Faizal.docx

  • Uploaded by: DimasP
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Faizal.docx as PDF for free.

More details

  • Words: 2,338
  • Pages: 15
TUGAS SENSOR DAN TRANDUSER MACAM-MACAM SENSOR DAN APLIKASINYA

Oleh : DIMAS PRAKASA NIM

173111106

POLITEKNIK NEGERI MALANG PROGRAM STUDI TEKNIK ELEKTRO 2018

MACAM SENSOR DAN APLIKASINYA 1. Photo Dioda 1.1 Prinsip Kerja Photodioda terbuat dari semikonduktor p-n junction maka cahaya yang diserap oleh photodioda akan mengakibatkan terjadinya pergeseran foton yang akan menghasilkan pasangan electron-hole dikedua sisi dari sambungan. Ketika elektron-elektron yang dihasilkan itu masuk ke pita konduksi maka elektron-elektron itu akan mengalir ke arah positif sumber tegangan sedangkan hole yang dihasilkan mengalir ke arah negatif sumber tegangan sehingga arus akan mengalir di dalam rangkaian. Besarnya pasangan elektron ataupun hole yang dihasilkan tergantung dari besarnya intensitas cahaya yang diserap oleh photodioda.

Photodiodes dibuat dari semikonduktor dengan bahan yang populer adalah silicon ( Si) atau galium arsenida ( GaAs), dan yang lain meliputi InSb, InAs, PbSe. Material ini menyerap cahaya dengan karakteristik panjang gelombang mencakup: 2500 Å - 11000 Å untuk silicon, 8000 Å – 20,000 Å untuk GaAs. Ketika sebuah photon (satu satuan energi dalam cahaya) dari sumber cahaya diserap, hal tersebut membangkitkan suatu elektron dan menghasilkan sepasang pembawa muatan tunggal, sebuah elektron dan sebuah hole, di mana suatu hole adalah bagian dari kisi-kisi semikonduktor yang kehilangan elektron. Arah Arus yang melalui sebuah semikonduktor adalah kebalikan dengan gerak muatan pembawa. cara tersebut didalam sebuah photodiode digunakan untuk mengumpulkan photon - menyebabkan pembawa muatan (seperti arus atau tegangan) mengalir/terbentuk di bagian-bagian elektroda. Photodioda digunakan sebagai penangkap gelombang cahaya yang dipancarkan oleh Infrared. Besarnya tegangan atau arus listrik yang dihasilkan oleh photodioda tergantung besar kecilnya radiasi yang dipancarkan oleh infrared. Photo dioda digunakan sebagai komponen pendeteksi ada tidaknya cahaya maupun dapat digunakan untuk membentuk sebuah alat ukur akurat yang dapat mendeteksi intensitas cahaya dibawah 1pW/cm2 sampai intensitas diatas 10mW/cm2. Photo dioda mempunyai resistansi yang rendah pada kondisi forward bias, kita dapat memanfaatkan photo dioda ini pada kondisi reverse bias dimana resistansi dari photo dioda akan turun seiring dengan intensitas cahaya yang masuk.

Jika photo dioda tidak terkena cahaya, maka tidak ada arus yang mengalir ke rangkaian pembanding, jika photo dioda terkena cahaya maka photodiode akan bersifat sebagai tegangan, sehingga Vcc dan photo dioda tersusun seri, akibatnya terdapat arus yang mengalir ke rangkaian pembanding.

Sifat dari Photodioda adalah : 1. Jika terkena cahaya maka resistansi nya berkurang 2. Jika tidak terkena cahaya maka resistansi nya meningkat. 1.2 Contoh Aplikasi Sederhana

Alarm Otomatis Dengan Sensor Infrared Dan Photodioda

Ketika cahaya infrared terpotong maka arus (i) tidak mengalir pada photodiode sehingga menon-aktifkan TR1 dan sebaliknya TR2 akan menjadi aktif dan rangkaian relay pun ikut menjadi aktif. Karena relay aktif maka akan menarik saklar ke posisi ON sehingga tegangan sumber dapat mengalir ke alarm. Sehingga alarm akan berbunyi.

