History Of Computer

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View History Of Computer as PDF for free.

More details

  • Words: 1,802
  • Pages: 10
HISTORY OF COMPUTER Computing hardware has been an important component of the process of calculation and data storage since it became useful for numerical values to be processed and shared. The earliest computing hardware was probably some form of tally stick; later record keeping aids include Phoenician clay shapes which represented counts of items, probably livestock or grains, in containers. Something similar is found in early Minoan excavations. These seem to have been used by the merchants, accountants, and government officials of the time. Devices to aid computation have changed from simple recording and counting devices to the abacus, the slide rule, analog computers, and more recent electronic computers. Even today, an experienced abacus user using a device hundreds of years old can sometimes complete basic calculations more quickly than an unskilled person using an electronic calculator — though for more complex calculations, computers outperform even the most skilled human. This article covers major developments in the history of computing hardware, and attempts to put them in context. For a detailed timeline of events, see the computing timeline article. The history of computing article is a related overview and treats methods intended for pen and paper, with or without the aid of tables.

The Five Generations of Computers The history of computer development is often referred to in reference to the different generations of computing devices. Each generation of computer is characterized by a major technological development that fundamentally changed the way computers operate, resulting in increasingly smaller, cheaper, and more powerful and more efficient and reliable devices. Read about each generation and the developments that led to the current devices that we use today.

First generation – Vacuum Tubes

ABACUS The first computers used vacuum tubes for circuitry and magnetic drums for memory, and were often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, which was often the cause of malfunctions. First generation computers relied on machine language to perform operations, and they could only solve one problem at a time. Input was based on punched cards and paper tape, and output was displayed on printouts. The UNIVAC and ENIAC computers are examples of firstgeneration computing devices. The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in 1951.

Second Generation - 1956-1963: Transistors

Transistors replaced vacuum tubes and ushered in the second generation of computers. The transistor was invented in 1947 but did not see widespread use in computers until the late 50s. The transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube. Second-generation computers still relied on punched cards for input and printouts for output. Second-generation computers moved from cryptic binary machine language to symbolic, or assembly, languages, which allowed programmers to specify instructions in words. Highlevel programming languages were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic core technology.

Third Generation - 1964-1971: Integrated Circuits

The development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed and efficiency of computers. Instead of punched cards and printouts, users interacted with third generation computers through keyboards and monitors and interfaced with an operating system, which allowed the device to run many different applications at one time with a central program that monitored the memory. Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors.

Fourth Generation - 1971-Present: Microprocessors

The microprocessor brought the fourth generation of computers, as thousands of integrated circuits were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer from the central processing unit and memory to input/output controls - on a single chip. In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and more everyday products began to use microprocessors. As these small computers became more powerful, they could be linked together to form networks, which eventually led to the development of the Internet. Fourth generation computers also saw the development of GUIs, the mouse and handheld devices.

Fifth Generation - Present and Beyond: Artificial Intelligence

Fifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. The use of parallel processing and superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of learn The Fifth Generation Computer Systems project (FGCS) was an initiative by Japan's Ministry of International Trade and Industry, begun in 1982, to create a "fifth generation computer" (see history of computing hardware) which was supposed to perform much calculation utilizing massive parallelism. It was to be the end result of a massive government/industry research project in Japan during the 1980s. It aimed to create an "epoch-making computer" with supercomputer-like performance and usable artificial intelligence capabilities. The term fifth generation was intended to convey the system as being a leap beyond existing machines. Computers using vacuum tubes were called the first generation; transistors and

diodes, the second; ICs, the third; and those using microprocessors, the fourth. Whereas previous computer generations had focused on increasing the number of logic elements in a single CPU, the fifth generation, it was widely believed at the time, would instead turn to massive numbers of CPUs for added performance and self-organization.

FIRST GENERATION

World War gave rise to numerous developments and started off the computer age. Electronic Numerical Integrator and Computer (ENIAC) was produced by a partnership between University of Pennsylvanian and the US government. It consisted of 18,000 vacuum tubes and 7000 resistors. It was developed by John Presper Eckert and John W. Mauchly and was a general purpose computer. "Von Neumann designed the Electronic Discrete Variable Automatic Computer (EDVAC) in 1945 with a memory to hold both a stored program as well as data." Von Neumann's computer allowed for all the computer functions to be controlled by a single source. Then in 1951 came the Universal Automatic Computer (UNIVAC I), designed by Remington rand and collectively owned by US census bureau and General Electric. UNIVAC amazingly predicted the winner of 1952, presidential elections, Dwight D. Eisenhower. In first generation computers, the operating instructions or programs were specifically built for the task for which computer was manufactured. The Machine language was the only way to tell these machines to perform the operations. There was great difficulty to program these computers and more when there were some malfunctions. First Generation computers used Vacuum tubes and magnetic drums (for data storage). SECOND GENERATION The invention of Transistors marked the start of the second generation. These transistors took place of the vacuum tubes used in the first generation computers. First large scale machines were made using these technologies to meet the requirements of atomic energy laboratories. One of the other benefits to the programming group was that the second generation replaced Machine language with the assembly language. Even though complex in itself Assembly language was much easier than the binary code. Second generation computers also started showing the characteristics of modern day computers with utilities such as printers, disk storage and operating systems. Much financial information was processed using these computers. In Second Generation computers, the instructions (program) could be stored inside the computer's memory. High-level languages such as COBOL (Common Business-Oriented Language) and FORTRAN (Formula Translator) were used, and they are still used for some applications nowadays. FOURTH GTENERATION Fourth Generation computers are the modern day computers. The Size started to go down with the improvement in the integerated circuits. Very Large Scale (VLSI) and Ultra Large scale (ULSI) ensured that millions of components could be fit into a small chip. It reduced the size and price of the computers at the same time increasing power, efficiency and reliability. "The Intel 4004 chip, developed in 1971, took the integrated circuit one step further by locating all the components of a computer (central processing unit, memory, and input and output controls) on a minuscule chip." Due to the reduction of cost and the availability of the computers power at a small place allowed everyday user to benefit. First came the minicomputers, which offered users different applications, most famous of these the word processors and spreadsheets, which could be used by

non-technical users. Video game systems like Atari 2600 generated the interest of general populace in the computers. In 1981, IBM introduced personal computers for home and office use. "The number of personal computers in use more than doubled from 2 million in 1981 to 5.5 million in 1982. Ten years later, 65 million PCs were being used." Computer size kept getting reduced during the years. It went down from Desktop to laptops to Palmtops. Machintosh introduced Graphic User Interface in which the users didn’t' have to type instructions but could use Mouse for the purpose. The continued improvement allowed the networking of computers for the sharing of data. Local Area Networks (LAN) and Wide Area Network (WAN), were potential benefits, in that they could be implemented in corporations and everybody could share data over it. Soon the internet and World Wide Web appeared on the computer scene and formented the Hi-Tech revolution of 90' FIFTH GENERATION Fifth generations computers are only in the minds of advance research scientists and being tested out in the laboratories. These computers will be under Artificial Intelligence (AI), they will be able to take commands in a audio visual way and carry out instructions. Many of the operations which require low human intelligence will be performed by these computers. Parallel Processing is coming and showing the possibility that the power of many CPU's can be used side by side, and computers will be more powerful than those under central processing. Advances in Super Conductor technology will greatly improve the speed of information traffic. Future looks bright for the computers.

Related Documents

History Of Computer
April 2020 9
History Of Computer
November 2019 13
Computer History
December 2019 18