&
(19)
(11)
EP 1 591 356 B1
EUROPEAN PATENT SPECIFICATION
(12)
(45) Date of publication and mention
(51) Int Cl.: B64B 1/62 (2006.01) B64B 1/06 (2006.01)
of the grant of the patent: 24.12.2008 Bulletin 2008/52
B64B 1/40 (2006.01) F04B 45/04 (2006.01)
(21) Application number: 05252627.4 (22) Date of filing: 27.04.2005 (54) System for controlling the lift of an aircraft Luftfahrzeugsauftriebs- Steuerungssystem Système de contrôle de la force ascensionelle d’un aéronef (84) Designated Contracting States:
(72) Inventor: Handley, Alan Roy
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR
Stourbridge DY8 4NX (GB)
(74) Representative: Somervell, Thomas Richard (30) Priority: 27.04.2004 GB 0409314 02.06.2004 GB 0412220 16.06.2004 GB 0413437
(43) Date of publication of application: 02.11.2005 Bulletin 2005/44
(73) Proprietor: Handley, Alan Roy
EP 1 591 356 B1
Stourbridge DY8 4NX (GB)
Marks & Clerk Alpha Tower Suffolk Street Queensway Birmingham B1 1TT (GB)
(56) References cited: WO-A-20/05081680 FR-A- 1 601 319 US-A1- 2002 179 771
FR-A- 768 327 US-A- 5 368 067
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 75001 PARIS (FR)
1
EP 1 591 356 B1
Description [0001] The present invention relates to a system for controlling the lift of an aircraft. More particularly it relates to a system for a controlling lift in an airship or balloon using a lighter-than air gas. [0002] Airships have the potential to carry large quantities of goods, or passengers. This potential is best realized in a rigid-body airship, as opposed to the flexible body airship or blimp, because of the structural demands placed on the materials used. [0003] Airships have a problem in landing and loadcarrying due to having a fixed displacement of air by lighter than air gas. Due to the usage of fuel during a flight the airship gets lighter and because it has a fixed displacement the airship has to be powered down to earth by the use of the engines. It then involves many ground crew to stabilize and secure it. Similarly, for balloons (for example hot-air balloons and Helium balloons) variables, such as air temperature, make the landing very difficult to control. [0004] FR 1.601.319 is considered as the best prior art as it discloses a system for controlling lift of an aircraft, comprising: an inflatable compartment for containing a gas which is lighter than air; a receiver for receiving and storing the gas in a compressed condition; and means for compressing the gas and transferring it from the inflatable compartment into the receiver thus reducing the lift force on the aircraft. [0005] It is an object of the present invention to provide a system that alleviates these problems. A further object is to provide a controlled take off, flight, and landing for airships from ground level or other base without disposing of ballast. This would give airships the ability to load and unload whilst on the ground or base station. [0006] According to the present invention there is provided a system for controlling lift of an aircraft as defined in claim 1 below. [0007] The system preferably further comprises means for expanding the gas and transferring it from the receiver into the inflatable container thus increasing the lift. A valve means may be provided for controlling the transfer of the gas between the receiver and the inflatable container. Preferably, the receiver is directly coupled to the inflatable container via the valve means and the means for compressing the gas, thereby providing a closed system. [0008] The receiver may be a fixed dimension receptacle. Alternatively, the receiver may be an inflatable receptacle, the inflatable container being manufactured from a material that is more easily inflatable than the receiver. [0009] In another embodiment, the aircraft is a rigidbody airship. The airship may comprise a metal shell, preferably of Aluminium. A variable displacement compartment, containing air, may surround the inflatable container. An opening may be provided in the rigid aircraft for air to pass into and out of the variable displacement
5
10
15
20
25
30
35
40
45
50
55
2
2
compartment when the inflatable container is inflated and deflated. [0010] The system may employ a plurality of inflatable containers and variable displacement compartments, each inflatable container being housed within a respective variable displacement compartment. [0011] The system may further comprise a fixed displacement compartment containing a gas, which is lighter than air. This compartment provides a fixed lift to overcome the dead weight of the airship, with the variable displacement compartments being used to vary the lift. [0012] The gas is preferably an inert gas, more preferably Helium. [0013] The system of the invention is one in which the amount of lift is controlled by varying the amount of Air displaced by Helium (or other lighter than air gas). This is made possible by, but not exclusively, the use of at least part of the airship having compartments that have fixed displacement and others that have variable displacements. [0014] In a related aspect, there is provided an aircraft lift control diaphragm compressor, comprising: first and second chambers having a common wall that comprises a