2. Photo Transistor 2.1 Prinsip Kerja Sama halnya dioda foto, maka transistor foto juga dapat dibuat sebagai sensor cahaya. Teknis yang baik adalah dengan menggabungkan dioda foto dengan transistor foto dalam satu rangkain. – Karakteristik transistor foto yaitu hubungan arus, tegangan dan intensitas foto – Kombinasi dioda foto dan transistor dalam satu chip – Transistor sebagai penguat arus – Linieritas dan respons frekuensi tidak sebaik diode

2.1 Contoh Aplikasi Sederhana

Alarm Otomatis Dengan Sensor Infrared Dan Photo-Transistor Ketika cahaya infrared terpotong maka TR1 (phototransistor) tidak aktif dan sebaliknya TR2 akan menjadi aktif dan rangkaian relay pun ikut menjadi aktif. Karena relay aktif maka akan menarik saklar ke posisi ON sehingga tegangan sumber dapat mengalir ke alarm. Sehingga alarm akan berbunyi. 3. LDR (Light Dependent Resistor) 3.1 Prinsip Kerja LDR (Light Dependent Resistor) adalah suatu komponen elektronik yang resistansinya berubah ubah tergantung pada intensitas cahaya. Jika intensitas cahaya semakin besar maka resistansi LDR semakin kecil, jika intensitas cahaya semakin kecil maka resistansi LDR semakin besar. LDR sering juga disebut dengan sensor cahaya.

Gambar Bentuk Fisik LDR

Cara merangkai LDR ada 2, tergantung dengan respon yang diinginkan. Rangkaian itu antara lain: Gambar Rangkaian 1

Gambar Rangkaian 2

1.2 Keterangan :  Cara kerja rangkaian 1 adalah pada saat intensitas cahaya disekitar LDR membesar, maka hambatan LDR akan mengecil. Hal ini menyebabkan tegangan pada Titik 1 semakin besar. Dan sebaliknya, jika intensitas cahaya disekitar LDR semakin kecil, maka hambatan LDR semakin besar. Hal ini menyebabkan tegangan pada Titik 1 semakin kecil.  Cara kerja rangkaian 2 adalah pada saat intensitas cahaya disekitar LDR mengecil, maka hambatan LDR akan membesar. Hal ini menyebabkan tegangan pada Titik 2 semakin membesar. Dan sebaliknya, jika intensitas cahaya disekitar LDR semakin besar, maka hambatan pada LDR semakin kecil. Hal ini menyebabkan tegangan pada Titik 2 semakin mengecil. LDR memanfaatkan bahan semikonduktor yang karakteristik listriknya berubah-ubah sesuai dengan cahaya yang diterima. Bahan yang digunakan adalah Kadmium Sulfida (CdS) dan Kadmium Selenida (CdSe).

1.3 Contoh Aplikasi Sederhana Contoh penggunaannya adalah pada lampu taman dan lampu jalan yang bisa menyala di malam hari dan padam di siang hari secara otomatis.

APLIKASI LDR UNTUK LAMPU JALAN Pada dasarnya rangkaian diatas dirancang bagaimana supaya dengan adanya kenaikan resistansi pada LDR akan bisa memposisikan saklar relay ke posisi ON. Karena karakteristik dari LDR adalah naiknya tingkat kegelapan kondisi cahaya akan menaikkan nilai tahanan dari LDR tersebut dengan kata lain semakin terang atau semakin besar intensitas cahaya akan menurunkan nilai resistansinya. Jadi sesuai sifat LDR tadi maka LDR tersebut dihubungkan seri dengan tahanan VR (variable resistor) sehingga terjadi pembagian tegangan antara keduanya. Kemudian posisikan besarnya tegangan pada salah satu diantara keduanya untuk dijadikan sebagai pemicu pada basis transistor. Pada saat kondisi semakin gelap nilai tahanan LDR akan naik dan terjadi pula kenaikan nilai tegangan pada LDR (sesuai hukum pembagi tegangan) maka artinya tegangan pada LDR ini bisa kita jadikan sebagai supply tegangan untuk pemicu basis transistor sehingga akan mengaktifkan transistor dan rangkaian relay. Kemudian relay akan menarik saklar ke posisi ON dan arus dari sumber mengalir ke lampu sehingga lampu akan menyala. 4. SENSOR BIMETAL 4.1 Prinsip Kerja Bimetal adalah sensor temperatur yang sangat populer digunakan karena kesederhanaan yang dimilikinya. Bimetal biasa dijumpai pada alat strika listrik dan lampu kelap-kelip (dimmer). Bimetal adalah sensor suhu yang terbuat dari dua buah lempengan logam yang berbeda koefisien muainya (α) yang direkatkan menjadi satu.

