mn Mu Use

Description strip width uniform load of equipment = b*We/(LPC*BPC) = b*h*gc uniform load of pilecap critical span of strip (largest distance pile to pile) = 0.125*(qeq. + qfoot)*L^2 maximum moment factored moment = 1.4*Mc concrete cover rebar dia. designed = D 16 thickness of pilecap pilecap effective thickness = h - c - 1.5 * frebar minimum reinforcement ratio stress block depth factor balance reinforcement ratio = b1*0.85*fc'/fy*(600/(600+fy)) = 50%*rb spacing of rebar = 150 mm total area = nb*0.25*pi()*frebar^2 reinforcement ratio = As/(b*d) check rmin < r

Value 1.000 2.168 1.440 1.800 1.461

Unit m ton/m ton/m m ton.m

2.046 0.075 0.016 0.600 0.501 0.002 0.850

ton.m m m m m

Remarks

0.027 0.014 0.150 m 0.001 m2 0.003 OK concrete stress block depth = As*fy/(0.85*fc'*b) 0.025 m Moment nominal = 0.85*fc'*b*a*(d-a/2) 26.702 ton-m Moment ultimate = 0.9*Mn 24.032 ton-m OK D 16 - 150 OK, Mu (24.032 ton-m) > M (2.046 ton.m)

GROUP :

ENGINEERING

DISIPLINE :

PROJECT :

SIPIL & STRUKTUR FEED PROYEK LNG JAWA

BIDDER DOCUMENT :

FEED PROYEK LNG JAWA

DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR TITLE :

B PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA - BANYUWANGI K)

24

Punching Shear Check Punching Shear Capacity of Pile Cap de

c (d or de)/2

d

ODpi

Ld Pile Pseudocritical section Section at Edge Pilecap

Sketch of Punching Shear of Pile

Symbol Vupi

Description ultimate force due to pile

ODpi

outer diameter of pile concrete cover rebar dia. designed = D16 thickness of pilecap embedment length of pile effective depth = h - c - frebar/2 - Ld edge pile to edge pilecap distance = min(LPC-SY,BPC-SX)/2-Odpi/2 pseudocritical section = pi() * (ODpi + de) Slab allowable punching shear without rebar = 2*(f'c)^0.5 *bo*de = 0.85* Vc

c frebar h Ld d de bo Vc ΦVc

check whether Vupi < fVc

Value 63.000

Unit ton

0.300 0.075 0.016 0.600 0.600 0.517

m m m m m m

(1.050)

m

(3.220)

m

3,447.802

Remarks

govern

ton

2,930.631 ton 1,330.507 ton OK, ΦVc (2931 ton) > Vupi (63 ton)

OK

GROUP :

ENGINEERING BIDDER DOCUMENT :

DISIPLINE :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA BANYUWANGI

ATTACHMENT - D MAIN EQUIPMENT LIST

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

25

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA BANYUWANGI

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

26

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA BANYUWANGI

ATTACHMENT - E SOIL INVESTIGATION BANYUWANGI

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

LNGJ - BYWG - CIV - CAL - 015

FEED PROYEK LNG JAWA

27

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015 DOCUMENT CODE :

REV :

SIPIL & STRUKTUR

B

TITLE :

PAGE

PERHITUNGAN PONDASI PERALATAN UTAMA BANYUWANGI

GROUP :

DISIPLINE :

ENGINEERING BIDDER DOCUMENT :

PROJECT :

SIPIL & STRUKTUR DOCUMENT NUMBER :

FEED PROYEK LNG JAWA

28

FEED PROYEK LNG JAWA LNGJ - BYWG - CIV - CAL - 015

More Documents from "HamidAffandy"

Time Line.xlsx
October 2019 17
Hasil Lab Tanah.xls
June 2020 16
Volume 28 Agustus.xlsx
October 2019 15
Latihan.xlsx
June 2020 7
Rab Material.xlsx
October 2019 47