1
KLOROPLAS DAN FOTOSINTESIS
Adnan dan Nasaruddin (Dosen Biologi FMIPA Universitas Negeri Makassar Dosen Pertanian UNHAS)
A. PENDAHULUAN
Semua energi yang digunakan makhluk hidup (tumbuhan, hewan, dan mikroorganisme) berasal dari matahari. Energi cahaya dari matahari diasorbsi oleh tumbuhan hijau dan selanjutnya dikonversi menjadi energi kimia pada proses fotosintesis. Fotosintesis adalah suatu mekanisme penyusunan energi pada tanaman berklorofil dengan bantuan cahaya melalui reaksi oksidasi-reduksi.
Gambar 12. 1. Hukum Termodinamika. http://homepages.ius.edu/dpartin/Lecture4metabolism.ppt
Hukum termodinamika pertama menjelaskan bahwa energi tidak dapat diciptakan atau dimusnahkan, tetapi dapat diubah dari satu bentuk ke bentuk yang lain, misalnya energi matahari dapat diubah menjadi energi kimia, dan energi kimia dapat diubah menjadi energi gerak. Sedangkan hukum termodinamika kedua menjelaskan bahwa jika energi
mengalami perubahan bentuk, maka sebagian energi dilepaskan dalam bentuk panas (gambar 12.1) Pada tumbuhan hijau terdapat sejumlah plastida, misalnya kloroplas, amiloplas, dan elaioplas. Diantara plastida tersebut, kloroplas merupakan plastida yang sangat penting di dalam proses fotosintesis. Kloroplas pada sel tumbuhan dijumpai pada sel-sel parenkim, utamanya parenkim palisade dan bunga karang yang terdapat pada jaringan mesofil daun. Kloroplas merupakan salah satu organel yang dibatasi oleh membrane ganda, yaitu membrane luar dan membran dalam. Membran dalam mengalami sejumlah mdifikasi membentuk tilakoid-tilakoid dan grana. Pada membrane tilakoid dang ran terdapat pigmen klorofil yang sangat peka terhadap cahaya. Pigmen tersebut memegang peranan yang sangat penting di dalam proses fotosintesis. Bagian dalam kloroplas dinamakan stroma, di dalamnya terdapat DNA dan ribosom. Pada peristiwa fotosintesis berlangsung proses perubahan bahan-bahan anoganik (air dan karbondioksida) menjadi bahan organik (karbohidrat) dengan bantuan cahaya dan klorofil. Fotosintesis terdiri atas dua fase, yaitu fase terang atau fase cahaya dan fase gelap atau fase fiksasi CO2. Fase terang berlangsung pada membran tilakoid/grana, sedangkan fase gelap berlangsung di dalam stroma. Reaksi fotosintesis adalah :
Gambar 12.2. Lokasi Berlangsungnya Fotosintesis. http://homepages.ius.edu/dpartin/Lecture4metabolism.ppt
3
B. STRUKTUR KLOROPLAS
Kloroplas merupakan organel tempat berlangsungnya fotosisintesis Bentuk koloroplas pada berbagai jenis tuimbuhan cukup bervariasi, antara lain berbentuk mang-kuk, bentuk pita, hingga bentuk menyerupai lensa. Pada tumbuhan rendah seperti chlamydomonas, kloroplas berbentuk mangkuk, dan pada spyrogyra bentuknya menyerupai bangun pita. Pada tumbuhan tinggi, kloroplas berbentuk menyerupai lensa. Ukuran kloroplas pada tumbuhan tinggi panjangnya berkisar 510 um, dan jumlahnya berkisar 50 – 200/sel. Bentuk dan struktur kloroplas ditunjukkan pada gambar 12.3 dan 12.4. Kloroplas merupakan organel berbatas membran ganda. Setiap membran memiliki ketebalan berkisar 70o-80o. Membran kloroplas terdiri atas membran luar dan membran dalam yang dipisahkan oleh ruang antar membran dengan lebar kurang lebih 10 nm. Ruang antar membran mengandung molekul-molekul nutrien sitosol.
Gambar 12.3 Penampakan kloroplas pada tumbuhan tinggi bila dilihat dari samping dan atas (Thorpe, 1984).