Bila suatu logam dipanaskan maka akan terjadi pemuaian, besarnya pemuaian tergantung dari jenis logam dan tingginya temperatur kerja logam tersebut. Bila dua lempeng logam saling direkatkan dan dipanaskan, maka logam yang memiliki koefisien muai lebih tinggi akan memuai lebih panjang sedangkan yang memiliki koefisien muai lebih rendah memuai lebih pendek. Oleh karena perbedaan reaksi muai tersebut maka bimetal akan melengkung kearah logam yang muainya lebih rendah. Dalam aplikasinya bimetal dapat dibentuk menjadi saklar Normally Closed (NC) atau Normally Open (NO).

Sistem Tanda Belok dengan Flasher Tipe Bimetal Sistem tanda belok tipe ini yaitu dengan mengandalkan kerja dari dua keping/bilah (strip) bimetal untuk mengontrol kedipannya. Bimetal terdiri dari dua logam yang berbeda (biasanya kuningan dan baja) yang digabung menjadi satu. Jika ada panas dari aliran listrik yang masuk ke bimetal, maka akan terjadi pengembangan/pemuaian dari logam yang berbeda tersebut dengan kecepatan yang berbeda pula. Hal ini akan menyebabkan bimetal cenderung menjadi bengkok ke salah satu sisi. Dalam flasher tipe bimetal terdapat dua keping bimetal yang dipasang berdekatan dan masing-masing mempunyai plat kontak pada salah satu ujungnya.

Konstruksi Bimetal (Yayan I.B, 1998)

Cara kerja sistem tanda belok dengan flasher tipe bimetal Pada saat saklar lampu sein digerakan (ke kiri atau kanan), arus mengalir ke voltage coil (kumparan) yang akan membuat kumparan tersebut memanas dan bengkok. Setelah kebengkokannya sampai menghubungkan kedua plat kontak di bagian ujungnya, arus kemudian mengalir ke current coil (kumparan arus) terus ke lampu sein/tanda belok dan akhirnya ke massa (gambar dibawah ). Saat ini lampu sein menyala dan current coil akan mulai bengkok menjauhi voltage coil.

Setelah kebengkokan current coil membuat plat kontak terpisah/terbuka, maka lampu sein mati. Selanjutnya current coil akan menjadi dingin setelah arus yang mengalir hilang dan akhirnya bimatalnya akan lurus kembali posisinya sehingga plat kontak menempel kembali dengan plat kontak yang dari voltage coil. Arus akan mengalir kembali untuk menghidupkan lampu sein. Begitu seterusnya proses ini berulang sehingga lampu tanda belok berkedip.

5. THERMISTOR 5.1 Prinsip Kerja Thermistor atau tahanan thermal adalah alat semikonduktor yang berkelakuan sebagai tahanan dengan koefisien tahanan temperatur yang tinggi, yang biasanya negatif. Umumnya tahanan Thermistor pada temperatur ruang dapat berkurang 6% untuk setiap kenaikan temperatur sebesar 1oC. Kepekaan yang tinggi terhadap perubahan temperatur ini membuat Thermistor sangat sesuai untuk pengukuran, pengontrolan dan kompensasi temperatur secara presisi.

