Giai-deso1

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Giai-deso1 as PDF for free.

More details

  • Words: 1,473
  • Pages: 4
www.khoabang.com.vn

LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0

___________________________________________________________ C©u 1 1) B¹n ®äc tù gi¶i nhÐ! 2) LÊy A(0, b) lµ mét ®iÓm trªn Oy. §−êng th¼ng qua A, víi hÖ sè gãc k cã ph−¬ng tr×nh : y = kx + b. Ta cã y =

x2 − x + 1 1 1 =x+ ; y' = 1 − x −1 x −1 (x − 1)2

Hoµnh ®é tiÕp ®iÓm cña ®−êng th¼ng y = kx + b víi ®å thÞ (C) lµ nghiÖm cña hÖ 1   x + x − 1 = kx + b   1 1 − =k  (x − 1)2

⇒ x+

 1 1  = 1 − x+ b x − 1  (x − 1)2 

⇒ bx2 − 2(1 + b)x + (1 + b) = 0 (1) y b = 0 : (1) trë thµnh −2x + 1 = 0 ⇔ x = y b ≠ 0 : (1) cã nghiÖm khi

1 2

∆ ' = (1 + b)2 − b(1 + b) ≥ 0 ⇔ b ≥ −1 (b ≠ 0)

Thµnh thö c¸c ®iÓm trªn Oy tõ ®ã cã thÓ ®−îc Ýt nhÊt mét tiÕp tuyÕn ®Õn ®å thÞ (C) lµ c¸c ®iÓm cã tung ®é b ≥ −1. 3) Hoµnh ®é tiÕp ®iÓm cña parabol y = x2 + a víi ®å thÞ (C) lµ nghiÖm cña hÖ : 1  2 x + x − 1 = x + a o   1 1 − = 2x  (x − 1)2

Tõ ph−¬ng tr×nh thø hai, suy ra : x(2x2 − 5x + 4) = 0 ⇒ x = 0.

Thay vµo ph−¬ng tr×nh ®Çu th× ®−îc a = - 1. C©u II. §Æt S = x + y, P = xy, ta ®i ®Õn hÖ : S + P = m  2 S − 2P = m

1) Víi m = 5 ta ®−îc : S + P = 5  2 S − 2P = 5

⇒ P=5−S ⇒

S2 + 2S − 15 = 0

⇒ S = −5, S = 3. Víi S = −5, ta cã P = 10, lo¹i v× ®iÒu kiÖn S2 ≥ 4P kh«ng ®−îc nghiÖm ®óng. x = 2, y = 1,

Víi S = 3, ta cã P = 2 vµ ®−îc 

x = 1  y = 2.

2) Trong tr−êng hîp tæng qu¸t, P = m - S ⇒ S2 + 2S − 3m = 0 .

www.khoabang.com.vn

LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0

___________________________________________________________ §Ó ph−¬ng tr×nh cã nghiÖm, cÇn ph¶i cã : 1 ∆ ' = 1 + 3m ≥ 0 ⇒ m ≥ − . 3

Khi ®ã gäi S1 vµ S2 lµ c¸c nghiÖm : S1 = −1 − 1 + 3m , S2 = −1 + 1 + 3m .

a) Víi S = S1 ⇒ P = m − S1 , ®iÒu kiÖn S2 ≥ 4P trë thµnh (1 + 1 + 3m)2 ≥ 4(m + 1 + 1 + 3m) ⇒ −(m + 2) ≥ 2 1 + 3m ,

kh«ng ®−îc nghiÖm v× m ≥ −

1 ⇒ m + 2 > 0. 3

b) Víi S = S2 ⇒ P = m − S2 , ®iÒu kiÖn S2 ≥ 4P trë thµnh : (−1 + 1 + 3m)2 ≥ 4(m + 1 − 1 + 3m) ⇒ 2 1 + 3m ≥ m + 2 .

V× m + 2 > 0, cã thÓ b×nh ph−¬ng hai vÕ cña bÊt ph−¬ng tr×nh nµy vµ ®i ®Õn 0 ≥ m2 − 8m ⇒ 0 ≤ m ≤ 8 .

Cïng víi m ≥ −

1 suy ra ®¸p sè : 0 ≤ m ≤ 8. 3

C©u III. 1) HiÓn nhiªn víi x = 0 bÊt ph−¬ng tr×nh ®−îc nghiÖm víi mäi y. XÐt x > 0 ⇒ cosy + sin y ≥ −

1 + x2 . 2x

Hµm f (y) = cosy + siny cã gi¸ trÞ lín nhÊt b»ng − 2≥−

2 , gi¸ trÞ nhá nhÊt b»ng − 2 , vËy ph¶i cã :

2

1+ x ⇒ x2 − 2 2x + 1 ≥ 0 ⇒ 2x

⇒ 0 < x ≤ 2 −1, x ≥ 2 +1.