Membran luar permiabel terhadap sejumlah senyawa dengan berat molekul rendah seperti nukleotida, fosfat organik, derivat-derivat fosfat, asam karboksilat dan sukrosa. Membran dalam bekerja sebagai pembatas fungsional antara sitosol dan stroma. Membran dalam tidak permiabel terhadap sukrosa, sorbitol, dan berbagai anion, misalnya di dan trikarboksilat, fosfat, dan senyawa-senyawa seperti nukleotida dan gula fosfat, namun demikian bersifat permiabel terhadap CO2, asam-asam monokarboksilat tertentu seperti asam asetat, asam gliserat, dan asam glikolat. Pada membran dalam terdapat sejumlah
protein pembawa tertentu untuk mengangkut fosfat, fosfogliserat, dihidroksi aseton fosfat, dikarboksilat, dan ATP. Membran bagian dalam terdiri atas kantung-kantung membran berbentuk pipih yang dinamakan tilakoid. Tilakoid terdapat di dalam stroma. Tilakoid terdiri dari dua bentuk, yaitu bentuk cakram pipih dan bentuk lamella. Tumpukan beberapa tilakoid yang berbentuk cakram pipih disebut grana., dan masing-masing tilakoidnya disebut tilakoid grana (grana lamella). Tilakoid yang memanjang ke arah stroma dinamakan tilakoid stroma (grana lamella) yang menghubungkan tilakoid grana. Setiap tilakoid memiliki ruang dalam yang dinamakan lokulus.
Gambar 12.4. Struktur daun dan kloroplas http://homepages.ius.edu/dpartin/Lecture4metabolism.ppt
Pada membran tilakoid terdapat enzim-enzim untuk melaksnakan reaksi fotosintesis yang bergantung cahaya. Klorofil, pembawa elektron, dan faktor-faktor yang menggabungkan transpor elektron dengan fosforilasi terdapat pada membran tilakoid. Bagian dalam kloroplas terdapat stroma yang mengandung enzim-enzim yang penting bagi assimilasi CO2 dan mengubahnya menjadi karbohidrat. Selain itu, pada stroma juga dijumpai butir pati, plastoglobulin (tempat menyimpan lipida, terutama plastokuinon dan tokoforilkuinon), ribosom, dan DNA.
5
C. KOMPOSISI KIMIA KLOROPLAS
Membran tilakoid terdiri atas lipida kurang lebih 50%. Kurang lebih 10% lipida terdiri atas fosfolipida. Lipida yang khas bagi klorofil yaitu galaktolipida dan sulfolipida yang terdiri adas masing-masing 45 % dan 4% dari total lipida. Selain itu juga terdapat molekul-molekul lipida seperti klorofil kira-kira 20% dari total membran tilakoid, karotenoid, dan plastokuinon
Tabel 12.1 Komponen utama tilakoid grana dan tilakoid stroma (Sheeler dan Bianchii, 1983)
Tilakoid Stroma Total klorofil 278* Klorofil a 238 Klorofil b 40 P700 2,5 21 β- karoten Lutein 10 Violaxanthin 15 Neoxanthin 8 Fosfolipida 76 Monogalaktosil digliserida 231 Digalaktosil digliserida 172 Sulfolipida 65 Sitochrom b ( total) 1,0 Sitokhrom f 0,5 Manganese 0,3 *Nilai dalam mikromol pergram komponen protein membran.
Tilakoid Grana 401 281 130 0,6 17 29 20 16 66 214 185 59 3,4 0,7 3,2
Klorofil merupakan pigmen fotosintesis yang sangat penting. Di alam dikenal ada sembilan jenis klorofil, yaitu klorofil a, b, c, d, e, bakterioklorofil a, bakterioklorofil b, klorobium klorofil 650 dan klorobium. Klorofil pada tanaman pembuluh dan briophyta terdapat di dalam kloroplas, yaitu di dalam membran tilakoid. Klorofil tidak efektif mengabsorbsi cahaya hijau sehingga lebih banyak direfleksikan (dipantulkan) dan ditransmisikan (diteruskan). Hal inilah yang menyebabkan mengapa klorofil tampak berwarna hijau. Bagian dari spectrum cahaya yang diserap oleh klorofil selama proses fotosintesa dapat ditentukan dengan menempatkan suatu larutan klorofil di dalam alkohol diantara suatu sumber cahaya dan suatu prisma kaca. Spektrum yang terbentuk berbeda dengan spektrum cahaya putih yang tidak melewati klorofil. Spektrum cahaya yang