diaphragm; means for compressing a first gas in said first chamber so as to displace said diaphragm towards said second chamber and compress a second, lighter than air, gas therein; and valve means for controlling charging of said second chamber with said second gas and discharging of said compressed second gas from said second chamber. [0015] Due to the size of the helium molecule being far smaller than the constituents of air, it is difficult to compress with standard piston compressors and so this aspect of the invention concerns the application of the diaphragm pump or compressor for use in airships and balloons. The diaphragm pump or compressor has the advantage that the unit is hermetically sealed from the outside environment and therefore cannot let contaminants in or the helium out to atmosphere once fitted into a closed loop system. [0016] The means for compressing the first gas in the first chamber may comprise a positive displacement compressor, which may be a piston having a reciprocating motion, whereby the first gas in the first chamber is decompressed by a return stroke of said piston, such that the second chamber is charged and discharged as a result of movement of said diaphragm towards and away from said second chamber during alternating strokes of said piston in opposing directions. [0017] In a preferred embodiment, the diaphragm is constructed of metal. This is advantageous because Helium will not permeate through the metal as it would through, say, a polymer material. [0018] According to an embodiment of the present invention, the airship comprises: the system of claim 1; a shell for containing a lighter than air gas; a plurality of variable displacement compartments within said shell, each variable displacement compartment having an as-
3
EP 1 591 356 B1
sociated inflatable container therein, and associated means for expanding the gas and transferring it from the receiver into the inflatable container so as to increase the lift; and at least one opening in said shell for allowing air to pass into and out of each variable displacement compartment. [0019] Embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
5
10
Figures 1 and 2 show two conditions of a helium balloon; Figure 3 is a sectional elevation of an airship; and 15
Figure 4 is a sectional elevation of a diaphragm pump. [0020] Referring to Figures 1 and 2, a Helium balloon has an outer balloon envelope 1 and an inflatable receiver 2. A valve station 3 and a compressor 4 are suspended underneath the balloon envelope 1. By the use of the compressor 4, the lift gas can be transferred from the balloon envelope 1 into the receiver 2. The receiver 2 could be an inflatable inner balloon (as shown in Figures 1 and 2) that requires pressure to inflate, or a fixed dimension receptacle (not shown). One arrangement is to have the outer balloon envelope 1 manufactured from a suitable material that needs very little pressure to inflate it, with the receiver 2 as a second balloon either inside or outside the balloon envelope 1, but for this illustration will be described as inside. The receiver balloon 2 would be smaller and manufactured from a material that would stretch upon inflation and would require pressure to inflate it so as to reduce the volume of the inflating gas. The receiver balloon 2 would be directly coupled to the outer balloon 1 via the valve station 3 and compressor 4 so as to complete a closed loop system. [0021] For pressure regulation, for example in response to the heating of the outer balloon 1 contents by the sun or air temperature, this can be controlled by the transfer of the lift gas from the outer envelope 1 to the inner balloon 2 or vice versa by the compressor 4 and valves 3. [0022] The compressor 4 could be driven directly, either by an engine, or an electric motor powered from an engine driven electric generator or battery or both The control of the transfer of the lift gas could be manual or by programmable controller via a key-pad or other system. [0023] The condition of the balloon shown in Figure 1 provides a reduced lift. Part of the lift gas has been transferred from the balloon envelope 1 into the receiver 2 and is held under pressure reducing the displaced volume of the balloon envelope 1. The condition shown in Figure 2 provides maximum lift. The lift gas has been transferred from the receiver 2 into the balloon envelope 1. On trans-
20
25
30
35
40
45
50
55
3
4
fer the compression is removed and the gas expands to give the balloon envelope 1 a much larger displacement and therefore more lift. [0024] By control of the amount of transfer the lift may be varied to suit the requirements of the operator. This principle of the invention could be used as a single unit in a balloon (as shown in Figures 1 and 2) or as multiple units in compartments of a multi compartment air ship (as will be described in more detail below). [0025] Referring to Figure 3, a rigid body airship 10, has a metal body shell 12 formed of aluminium or lightweight alloy. A load-bearing hold 14 is suspended underneath the body shell 12. [0026] C1, C2, C3 are fixed displacement compartments containing a lighter-than-air gas such as Helium, giving a combined lift just under the