Friction Stir Welding

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Friction Stir Welding as PDF for free.

More details

  • Words: 689
  • Pages: 4
Friction Stir Welding H. K. D. H. Bhadeshia Friction stir welding, a process invented at TWI, Cambridge, involves the joining of metals without fusion or filler materials. It is used already in routine, as well as critical applications, for the joining of structural components made of aluminium and its alloys. Indeed, it has been convincingly demonstrated that the process results in strong and ductile joints, sometimes in systems which have proved difficult using conventional welding techniques. The process is most suitable for components which are flat and long (plates and sheets) but can be adapted for pipes, hollow sections and positional welding. The welds are created by the combined action of frictional heating and mechanical deformation due to a rotating tool. The maximum temperature reached is of the order of 0.8 of the melting temperature.

The tool has a circular section except at the end where there is a threaded probe or more complicated flute; the junction between the cylindrical portion and the probe is known as the shoulder. The probe penetrates the workpiece whereas the shoulder rubs with the top surface. The heat is generated primarily by friction between a rotating--translating tool, the shoulder of which rubs against the workpiece. There is a volumetric contribution to heat generation from the adiabatic heating due to deformation near the pin. The welding parameters have to be adjusted so that the ratio of frictional to volumetric deformation--induced heating decreases as the workpiece becomes thicker. This is in order to ensure a sufficient heat input per unit length. The microstructure of a friction-stir weld depends in detail on the tool design, the rotation and translation speeds, the applied pressure and the characteristics of the material being joined. There are a number of zones. The heat-affected zone (HAZ) is as in conventional welds. The central nugget region containing

the onion-ring flow-pattern is the most severely deformed region, although it frequently seems to dynamically recrystallise, so that the detailed microstructure may consist of equiaxed grains. The layered (onion-ring) structure is a consequence of the way in which a threaded tool deposits material from the front to the back of the weld. It seems that cylindrical sheets of material are extruded during each rotation of the tool, which on a weld cross--section give the characteristic onion-rings. The thermomechanically-affected zone lies between the HAZ and nugget; the grains of the original microstructure are retained in this region, but in a deformed state. The top surface of the weld has a different microstructure, a consequence of the shearing induced by the rotating tool-shoulder. Further details of the process can be found in Joining of Commercial Aluminium Alloys, a paper published in the proceedings of an International Conference on Aluminium (INCAL 2003).

The Machine The six photographs below show a typical friction stir welding (FSW) machine. This one is at the Joining and Welding Research Institute (JWRI) of Osaka University, Japan. The photographs are taken with the permission of Professor Hidetoshi Fujii; they can be enlarged by clicking on the thumbnails. The last two photographs are a close-up of the tool, as mounted in the machine.

The Tool

An illustration of some types of tools. Each tool has a shoulder whose rotation against the substrate generates most of the heat required for welding. The pin on the tool is plunged into the substrate and helps stir the metal in the solid state.

The Fixture and Weld The two halves to be joined must be rigidly fixed before the welding operation (first picture below). The pin, which is an integral part of the tool, is plunged into the metal to help stir it up; the shoulder of the tool generates much of the heat. As the weld is completed, the tool is withdrawn. leaving behind a hole. The weld is designed so that such regions can be discarded from the component. The presence of a hole may not be appropriate when welding pipes or storage vessels. The hole can be avoided by designing the tool such that only the pin can be retracted automatically and gently into the shoulder, leaving behind an integral weld.

Movies of FSW http://www.msm.cam.ac.uk/phase-trans/2003/FSW/aaa.html http://www.azom.com/details.asp?ArticleID=1170#_Advantages_of_Friction

Related Documents

Friction Stir Welding
June 2020 0
Friction Stir Welding
November 2019 3
Friction Welding
May 2020 10
Friction
October 2019 44
Friction
November 2019 23