Gambar Thermister

Thermistor terbuat dari campuran oksida-oksida logam yang diendapkan seperti: mangan (Mn), nikel (Ni), cobalt (Co), tembaga (Cu), besi (Fe) dan uranium (U). Rangkuman tahanannya adalah dari 0,5 sampai 75 dan tersedia dalam berbagai bentuk dan ukuran. Ukuran paling kecil berbentuk mani-manik (beads) dengan diameter 0,15 mm sampai 1,25 mm, bentuk piringan (disk) atau cincin (washer) dengan ukuran 2,5 mm sampai 25 mm. Cincin-cincin dapat ditumpukan dan di tempatkan secara seri atau paralel guna memperbesar disipasi daya. Dalam operasinya Thermistor memanfaatkan perubahan resistivitas terhadap temperatur, dan umumnya nilai tahanannya turun terhadap temperatur secara eksponensial untuk jenis NTC ( Negative Thermal Coeffisien) Termistor ditemukan oleh Samuel Ruben pada tahun 1930, dan mendapat hak paten di Amerika Serikat dengan nomor #2.021.491. Ada dua macam termistor secara umum: Posistor atau PTC (Positive Temperature Coefficient), dan NTC (Negative Temperature Coefficient). Nilai tahanan pada PTC akan naik jika perubahan suhunya naik, dengan kenaikan resistansi linier terhadap temperature. Sementara sifat NTC justru kebalikannya, dengan kenaikan resistansi secara exponential terhadap temperature..

5.2 Aplikasi Thermister Pada contoh aplikasi ini digunakan thermistor jenis NTC untuk mengukur temperatur ruangan. Pertama kali dilakukan karakterisasi thermistor NTC tersebut yaitu dengan cara memasukkan ke dalam air es untuk temperatur dingin dan mendekatkan pada alat pemanas untuk temperatur panas, kemudian mencatat besar resistansinya. Gambar berikut hasil karakterisasi thermistor NTC.

Hasil dari karakterisasi thermistor NTC tersebut kemudian diplot dalam software mathematic versi 5.1. Dari software tersebut diperoleh persamaan perubahan resistansi terhadap temperatur.

Persamaan di atas merupakan persamaan resistansi terhadap perubahan temperatur. Thermistor tersebut rencananya akan dihubungkan dengan data acquisition system supaya dapat dibaca besar temperatutnya. Untuk itu perlu adanya rangkaian tambahan, yaitu rangkaian pengkondisi sinyal untuk mengubah besaran resistansi menjadi tegangan analog. Rangkaian pengkondisi sinyal diperlihatkan dalam gambar berikut. Dalam Gambar tersebut, thermistor dihubungkan dengan sebuah resistor 10Kohm sehingga rangkaian tersebut berfungsi sebagai pembagi tegangan. Tegangan Vout dapat dicari menggunakan persamaan:

Setelah dilakukan percobaan didapatkan hubungan antara temperatur ruangan terhadap tegangan output, hasilnya dapat dilihat dalam gambar berikut.

Dari gambar tersebut didapatkan persamaan hubungan antara temperatur dengan tegangan output dari rangkaian sinyal kondisioning.

Gambar Rangkaian

6. RTD (Resistansi Thermal Detektor) 6.1 Prinsip Kerja RTD adalah salah satu dari beberapa jenis sensor suhu yang sering digunakan. RTD dibuat dari bahan kawat tahan korosi, kawat tersebut dililitkan pada bahan keramik isolator. Bahan tersebut antara lain; platina, emas, perak, nikel dan tembaga, dan yang terbaik adalah bahan platina karena dapat digunakan menyensor suhu sampai 1500o C. Tembaga dapat digunakan untuk sensor suhu yang lebih rendah dan lebih murah, tetapi tembaga mudah terserang korosi.

Resistance Thermal Detector (RTD) perubahan tahanannya lebih linear terhadap temperatur uji tetapi koefisien lebih rendah dari thermistor dan model matematis linier adalah: Dimana :

Ro = tahanan konduktor pada temperature awal (biasanya 0oC) RT = tahanan konduktor pada temperatur toC α = koefisien temperatur tahanan Δt = selisih antara temperatur kerja dengan temperatur awal Sedangkan model matematis nonliner kuadratik adalah:

6.2 Contoh Aplikasi Sederhana

APLIKASI RTD

Pada suhu 0°C, resistansi PT100 adalah 100 ohm, sehingga tegangan keluaran sensor adalah: vs0 = 100 x 1mA = 100 mV Ketika suhu naik menjadi 1°C, resistansi PT100 adalah 100,385, sehingga tegangan keluaran sensor adalah: vs1 = 100,385 x 1mA = 100,385 mV Dengan demikian, konversi dari tegangan menjadi suhu adalah: suhu = (vs – 100) / 0,38