total weight of the airship 10. R1, R2, R3, R4 are rear variable displacement compartments. Inside each of the variable displacement compartments R1, R2, R3 and R4 is an inflatable. R1X, R2X, R3X, R4X are rear receivers with associated compressors. F1, F2, F3, F4 are front variable displacement compartments, each with an inflatables, and F1X, F2X, F3X, F4X are the receivers with associated compressors. [0027] Each of the variable displacement compartments R1, R2, R3, R4, F1, F2, F3, F4 is provided with a vent opening (not shown) through the shell 12 to allow air displaced from compartment to escape to the surroundings when the inflatable is inflated, and to allow air from the surroundings to enter the compartment when the inflatable is deflated. The vent openings are preferably sited on the underside of the shell 12 because any Helium escaping from an inflatable, being lighter than air, will rise towards the top of the compartment. [0028] The fixed displacements C1 and C3 are provided to give sufficient lift to support the structure at each end of the airship 10 to prevent cantilever loads to the structure when the lift in the variable compartment is reduced or removed. [0029] Helium gives a lift of 1 kilogram per cubic metre. Therefore, by mathematical calculation of the volume of compartments C1, C2, C3 with regard to the overall weight of the airship, a suitable ship can be constructed. Compartments F1, F2, F3, F4 and R1, R2, R3, R4 give final lift to include passengers and cargo. [0030] In the arrangement shown in Figure 3, the fixed compartments C1, C2, C3 would have a lift force of an amount slightly lower than the weight of the airship 10, thus keeping the airship 10 firmly on the ground when being loaded or out of use. The variable compartments F1, F2, F3, F4, R1, R2, R3, R4 would have compressed Helium (or other inert lighter than air gas) stored in the receivers F1X, F2X, F3X, F4X, R1X, R2X, R3X, R4X. Each variable compartment F1, F2, F3, F4, R1, R2, R3, R4 has an inflatable fitted inside. Through the use of suitable valves the Helium (or other lighter than air gas) would, in a controlled way, be transferred from a receiver (for example R1X) to the associated inflatable. As inflation takes place this would displace the air in that variable
5
EP 1 591 356 B1
displacement compartment (R1) and add to the lifting force. By controlling which variable compartment was inflated or the amount of the inflation taking place then the airship would rise in the air to a height required by the controller. [0031] Selecting the forward F1, F2, F3, F4 or rear R1, R2, R3, R4 variable compartments for inflating would set the pitch of the airship 10, as required. Adjustment of the amount of inflation of selected compartments may be used to set the trim for the airship 10 in flight. The trim could also be maintained by transfer of Helium (or other inert lighter than air gas) from one variable compartment to another by way of the compressors and valves. [0032] In order to land the airship 10, the Helium in the variable compartments F1, F2, F3, F4, R1, R2, R3, R4 would be re-compressed into the receivers F1X, F2X, F3X, F4X, R1X, R2X, R3X, R4X by the compressors, deflating the inflatables and reducing the displacement of the air, thereby reducing lift. By carefully controlling the flow of Helium (or other inert lighter than air gas) from inflatables to receivers F1X, F2X, F3X, F4X, R1X, R2X, R3X, R4X a smooth descent to the landing area would be achieved. [0033] In this way the Helium (or other inert lighter than air) gas is reused and is encapsulated in a closed loop system. [0034] The stored Helium (or other lighter than air gas) in the receivers F1X, F2X, F3X, F4X, R1X, R2X, R3X, R4X could also be used to top up the fixed displacement compartments C1, C2, C3 as and if required. [0035] It should be noted that in flight most of the compressed receivers would be at a very low or zero pressure. [0036] It is within the scope of the invention to have all compartments with variable displacement, but this would depend on the practicalities of construction. [0037] Figure 3 shows one arrangement of both fixed and variable compartments but these could be changed by position or quantity to suit particular design requirements. [0038] The transfer valves and compressors could be controlled by hand or an onboard Computer or Programmable Logic Controller or by other devices. [0039] In order for the system described above to operate effectively, a suitable compressor is required to compress the lighter-than-air gas from the variable displacement compartment into the receiver. Because the helium molecule is far smaller than that of the constituents of air, it is difficult to compress with standard piston compressors and so this aspect of the invention concerns the application of the diaphragm pump or compressor for use in airships and balloons. The diaphragm pump or compressor has the advantage that the unit is hermetically sealed from the outside environment and therefore cannot let contaminants in or the helium out to atmosphere once fitted into a closed loop system. [0040] One such diaphragm unit will now be described as an add-on module to a standard piston compressor.