melewati larutan klorofil, panjang gelombang yang diserap terlihat sebagai pita-pita gelap dan dinamakan pita-pita serapan. Posisi pita-pita gelap dalam spektrum klorofil menunjukkan panjang gelombng mana yang diserap. Terlihat bahwa banyak dari cahaya merah, bitu dan violet yang diserap yang merupakan panjang gelombang yang banyak digunakan dalam fotosintesis. Sebagian merah dan sebagian besar kuning, jingga dan hijau tidak diserap sama sekali (Arbaya dan Sasmitamihardja, 1982),
Gambar 12.4 Struktur Kimia Klorofil http://www.ualr.edu/~botany/photosynthrxns.gif
Proses fotosintesis berlangsung dalam plastida dari organisme sel yang disebut kloroplas. Di dalam kloroplas mengandung pigmen klorofil yang berwarna hijau sebagai pigmen utama penyerap cahaya dan karotenoid sebagai pigmen pelengkap. Tumbuhan tinggi mengandung dua macam klorofil yaitu klorofil a dan b, sedang karotenoid yang paling banyak terdapat dalam tumbuhan adalah b karoten dan lutein. Karotenoid adalah senyawa hidrokarbon yang terdistribusi dalam tanaman dengan kisaran warna kuning, dijumpai di dalam kloroplas dan kromatofor lain. Seperti halnya dengan klorofil, beberapa karotenoid mengirim energi eksitasinya ke pusat reaksi. Pigmen karotenoid (β karoten dan lutein) hanya mengabsorbsi cahaya biru dan ungu, sedang cahaya hijau, kuning, orange dan merah dipantulkan. Karotenoid bagi tanaman juga berperan untuk melindungi
7
klorofil dari kerusakan akibat oksidasi pada intensitas cahaya tinggi. Apabila kita bandingkan pengaruh berbagai panjang gelombang terhadap laju fotosintesis, maka akan diperoleh spektrum Action pada kisaran panjang gelombang daerah cahaya tampak (visible light). Karotenoid alami dapat berupa likopene berwarna merah pada tomat dan ß-karoten, berwarna kuning. Karotenoid pada tanaman berfungsi untuk melindungi klorofil dari fotooksidasi dan dapat menyerap serta memindahkan energi cahaya ke klorofil a.
Gambar 12.5 Struktur Kimia Karoten
D. Struktur dan Sifat Genom Kloroplas Seperti halnya mitokondria, kloroplas memiliki molekul DNA (ct DNA) yang berbentuk melingkar (sirkuler). DNA biasanya terdapat dalam kopi berganda sebanyak 20 hingga 60 ctDNA per kloroplas. Berat ct DNA berkisar 85-140 x 106 dalton dengan panjang berkisar 45 um – 60 um, hal ini bergantung pada speciesnya. ct DNA mengkode lebih dari 150 protein dengan berat molekul berkisar 50.000 dalton, kurang lebih sama dengan jumlah protein yang terdapat di dalam kloroplas. Namun demikian tidak semua protein dikode oleh Ct DNA. Replikasi dan differensiasi dikontrolsebagian oleh genom inti dan sebagian lagi oleh ctDNA. Protein stroma dan protein membran tilakoid yang dikode oleh DNA inti dan dibentuk oleh ribosom sitoplasmik, yaitu sub unit kecil enzim ribulosa difosfat karboksilase, enzim-enzim lain daur Calvin, asam nukleat polimerase, dan aminoasil tRNA
sintetase, merupakan protein yang dimasukkan ke dalam kloroplas.
E. Replikasi dan Differensiasi Kloroplas Kloroplas berasal dari kloroplas yang sudah ada selama daur hidup tumbuhan tinggi dan diteruskan ke sel-sel turunannya selama pembelahan sel. Tipe pembelahan sama dengan mitokondria, penyempitan terjadi didaerah bagian tengah koroplas, dan kedua hasil pembelahan dipisahkan pada daerah tersebut. Umumnya pembelahan kloroplas tidak serempak di dalam jaringan atau sel-sel tumbuhan. Sejumlah faktor berpengaruh terhadap pembelahan kloroplas seperti cahaya, suhu, nutrisi, hormon, dan stress air.