7. Sensor Ultrasonik 7.1 Teori Dasar Sensor ultrasonik adalah sebuah sensor yang berfungsi untuk mengubah besaran fisis (bunyi) menjadi besaran listrik dan sebaliknya. Cara kerja sensor ini didasarkan pada prinsip dari pantulan suatu gelombang suara sehingga dapat dipakai untuk menafsirkan eksistensi (jarak) suatu benda dengan frekuensi tertentu. Disebut sebagai sensor ultrasonik karena sensor ini menggunakan gelombang ultrasonik (bunyi ultrasonik). Gelombang ultrasonik adalah gelombang bunyi yang mempunyai frekuensi sangat tinggi yaitu 20.000 Hz. Bunyi ultrasonik tidak dapat di dengar oleh telinga manusia. Bunyi ultrasonik dapat didengar oleh anjing, kucing, kelelawar, dan lumba-lumba. Bunyi ultrasonik nisa merambat melalui zat padat, cair dan gas. Reflektivitas bunyi ultrasonik di permukaan zat padat hampir sama dengan reflektivitas bunyi ultrasonik di permukaan zat cair. Akan tetapi, gelombang bunyi ultrasonik akan diserap oleh tekstil dan busa. 7.2 PRINSIP KERJA Pada sensor ultrasonik, gelombang ultrasonik dibangkitkan melalui sebuah alat yang disebut dengan piezoelektrik dengan frekuensi tertentu. Piezoelektrik ini akan menghasilkan gelombang ultrasonik (umumnya berfrekuensi 40kHz) ketika sebuah osilator diterapkan pada benda tersebut. Secara umum, alat ini akan menembakkan gelombang ultrasonik menuju suatu area atau suatu target. Setelah gelombang menyentuh permukaan target, maka target akan memantulkan kembali gelombang tersebut. Gelombang pantulan dari target akan ditangkap oleh sensor, kemudian sensor menghitung selisih antara waktu pengiriman gelombang dan waktu gelombang pantul diterima.

Secara detail, cara kerja sensor ultrasonik adalah sebagai berikut: 

Sinyal dipancarkan oleh pemancar ultrasonik dengan frekuensi tertentu dan dengan durasi waktu tertentu. Sinyal tersebut berfrekuensi diatas 20kHz. Untuk mengukur jarak benda (sensor jarak), frekuensi yang umum digunakan adalah 40kHz.





Sinyal yang dipancarkan akan merambat sebagai gelombang bunyi dengan kecepatan sekitar 340 m/s. Ketika menumbuk suatu benda, maka sinyal tersebut akan dipantulkan oleh benda tersebut. Setelah gelombang pantulan sampai di alat penerima, maka sinyal tersebut akan diproses untuk menghitung jarak benda tersebut. Jarak benda dihitung berdasarkan rumus : S = 340.t/2

dimana S merupakan jarak antara sensor ultrasonik dengan benda (bidang pantul), dan t adalah selisih antara waktu pemancaran gelombang oleh transmitter dan waktu ketika gelombang pantul diterima receiver. 7.3 Contoh Aplikasi Sederhana Transmitter Transmitter adalah sebuah alat yang berfungsi sebagai pemancar gelombang ultrasonik dengan frekuensi tertentu (misal, sebesar 40 kHz) yang dibangkitkan dari sebuah osilator. Untuk menghasilkan frekuensi 40 KHz, harus di buat sebuah rangkaian osilator dan keluaran dari osilator dilanjutkan menuju penguat sinyal. Besarnya frekuensi ditentukan oleh komponen RLC / kristal tergantung dari disain osilator yang digunakan. Penguat sinyal akan memberikan sebuah sinyal listrik yang diumpankan ke piezoelektrik dan terjadi reaksi mekanik sehingga bergetar dan memancarkan gelombang yang sesuai dengan besar frekuensi pada osilator.

Gambar Rangkaian Sederhana dengan Sensor Ultrasonik

More Documents from "DimasP"

Tacho.docx
October 2019 16
Faizal.docx
October 2019 12