5
10
15
20
6
With reference to Figure 4, a module A is fitted in place of the cylinder head on a piston compressor 20, having a cylinder B inside which a piston C reciprocates. A diaphragm D forms part of a wall separating a chamber F in the module A, from the cylinder B. When the piston C moves up, the air in the cylinder B compresses and deflects the diaphragm D, causing the helium in the chamber F to be compressed. The helium is then forced through a non-return valve E. On the down stroke of the piston C, the air compression is removed and the diaphragm D returns to its normal position so that helium is forced into the chamber F through another non-return valve G by the outside pressure. It will be appreciated that this return stroke may set up a negative pressure in the chamber F so as to suck helium in through the nonreturn valve G. [0041] The diaphragm D itself is preferably formed of a thin metal. This is preferable to other flexible materials, such as polymers, because metals are much less permeable to helium. [0042] It is within the scope of the application that the diaphragm pump or compressor can be operated by any of various means such as hydraulics or pneumatics by hand lever or electric motor or engine driven units.
25
Claims 1.
A system for controlling lift of an aircraft, comprising:
30
a plurality of inflatable containers, each for containing a gas which is lighter than air; a plurality of receivers (F1X-F4X, R1X-R4X) each associated with a respective inflatable container, each.receiver for receiving and storing the gas in a compressed condition; and a plurality of means, each associated with a respective inflatable container and a respective receiver, for compressing the gas and transferring it from the associated inflatable container into the associated receiver thus reducing the lift force on the aircraft, wherein each of the means for compressing the gas comprises a diaphragm compressor.
35
40
45
2.
A system according to claim 1 further comprising a plurality of means for expanding the gas and transferring it from one of the receivers (F1 X-F4X, R1XR4X) into the associated inflatable container thus increasing the lift.
3.
The system according to claim 2, further comprising a valve means operable for controlling the transfer of the gas between each receiver (F1 X-F4X, R1XR4X) and the associated inflatable container.
4.
The system according to claim 3, wherein each receiver (F1 X-F4X, R1X-R4X) is directly coupled to
50
55
4
7
EP 1 591 356 B1
the associated inflatable container via the valve means and the means for compressing the gas, thereby providing a closed system. 5.
The system according to any one of claims 1 to 4, wherein the aircraft is an airship (10).
6.
The system according to claim 5, wherein the aircraft is a rigid-body airship (10).
7.
The system according to claim 6, wherein the airship (10) comprises a metal shell (12).
8.
The system according to any one of claims 5 to 7, further comprising a plurality of variable displacement compartments (F1-F4, R1-R4) containing air, the variable displacement compartments each surrounding respective inflatable containers.
9.
The system according to claim 8, further comprising openings in said rigid aircraft (10) for air to pass into and out of each variable displacement compartment (F1-F4, R1-R4) when said associated inflatable container is inflated and deflated.
wherein power is provided to the means for compressing the gas from one or more of an engine, an engine driven electric generator, and a battery. 5
16. The system according to any preceding claim, wherein the diaphragm compressor comprises a diaphragm unit activated under pressure from a positive displacement compressor.
10
17. The system according to any preceding claim, wherein the gas is an inert gas. 18. The system according to claim 17, wherein the inert gas is Helium.
15
19. A rigid body airship (10) comprising: the system of claim 1; a shell (12) for containing a lighter than air gas; a plurality of variable displacement compartments (F1-F4, R1-R4) within said shell, each variable displacement compartment having said associated inflatable containers therein, and associated means for expanding the gas and transferring it from the receiver into the inflatable container so as to increase the lift; and at least one opening in said shell for allowing air to pass into and out of each variable displacement compartment,.
20
25
10. The system according to claim 8 or claim 9, wherein said variable displacement compartments (F1-F4, R1-R4)are disposed at positions along the length of said airship (10), and means are provided for adjustment of the amount of inflation of selected inflatable containers to set the pitch and/or trim of the airship. 11. The system according to claim 10, wherein said variable displacement compartments (F1-F4, R1-R4) comprise forward (F1-F4) and rear (R1-R4) variable compartments disposed at positions along the length of the airship (10).