F. Fotosintesis 1. Cahaya Matahari sebagai Sumber Energi Fotosintesis Gelombang cahaya merupakan sebagian kecil dari spektrum radiasi elektromegnetik. Setiap radiasi dalam spektrum ini mempunyai panjang gelombang dan kandungan energi yang khas. Makin besar panjang gelombang, makin kecil energi yang dikandungnya. Cahaya matahari merupakan sumber energi utama bagi semua organisme hidup. Cahaya putih yang tampak pada cahaya matahari terdiri atas gelombang dengan panjang yang berbeda-beda dan tersusun berurutan. Melalui prisma kaca, cahaya putih diuraikan menjadi deretan warna-warna. Pita warna-warna ini dinamakan spektrum tampak. Radiasi matahari yang digunakan untuk berlangsungnya proses fotosintesis berasal dari radiasi cahaya tampak (visible light). Energi radiasi cahaya dapat dijelaskan dengan teori kuantum dan elektromagnetik. Dalam teori kuantum dikatakan bahwa cahaya merambat dalam bentuk aliran partikel yang disebut foton. Energi yang terkandung dalam foton disebut kuantum dan dirumuskan dalam formulasi E=hv. Pada teori gelombang elektromagnetik v adalah frekwensi atau banyaknya gelombang perdetik diperlihatkan dalam formula v=c/λ Bila kedua teori ini digabung maka :
9
E = hv v = c/λ λ sehingga E = h.c/λ λ
dimana : E = energi foton (kuantum) h = tetapan (konstanta) Planck (662 x 10 –27 erg/detik) c = kecepatan cahaya (3 x 10 10 cm/detik) λ = panjang gelombang v = frekwensi (banyaknya gelombang per detik) . Radiasi cahaya yang terserap oleh pigmen klorofil untuk fotosintesis hanya antara 380 nm s/d 760 µm. Di atas 760 µm, foton tidak mempunyai cukup energi untuk melansungkan fotosintesis dan dibawah 380 nm memiliki energi terlalu banyak yang dapat mengakibatkan terjadinya ionisasi dan kerusakan pigmen. Daerah aktif fotosintesis disebut daerah photosynthetical active radiation (PAR) yang umumnya terletak antara panjang gelombang 400 µm s/d 700 µm atau pada sinar ungu sampai merah. Absorbsi cahaya oleh pigmen klorofil daun dapat dijelaskan dalam Hukum Start Einstein yang menyatakan bahwa setiap molekul hanya dapat menyerap satu foton. Setiap satu foton akan mengakibatkan tereksitasnya satu elektron. Elektron dalam satu atom terletak dalam orbit-orbit yang tetap. Jika pigmen klorofil menyerap energi foton, maka molekul klorofil akan berada dalam keadaan tereksitasi dan energi eksitasi inilah yang digunakan dalam fotosintesis
Gambar 12.6. http://www.firstrays.com/plants_and_light.htm
Klorofil dan pigmen lainnya tereksitasi hanya dalam waktu yang relatif singkat yaitu selama 10-9 detik atau lebih singkat dari itu. Energi eksitasi yang diinduksi akan hilang karena dibebaskan melalui tiga cara : 1. Energi hilang dalam bentuk panas pada waktu elektron kembali ke orbit dasarnya 2. Energi hilang dalam bentuk panas dan cahaya flouresen 3. Energi hilang karena digunakan untuk suatu reaksi kimia seperti fotosintesis. Bila klorofil menyerap energi cahaya, menyebabkan satu elektron dari klorofil tereksitasi. Elektron yang tereksitasi ini diteruskan ke senyawa-senyawa kimia khusus yang terdapat di dekat klorofil di dalam kloroplas yang mempunyai kemampuan menerima elektron pada tingkat energi yang baru. Senyawasenyawa ini dinamakan akseptor elektron atau pembawa elektron. Jadi pada peristiwa ini terjadi aliran elektron dari suatu senyawa ke senyawa lain dalam suatu urutan reaksi oksidasireduksi, dimana masing-masing reaksi dikatalisis oleh enzim tertentu. Dalam proses aliran elektron tersebut, energi dalam elektron tereksitasi dibebaskan sedikit demi sedikit. Energi yang dibebaskan ini digunakan untuk membentuk suatu senyawa kimia berenergi tinggi yang disebut Adenosin Tri Fosfat (ATP). Pada peristiwa fotosintesis terdapat dua cara pemindahan elektron, yaitu siklik dan non siklik. Pada pemindahan secara siklik, elektron eksitasi yang berasal dari klorofil setelah dipindahkan dari satu akseptor ke akseptor lainnya, elektron kembali ke klorofil. Pada pemindahan elektron nonsiklik, elektron yang meninggalkan klorofil tidak kembali ke klorofil. Klorofil
11
yang kehilangan satu elektron akan menerima elektron dari hasil fotolisis air. Uraian selengkapnya akan dibahas pada fase terang fotosintesis.
1. Fase Terang Fotosintesis
Perubahan energi cahaya menjadi energi kimia menghasilkan ATP dan NADPH tereduksi. ATP dibentuk melalui proses fotofosforilasi, sedangkan NADPH dibentuk melalui proses fotoreduksi.
Fase terang fotosintesis merupakan fase reaksi kimia fotosintesis yang membutuhkan cahaya sehingga fase terang disebut juga fase reaksi fotokimia.
Energy diagram of the photosynthetic electron transport system Light
Light
O2
Chlorophyll a/b
Chlorophyll a
P680 Electron transfer
P700 Electron transfer NADPH
ATP H2O Photosystem II
Photosystem I
Gambar 12.7 Diagram Energi Sistem Transport Elektron Pada Fotosintesis. Pada fase fotokimia terjadi reaksi fotolisa air dan penyerapan energi cahaya matahari oleh klorofil di dalam kloroplas. Proses ini dikatalisis oleh kompleks protein yang
tertanam pada membran tilakoid. Penyerapan energi cahaya atau fotosistem terdiri dari dua sistem yang saling berhubungan. Sistem pertama disebut Fotosistem I (PS I) yang menyangkut penyerapan energi cahaya matahari pada panjang gelombang sekitar 700 nm. Sistem kedua, menyangkut penyerapan energi matahari pada panjang gelombang sekitar 680 nm disebut Fotosistem II (PS II).