XÐt x < 0 ⇒ cosy + sin y ≤ −

2

1+ x ⇒ 2x



2≤−

1 + x2 ⇒ x2 + 2 2x + 1 ≥ 0 ⇒ x ≤ − 2 − 1 , 2x

− 2 +1≤ x < 0 .

Tãm l¹i c¸c gi¸ trÞ ph¶i t×m lµ : x ≤ − 2 − 1 , − 2 + 1 ≤ x ≤ 2 − 1,

| x | ≥ 2 +1 , | x | ≤ 2 −1

hay : 2) §iÒu kiÖn : x ≠

π + kπ ( k ∈ Z). Chia hai vÕ cho cos2 x ta ®−îc ph−¬ng tr×nh t−¬ng ®−¬ng : 2

tg2 x(tgx + 1) = 3tgx(1 − tgx) + 3(1 + tg2 x)

⇔ tg2 x(tgx + 1) − 3(tgx + 1) = 0 ⇔ (tgx + 1)(tg2 x − 3) = 0  tgx = −1 ⇔   tgx = ± 3

2 +1≤ x

π   x = − 4 + kπ ⇔   x = ± π + kπ  3

( k ∈ Z)

www.khoabang.com.vn LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0 ________________________________________________________________________________

C©u IVa. CÇn ®Ó ý r»ng c¸c ®ûêng th¼ng (D), (D’) vu«ng gãc víi nhau vµ chóng cã phû¬ng tr×nh tham sè  x = bt (D) :   y = at

 x = at' (D’) :   y = −bt'

1) Thay biÓu thøc cña (D) vµo phû¬ng tr×nh cña (E), ta ®ûîc c¸c gi¸ trÞ cña tham sè t øng víi c¸c giao ®iÓm M, N. Tõ ®ã suy ra ch¼ng h¹n (do cã sù trao ®æi vai trß cña M, N):  M 

6b 9a 2 + 4b 2

,

   , N   9a 2 + 4b 2  

,-

   , Q   4a 2 + 9b 2  

6a

6b 9a 2 + 4b 2

,-

 . 2 2  9a + 4b 

,

 . 2 2  4a + 9b 

6a

Tû¬ng tù:  P 

6a 4a 2 + 9b 2

6b

6a 4a 2 + 9b 2

6b

2) Tø gi¸c MPNQ lµ h×nh thoi, víi diÖn tÝch 72(a 2 + b 2 )

S = 2OM.OP =

(9a 2 + 4b 2 )(4a 2 + 9b 2 )

.

(1)

3) §Ó ý r»ng c¸c phû¬ng tr×nh cña (D) vµ (D’) cã d¹ng thuÇn nhÊt (hay ®¼ng cÊp) ®èi víi a, b, tøc lµ thay cho a vµ b, ta viÕt ka vµ kb víi k ¹ 0. Do vËy, cã thÓ coi r»ng a 2 + b 2 = 1. Khi ®ã (1) trë thµnh S=

72 2

2

(4 + 5a )(4 + 5b )

=

72 2

36 + 25a b

2



72 = 12, 6

dÊu = chØ cã thÓ x¶y ra khi ab = 0, tøc lµ hoÆc a = 0 hoÆc b = 0. (Khi ®ã cÆp ®ûêng th¼ng (D) vµ (D’) trïng víi cÆp hÖ trôc täa ®é). 4) VÉn víi gi¶ thiÕt a 2 + b 2 = 1, theo trªn ta cã S=

72 36 + 25a 2 b 2

www.khoabang.com.vn LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0 ________________________________________________________________________________

1 V× 2|ab| £ a 2 + b 2 = 1 suy ra a 2 b 2 £ , dÊu = chØ x¶y ra khi |a| = |b|, vËy S ³ 4

72 36 +

25 4

=

144 , 13

144 , x¶y ra khi |a| = |b|, tøc lµ cÆp ®ûêng th¼ng (D), (D’) lµ cÆp c¸c ph©n gi¸c y ⊄ x = 0 cña hÖ 13 trôc täa ®é Oxy.

suy ra min S =

C©u IVb. (H×nh bªn)

1) BK ⊥ AC, BK ⊥ AM ÞBK⊥(ACM)ÞBK⊥CM. Cïng víi BH ⊥ CM, suy ra (BKH) ⊥ CM Þ BN ⊥ CM. 2) Do (BKH) ⊥ CM Þ KH ⊥ CM. VËy K lµ trùc t©m tam gi¸c CMN, vµ ta ®ûîc MK ⊥ CN. Cïng víi BK ⊥ CN Þ (BMK)⊥ CN Þ BM ⊥ CN. 3) V× K lµ trùc t©m tam gi¸c CMN, nªn AM.AN = AK.AC VËy khi M di chuyÓn trªn d, tÝch AM.AN kh«ng ®æi Þ MN = = AM + AN nhá nhÊt khi AM = AN. Khi ®ã AM 2 = AK.AC, AM lµ ®ûêng cao trong tam gi¸c vu«ng CMK’, c¹nh huyÒn CK’, K’ lµ ®iÓm ®èi xøng cña K qua A.