8
30
35
20. The rigid body airship (10) according to claim 19, wherein the means for compressing the gas is operable for adjusting the amount of inflation of each inflatable container to set the pitch and/or trim of the airship.
Patentansprüche 12. The system according to any of claims 5 to 11, wherein said means for compressing and transferring the gas is operable for adjusting the amount of inflation of said containers to set the pitch and/or trim of the airship (10). 13. The system according to any preceding claim, further comprising a fixed displacement compartment (C1, C2, C3) containing a gas which is lighter than air. 14. The system according to claim 13, comprising a plurality of means for expanding the gas and transferring it from one of the receivers (F1 X-F4X, R1XR4X) into the associated inflatable container thus increasing the lift and wherein said means for expanding and transferring the gas is further operable for transferring gas from the receiver into the fixed displacement compartment (C1, C2, C3).
40
45
50
55
15. The system according to any preceding claim,
5
1.
Luftfahrzeugauftriebs-Steuerungssystem, das aufweist: eine Vielzahl von aufblasbaren Behältern, ein jeder für das Aufnehmen eines Gases, das leichter ist als Luft; eine Vielzahl von Speichern (F1X-F4X, R1XR4X), ein jeder mit einem jeweiligen aufblasbaren Behälter verbunden, wobei ein jeder Speicher für das Aufnehmen und Speichern des Gases in einem komprimierten Zustand vorhanden ist; und eine Vielzahl von Mitteln, die jeweils mit einem entsprechenden aufblasbaren Behälter und einem entsprechenden Speicher für das Komprimieren des Gases und Übertragen dieses vom dazugehörenden aufblasbaren Behälter in den dazugehörenden Speicher verbunden sind, wodurch die Auftriebskraft auf das Luftfahrzeug
9
EP 1 591 356 B1
verringert wird, wobei ein jedes der Mittel für das Komprimieren des Gases einen Membrankompressor aufweist. 2.
3.
4.
5.
System nach Anspruch 1, das außerdem eine Vielzahl von Mitteln für das Expandieren des Gases und Übertragen dieses von einem der Speicher (F1XF4X, R1X-R4X) in den dazugehörenden aufblasbaren Behälter aufweist, wodurch der Auftrieb verstärkt wird. System nach Anspruch 2, das außerdem ein Ventilmittel aufweist, das für das Steuern der Übertragung des Gases zwischen jedem Speicher (F1X-F4X, R1X-R4X) und dem dazugehörenden aufblasbaren Behälter betriebsfähig ist. System nach Anspruch 3, bei dem jeder Speicher (F1X-F4X, R1X-R4X) direkt mit dem dazugehörenden aufblasbaren Behälter mittels des Ventilmittels und des Mittels für das Komprimieren des Gases gekoppelt ist, wodurch ein geschlossenes System bereitgestellt wird. System nach einem der Ansprüche 1 bis 4, bei dem das Luftfahrzeug ein Luftschiff (10) ist.
6.
System nach Anspruch 5, bei dem das Luftfahrzeug ein Luftschiff (10) mit starrem Körper ist.
7.
System nach Anspruch 6, bei dem das Luftschiff (10) eine Metallaußenhülle (12) aufweist.
8.
System nach einem der Ansprüche 5 bis 7, das außerdem eine Vielzahl von veränderlichen Verdrängungskammern (F1-F4, R1-R4) aufweist, die Luft enthalten, wobei die veränderlichen Verdrängungskammern jeweils entsprechende aufblasbare Behälter umgeben.
re (F1-F4) und hintere (R1-R4) veränderliche Kammern aufweisen, die in Positionen entlang der Länge des Luftschiffes (10) angeordnet sind. 5
System nach Anspruch 8, das außerdem Öffnungen im starren Luftfahrzeug (10) aufweist, damit Luft in jede veränderliche Verdrängungskammer (F1-F4, R1-R4) hinein- und herausgelangen kann, wenn der dazugehörende aufblasbare Behälter aufgeblasen und abgelassen wird.
10. System nach Anspruch 8 oder Anspruch 9, bei dem die veränderlichen Verdrängungskammern (F1-F4, R1-R4) in Positionen entlang der Länge des Luftschiffes (10) angeordnet sind und Mittel für die Regulierung des Aufblasgrades der ausgewählten aufblasbaren Behälter bereitgestellt werden, um die Längsneigung und/oder Trimmung des Luftschiffes einzustellen.