Gambar 12.8 Fotosistem I sebagian besar tersusun dari klorofil a dan sedikit klorofil b dan β karoten. Satu dari khlorofil a pada fotosistem I menjadi spesial karena lingkungan kimianya dapat menyerap cahaya dengan panjang gelombang + 700 nm sehingga disebut P 700. P 700 ini merupakan pusat reaksi dari PS I dan semua pigmen lainnya. Pada PS I akan mengirim energi eksitasinya ke P 700. Pada PS I juga dijumpai paling sedikit 2 molekul protein yang mengandung Fe dan setiap 4 atom Fe pada molekul protein ini mengikat 2 atom belerang sehingga disebut protein Fe-S. Fe-S merupakan penerima elektron utama pada PS I .. PS II mengandung klorofil a dan β-karoten serta sedikit klorofil b. Penerima elektron utama pada PS II ini adalah sebuah klorofil a yang tidak berwarna dan tidak mengandung Mg yang disebut Feofitin (FeO). PS II juga mengandung quinon (Q) yang berasosiasi dengan FeO, P 680 dan protein yang terikat pada P 680. Di samping itu PS II juga mengandung salah satu atau lebih protein yang mengandung mangan dan
13
disebut protein Mn. Setiap dua ion Mn pada protein PS II dijembatani antara lain satu ion Cl-. Fotosistem I dan PS II merupakan komponen penyalur energi dalam rantai pengangkutan elektron fotosintesis secara kontinyu dari molekul air sebagai donor elektron ke NADP. Pengangkutan elektron dalam membran tilakoid selama fase terang fotosintesis dimulai dari molekul air (H2O) ke fotosistem II. Elektron dari fotosistem II dipindahkan ke fotsoistem I melalui serangkaian akseptor elektron. Setiap perpindahan elektron melepaskan energi sedikit demi sedikit. Enegi yang dibebaskan digunakan untuk memfosforilasi ADP membentuk ATP. Apabila foton diserap oleh molekul pigmen pada kompleks PS II, maka energi akan ditransfer ke P 680 dengan cara reduksi induktif. Hal ini akan mengakibatkan P 680 tereksitasi dan segera melepaskan elektronnya dan ditangkap oleh mol FeO. P 680 yang kehilangan elektronnya dan menjadi bermuatan positif (P 680+) sehingga akan menarik elektron dari protein Mn di sekitarnya. Apabila protein Mn telah teroksidasi, akan menyerap elektron dari molekul H2O sehingga molekul air akan terurai menjadi H+ dan OH dan satu elektron. Satu elektron yang dilepaskan akibat penguraian air diterima oleh klorofil (P680) yang telah mengalami eksitasi sehingga klorofil tersebut kembali dalam keadaan stabil. Sementara itu elektron yang dilepaskan dari P680 digunakan untuk mereduksi NADP menjadi NADPH. Pengangkutan elektron pada fotosistem II disebut lintasan pengangkutan elektron Non Siklik (reaksi non siklik).
Gambar 12. 10. Pengangkutan elektron non siklik
Elektron yang tereksitasi pada PS II dialirkan ke PS I melalui molekul penerima elektron berturut-turut ke sit b3 yang berasosiasi dengan FeO dan Quinon (Q) ke plastoquinon (PQ), Fe-S, sitokrom f Plastosianin (PS) sampai pada mol P 700.
Pengangkutan elektron dari mol P 700 ke Fe-S dirangkaikan dengan pembentukan ATP dari ADP dengan Pi. Penyerapan foton oleh PS I dengan panjang gelombang > 680 nm mengakibatkan elektron tereksitasi dari P 700 ke Feredoksin – sulfat (Fe-S). Selanjutnya elektron dialirkan ke sit b6, dan diteruskan ke PS, Fe-S, Cyt f, PC dan kembali ke P 700. Pengangkutan elektron pada PS I ini disebut pengangkutan elektron siklik (reaksi siklik).
Gambar 12.11
Figures from Taiz and Zeiger (2002) Plant Physiology.