12. System nach einem der Ansprüche 5 bis 11, bei dem das Mittel für das Komprimieren und Übertragen des Gases für das Regulieren des Aufblasgrades der Behälter betriebsfähig ist, um die Längsneigung und/ oder Trimmung des Luftschiffes (10) einzustellen.
10
13. System nach einem der vorhergehenden Ansprüche, das außerdem eine unveränderliche Verdrängungskammer (C1, C2, C3) aufweist, die Gas enthält, das leichter ist als Luft. 15
20
14. System nach Anspruch 13, das eine Vielzahl von Mitteln für das Expandieren des Gases und Übertragen dieses von einem der Speicher (F1X-F4X, R1XR4X) in den dazugehörenden aufblasbaren Behälter aufweist, wodurch der Auftrieb verstärkt wird, und wobei das Mittel für das Expandieren und Übertragen des Gases für das Übertragen des Gases vom Speicher in die unveränderliche Verdrängungskammer (C1, C2, C3) außerdem betriebsfähig ist.
25
30
15. System nach einem der vorhergehenden Ansprüche, bei dem dem Mittel für das Komprimieren des Gases eine Leistung von einem oder mehreren von Motor, motorgetriebenen Stromerzeuger und Batterie zur Verfügung gestellt wird.
35
16. System nach einem der vorhergehenden Ansprüche, bei dem der Membrankompressor eine Membraneinheit aufweist, die unter Druck von einem Verdränger-Kompressor aktiviert wird. 17. System nach einem der vorhergehenden Ansprüche, bei dem das Gas ein inertes Gas ist.
40
9.
10
18. System nach Anspruch 17, bei dem das inerte Gas Helium ist. 19. Luftschiff (10) mit starrem Körper, das aufweist:
45
50
55
11. System nach Anspruch 10, bei dem die veränderlichen Verdrängungskammern (F1-F4, R1-R4) vorde-
6
das System nach Anspruch 1; eine Außenhülle (12) für das Aufnehmen eines Gases, das leichter ist als Luft; eine Vielzahl von veränderlichen Verdrängungskammern (F1-F4, R1-R4) innerhalb der Außenhülle, wobei jede veränderliche Verdrängungskammer darin die dazugehörenden aufblasbaren Behälter aufweist, und die dazugehörenden Mittel für das Expandieren des Gases und Übertragen dieses vom Speicher in den aufblasbaren Behälter, um so den Auftrieb zu verstärken; und mindestens eine Öffnung in der Außenhülle, damit Luft in jede veränderliche Verdrängungs-
11
EP 1 591 356 B1
kammer hinein- und herausgelangen kann. 20. Luftschiff (10) mit starren Körper nach Anspruch 19, bei dem das Mittel für das Komprimieren des Gases für das Regulieren des Aufblasgrades eines jeden aufblasbaren Behälters betriebsfähig ist, um die Längsneigung und/oder Trimmung des Luftschiffes einzustellen.
10
1.
Système de contrôle de la force ascensionnelle d’un aéronef, comprenant: 15
une pluralité de conteneurs gonflables dont chacun est destiné à contenir un gaz plus léger que l’air; une pluralité de récipients (F1X-F4X, R1X-R4X) dont chacun est associé à un conteneur gonflable respectif, chaque récipient étant destiné à recevoir et stocker le gaz dans un état comprimé; et une pluralité de moyens, dont chacun est associé à un conteneur gonflable respectif et un récipient respectif, pour comprimer le gaz et le transférer du conteneur gonflable associé dans le récipient associé, réduisant ainsi la force ascensionnelle sur l’aéronef, dans lequel chacun des moyens de compression de gaz comprend un compresseur à diaphragme. 2.
3.
Système selon la revendication 1, comprenant, en outre, une pluralité de moyens pour dilater le gaz et le transférer de l’un des récipients (F1X-F4X, R1XR4X) dans le conteneur gonflable associé, augmentant ainsi la force ascensionnelle. Système selon la revendication 2, comprenant, en outre, un moyen de soupape pouvant fonctionner pour contrôler le transfert du gaz entre chaque récipient (F1X-F4X, R1X-R4X) et le conteneur gonflable associé.
4.
Système selon la revendication 3, dans lequel chaque récipient (F1X-F4X, R1X-R4X) est directement couplé au conteneur gonflable associé par le biais du moyen de soupape et du moyen de compression de gaz, fournissant ainsi un système fermé.