15
Energi foton yang bersumber dari cahaya matahari diabsorbsi oleh klorofil dan menyebabkan eksitasi elektron. Keadaan tereksitasi ini sangat tidak stabil dan cenderung kembali ke keadaan semula (ground state). Pada saat kembali ke ground state terdapat energi yang dibebaskan. Energi tersebut dapat digunakan untuk aktivitas metabolisme. Pada tumbuhan, kloroplas meneruskan elektron tereksitasi ke molekul tetangganya yang disebut akseptor elektron primer. Rangkaian pemindahan elektron menghasilkan ATP, NADPH, dan oksigen. Mekanisme pembentukan ATP mengikuti cara Chemioosmosis coupling (osmosis kimia berpasangan), yang terjadi karena adanya proses yang berpasangan antara aliran proton dan aliran elektron. Aliran elektron di dalam kloroplas menghasilkan energi, energi tersebut digunakan untuk mengaktifkan angkutan ion H+dari satu sisi membran ke sisi membran yang lain. Di dalam kloroplas protein pembawa memindahkan ion H+ melewati membran tilakoid dari stroma ke ruang tilakoid dan menyebabkan terjadi perbedaan konsentrasi H+ pada membran. Konsentrasi H+ di ruang tilakoid lebih tinggi dari pada bagian luarnya. Perbedaan ini menyebabkan pengaliran ion H+ dari ruang tilakoid kembali ke luar. Aliran proton ini menghasilkan energi untuk mengaktifkan enzim ATPase. Melalui fosforilasi dengan bantuan enzim ATP-ase, ADP diubah menjadi ATP (Permana dkk, 2004) The red X indicates that protons do not directly pass through the cytochrome complex.
X
H+
Protons cross the membrane via oxidation and reduction of quinones
Gambar 12.9. Transpor electron pada membrane tilakoid
Penerimaan energi matahari dan pengangkutan elektron pada PS I dan II dari fase terang fotosintesa secara keseluruhan diperoleh persamaan reaksi :
2. Fase Gelap Fotosintesis Pada fse terang fotosinetsis (reaksi fotofosforilasi) menghasilkan NADPH2 pada fotosistem I (reaksi Non Siklik) dan ATP pada fotosistem II (reaksi fereoksida ke sitokrom b6 dan dari sitokrom b1 ke fase terang fotosintesis digunakan untuk mereduksi CO2. Pada fase ini tidak dibutuhkan cahaya tetapi reaksi yang etrjadi adalah reaksi kimia murni sehingga disebut Fase Gelap Fotosintesis.
Gambar Tanaman dalam mereduksi CO2 dari udara pada dasarnya dibedakan atas 3 kelompok yaitu : 1. Kelompok tanaman yang mengikuti Daur Calvin (siklus Calvin; tanaman C3) 2. Kelompok tanaman yang mengikuti Daun Hatch-Slack (tanaman C4) 3. Kelompok tanaman yang mengikuti daur Metabolisme Asam Crassulaceae (CAM). Daur Calvin (C3) Antara tahun 1946-1953, Malvin Calvin bersama-sama peneliti lain dari Universitas California mengidentifikasi produk awal dari reduksi CO2. Calvin dan kawan-kawan menggunakan teknik kromatografi dan karbondioksida bermuatan radioaktif
17
(14CO2) mendapatkan produk awal reduksi CO2 (fiksasi CO2) pada ganggan Chlorella sp adalah asam-3-fosfogliserat yang sering disingkat dengan PGA. Oleh karena senyawa yang pertama dihasilkan adalah senyawa berkarbon tiga (PGA=APG), maka daur reaksinya disebut daur C3 dan tumbuhan yang mengikuti daur ini disebut tumbuhan C3 (Tanaman C3). Daur Calvin sering disebut juga reaksi gelap fotosintesis atau fiksasi CO2 atau fase Blackman. Daur ini terdiri atas sekumpulan reaksi kimia yang berlangsung di dalam stroma kloroplas dan tidak membutuhkan energi dari cahaya matahari secara langsung. Sumber energi yang diperlukan berasal dari fase terang fotosintesis. Reaksi gelap pada dasarnya berlangsung pada waktu yang sama dengan reaksi terang.
Secara umum Daur Calvin terdiri atas sejumlah reaksi, dan secara sederhana dikelompokkan menjadi empat fase, yaitu 1. Karboksilasi ribulosa bifosfat (RuBP) menjadi fosfogliserat (PGA) atau tahap fiksasi. Proses ini dikatalisis oleh enzim RuBP karboksilase /oksigenase
(Rubisco). Pada peristiwa ini oksigen dari CO2 tidak dibebaskan dalam bentuk O2, melainkan bergabung membentuk satu molekul PGA
RuBP (5 carbon) + CO2
RUBISCO
2 PGA (3 carbon)
2. Reduksi PGA membentuk triosa fosfat,
3. Regenerasi RuBP. Triosa fosfat digabungkan dikombinasikan melalui serangkaian reaksi yang kompleks membentuk Ru5P (ribulosa 5-P)i. Tahap akhir regenerasi RuBP adalah Ru5P + ATP
RuBP + ADP + Pi
Karboksilasi, reduksi dan regenerasi secara kolektif dinamakan Siklus Calvin-Benson. 4. Sintesis produksi akhir (sintesis sukrosa dan pati).
19
Daur Calvin-Benson memerlukan tiga kali putaran sempurna untuk mendapatkan satu molekul karbohidrat yang paling sempurna, namun untuk mempersingkat, maka dituliskan tiga molekul RuBP (P-C5H8O5-P) dengan tiga moleku CO2 sebagai titik awal.
Senyawa C6H5O4-P dinamakan senyawa asam fosfogliserat atau APG (phospoglyceric acid atau PGA). Jadi tahap awal daur Calvin menunjukkan bahwa 3 RuBP bereaksi dengan tiga CO2 dan tiga molekul H2O membentuk enam senyawa PGA. PGA yang terbentuk oleh ATP dan NADPH2 dengan bantuan enzim triosa fosfat dehidrogenase diubah menjadu asam-3-fosfogliserat (PGAL). Sebahagian dari PGAL yang terbentuk oleh enzim triosa fosfat isomerase diubah menjadi dihidroksi aseton fosfat (DHAP). Pada proses ini PGA bergabung dengan hidrogen yang dihasilkan selama fase terang yang tersedia dalam bentuk NADPH2. Reaksi pemindahan hydrogen ke PGA membutuhkan energi dalam bentuk ATP yang juga didapatkan selama fase terang. Reaksinya adalah sebagai berikut:
Dari proses tersebut dihasilkan 6C3H7O4-P. Senyawa ini selanjutnya akan berubah lagi dengan cara melepaskan satu molekul air dan membentuk senyawa 6C3H5O3-P yang lazim disebut fosfogliseraldehida atau PGAL. Reaksinya adalah sebagai berikut:
Dari enam molekul PGAL yang baru dibentuk hanya satu molekul PGAL yang merupakan hasil bersih fotosintesis secara keseluruhan, sedangkan lima molekul PGAL lainnya mengalami serangkaian reaksi kimia yang rumit dan hasil akhirnya adalah 3 molekul RuBP. Secara sederhana dapat dijelaskan sebagai berikut : DHAP dan PGAL secara bersama-sama mengalami kondensasi dengan bantuan enzim aldolase akan menghasilkan fruktosa 1,6 fosfat yang selanjutnya oleh enzim fosfatase melepaskan 1 fosfat organiknya (Pi) sehingga terbentuk fruktosa- 6-fosfat. Fruktosa-6-fosfat dengan PGAL, oleh enzim transketolase diubah menjadi eritrosa-4-fosfat dan xilulosa-5fosfat. Eritrosa-4-fosfat dengan dihidroksi aseton fosfat, oleh enzim aldolase membentuk sedoheptulosa-7-fosfat yang selanjutnya dengan PGAL oleh enzim transketolase diubah menjadi ribosa-5-fosfat dan xilulosa-5-fosfat dengan bantuan enzim epimerase diubah menjadi ribosa-5-fosfat. Ribosa-5fosfat oleh enzim epimerase dan ATP diubah menjadi ribulosa 1,5 bifosfat (RuBP) dan ADP. RuBP yang terbentuk selanjutnya siap untuk memfiksasi CO2 dari udara.
21
PGAL yang merupakan hasil bersih fotosintesis akan mengalami salah satu dari tiga peristiwa yaitu (i) dapat langsung digunakan dalam proses pernapasan atau sebagai bahan untuk membangun komponen structural sel tumbuhan, (ii) untuk pemeliharaan sel. PGAL yang berlebih akan dingkut melalui floem ke sel-sel akar, batang atau kebagian lain tanaman yang tidak berfotosintesis setelah terlebih dahulu diubah menjadi glukosa atau fruktosa, (iii) disimpan pada bagian lain tanaman dalam bentuk pati.