5.
Système selon l’une quelconque des revendications 1 à 4, dans lequel l’aéronef est un dirigeable (10).
6.
Système selon la revendication 5, dans lequel l’aéronef est un dirigeable à carcasse rigide (10).
20
25
30
Système selon l’une quelconque des revendications 5 à 7, comprenant, en outre, une pluralité de compartiments à déplacement variable (F1-F4, R1-R4) contenant de l’air, les compartiments à déplacement variable entourant chacun des conteneurs gonflables respectifs.
9.
Système selon la revendication 8, comprenant, en outre, des ouvertures dans ledit aéronef rigide (10) pour permettre à l’air d’entrer et sortir de chaque compartiment à déplacement variable (F1-F4, R1R4) lorsque ledit conteneur gonflable associé est gonflé et dégonflé.
10. Système selon la revendication 8 ou la revendication 9, dans lequel lesdits compartiments à déplacement variable (F1-F4, R1-R4) sont disposés en des positions le long de la longueur dudit dirigeable (10) et des moyens sont prévus pour ajuster le volume de gonflage de conteneurs gonflables sélectionnés pour régler le tangage et/ou l’assiette du dirigeable. 11. Système selon la revendication 10, dans lequel lesdits compartiments à déplacement variable (F1-F4, R1-R4) comprennent des compartiments variables antérieurs (F1-F4) et postérieurs (R1-R4) disposés en des positions le long de la longueur du dirigeable (10). 12. Système selon l’une quelconque des revendications 5 à 11, dans lequel lesdits moyens de compression et de transfert du gaz peuvent fonctionner pour ajuster le volume de gonflage desdits conteneurs pour régler le tangage et/ou l’assiette du dirigeable (10).
35
13. Système selon l’une quelconque des revendications précédentes, comprenant, en outre, un compartiment à déplacement fixe (C1, C2, C3) contenant un gaz plus léger que l’air. 40
45
50
7.
8.
5
Revendications
12
14. Système selon la revendication 13, comprenant une pluralité de moyens pour dilater le gaz et le transférer de l’un des récipients (F1X-F4X, R1X-R4X) dans le conteneur gonflable associé, augmentant ainsi la force ascensionnelle, et dans lequel lesdits moyens pour dilater et transférer le gaz peuvent fonctionner, en outre, pour transférer le gaz du récipient dans ledit compartiment à déplacement fixe (C1, C2, C3). 15. Système selon l’une quelconque des revendications précédentes, dans lequel de l’énergie est fournie aux moyens de compression du gaz par un ou plusieurs moyens parmi un moteur, un générateur électrique actionné par un moteur et une batterie.
55
16. Système selon l’une quelconque des revendications précédentes, dans lequel le compresseur à diaphragme comprend une unité de diaphragme ac-
Système selon la revendication 6, dans lequel le dirigeable (10) comprend une coque métallique (12).
7
13
EP 1 591 356 B1
tionnée sous l’effet d’une pression fournie par un compresseur à déplacement positif. 17. Système selon l’une quelconque des revendications précédentes, dans lequel le gaz est un gaz inerte.
5
18. Système selon la revendication 17, dans lequel le gaz inerte est l’hélium. 19. Dirigeable à carcasse rigide (10), comprenant: le système de la revendication 1; une coque (12) pour contenir un gaz plus léger que l’air; une pluralité de compartiments à déplacement variable (F1-F4, R1-R4) à l’intérieur de ladite coque, chaque compartiment à déplacement variable contenant lesdits conteneurs gonflables associés, et des moyens associés pour dilater le gaz et le transférer du récipient dans le conteneur gonflable de manière à augmenter la force ascensionnelle; et au moins une ouverture dans ladite coque pour permettre à l’air d’entrer et sortir de chaque compartiment à déplacement variable. 20. Dirigeable à carcasse rigide (10) selon la revendication 19, dans lequel les moyens de compression du gaz peuvent fonctionner pour ajuster le volume de gonflage de chaque conteneur gonflable pour régler le tangage et/ou l’assiette du dirigeable.
10
15
20
25
30
35
40
45
50
55
8
14
EP 1 591 356 B1
9
EP 1 591 356 B1
10
EP 1 591 356 B1
11
EP 1 591 356 B1 REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description •
FR 1601319 [0004]
12