Daur Hatch dan Slack (C4) Pada tahun 1966 M.D. Hatch dan C.R. Slack membuktikan secara detail jalur fiksasi CO2 pada tanaman spesies graminae. Pada tanaman-tanaman seperti jagung,
23
tebu, sorgum, dan beberapa rumput tropika, CO2 menghasilkan asam oksaloasetat, malat, dan aspartat pada tahap awal reaksinya. Kelompok tanaman ini disebut tanaman C4 karena produk awal dari fiksasi CO2 adalah asam-asam yang berkarbon empat (4). Pada tahap awal reaksi golongan tanaman C4, CO2 ditangkap oleh fosfoenolpiruvat (PEP) dengan bantuan enzim fosfoenolpiruvat karbioksilase menghasilkan asam-asam oksaloasetat dan piruvat. CO2 yang masuk ke dalam mesofil daun terlebih dahulu bereaksi dengan H2O membentuk asam karbonat (HCO3) dengan bantuan enzim karbonik anhidrase. Selanjutnya direaksikan dengan PEP menghasilkan asam oksaloasetat (1). Tahap selanjutnya asam oksaloasetat yang terbentuk mengalami reduksi oleh NADPH dengan enzim malat dehidrogenase menghasilkan asam malat (2). Pada beberapa tanaman C4 asam oksaloasetat dalam mesofil daun akan bereaksi dengan asam amino (umumnya alanin) dan menghasilkan asam apartat dan asam piruvat (3). Berbeda dengan tanaman C3, tanaman C4 memiliki seludang berkas pembuluh di samping sel mesofil. Pada sel mesofil terdapat enzim PEP karboksiale sedang dalam sel seludang berkas pembuluh (bundle sheath cell) mengandung enzim RuBP karboksilase (Rubisko). Asam malat dan aspartat melalui palsmodesmata sel ditransformasi ke seludang berkas pembuluh. Selanjutnya asam malat mengalami dehidrogenase sehingga akan membentuk asam piruvat dengan melepaskan CO2 (4). CO2 yang terlepas dari dehidrogenase malat akan ditangkap oleh RuBP dengan bantuan Rubisko akan mengalami daur Calvin seperti pada tanaman C3. Pada spesies tanaman yang banyak membentuk asam aspartat, setelah ditransaminasi menghasilkan asam oksaloasetat. Asam oksaloasetat direduksi oleh NADPH menghasilkan malat. Di dalam seludang berkas pembuluh, asam piruvat dapat mengalami proses transaminasi menghasilkan alanin yang selanjutnya kembali ditransformasi ke sel mesofil. Dalam sel mesofil alanin kembali mengalami reaksi transaminasi sehingga terbentuk asam aspartat. Asam aspartat dengan bantuan ATP dan asam fosfat (H2PO4) serta enzim piruvat fosfat kinase diubah menjadi PEP untuk selanjutnya memfiksasi CO2 dari udara. Pada golongan tanaman C4 tiap molekul CO2 yang difiksasi diperlukan 2 ATP
selain tiga ATP yang digunakan dalam daur Calvin. Dua ATP ini diperlukan untuk Pada golongan tanaman C4 tiap molekul CO2 yang difiksasi diperlukan 2 ATP selain tiga ATP yang digunakan dalam daur Calvin. Dua ATP ini diperlukan untuk mengubah asam piruvat menjadi PEP dan AMP menjadi ADP. Dengan demikian maka ringkasan reaksinya secara keseluruhan adalah: 6 CO2 + 30 ATP + 12 NADPH + 12 H+ + 24 H2O Glukosa + 30 ADP + 30 Pi + 12 NADPH+ Metabolisme Asam Crassulaceae (CAM) Sejumlah tanaman yang bersifat sukulen dari famili Crassulaceae mempunyai daun yang tebal dengan laju transpirasi yang rendah. Kelompok tanaman ini umumnya tidak memiliki lapisan sel palisade yang teratur, sel-sel daun ranting merupakan sel mesofil, empunyai vakuola yang relatif besar. Pada malam hari, umumnya stomata tanaman CAM membuka dan pada siang hari stomata tertutup (Gambar 39). Pada malam hari (waktu gelap) pati pada mesofil daun diuraikan melalui proses glikolisis (respirasi) hingga terbentuk PEP. CO2 yang masuk ke dalam daun setelah bereaksi dengan air seperti tanaman golongan C4 difiksasi oleh PEP dan diubah menjadi malat. Asam malat yang terbentuk sebahagian besar ditransformasikan ke dalam vakuola sel dan disimpan samapi siang hari. Pada siang hari asam malat berdifusi secara pasif ke luar dari vakuola dan mengalami dekarboksilasi melalui salah satu dari tiga cara yang mungkin terjadi seperti diperlihatkan pada Gambar 39. CO2 yang terlepas dari asam malat kemudian difiksasi oleh RuBP dan terus mengalami daur seperti pada tanaman C3. Dengan demikian maka pada dasarnya tanaman CAM melakukan fiksasi CO2 mengikuti Daur Calvin (C3) dan Daur Hatch dan Slack (C4). Pada siang hari terjadi Daur Calvin dengan memanfaatkan CO2 dari dehidrogenase malat, dan malam hari terjadi Daur Hatch dan Slack (C4) dengan memanfaatkan CO2 yang berdifusi ke dalam sel mesofil pada malam hari.