Elastic And Inelastic Collisions

  • Uploaded by: PVV RAMA RAO
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Elastic And Inelastic Collisions as PDF for free.

More details

  • Words: 696
  • Pages: 6
Elastic and Inelastic Collisions A perfectly elastic collision is defined as one in which there is no loss of kinetic energy in the collision.

An inelastic collision is one in which part of the kinetic energy is changed to some other form of energy in the collision. Any macroscopic collision between objects will convert some of the kinetic energy into internal energy and other forms of energy, so no large scale impacts are perfectly elastic. Momentum is conserved in inelastic collisions, but one cannot track the kinetic energy through the collision since some of it is converted to other forms of energy. Collisions in ideal gases approach perfectly elastic collisions, as do scattering interactions of sub-atomic particles which are deflected by the electromagnetic force. Some large-scale interactions like the slingshot type gravitational interactions between satellites and planets are perfectly elastic. Collisions between hard spheres may be nearly elastic, so it is useful

Elastic Collisions • An elastic collision is defined as one in which both conservation of momentum and conservation of kinetic energy are observed. This implies that there is no dissipative force acting during the collision and that all of the kinetic energy of the objects before the collision is still in the form of kinetic energy afterward. • For macroscopic objects which come into contact in a collision, there is always some dissipation and they are never perfectly elastic. Collisions between hard steel balls as in the swinging balls apparatus are nearly elastic. • "Collisions" in which the objects do not touch each other, such as Rutherford scattering or the slingshot orbit of a satellite off a planet, are elastic collisions. In atomic or nuclear scattering, the collisions are typically elastic because the repulsive Coulomb force keeps the particles out of contact with each other. • Collisions in ideal gases are very nearly elastic, and

Collisions involve forces (there is a change in velocity). Collisions can be elastic, meaning they conserve energy and momentum, inelastic, meaning they conserve momentum but not energy, or totally inelastic (or plastic), meaning they conserve momentum and the two objects stick together. The magnitude of the velocity difference at impact is called the closing speed. The field of dynamics is concerned with moving and colliding objects. Deflection happens when an object hits a plane surface

An elastic collision is a collision in which the total kinetic energy of the colliding bodies after collision is equal to their total kinetic energy before collision. Elastic collisions occur only if there is no net conversion of kinetic energy into other forms. During the collision kinetic energy is first converted to potential energy associated with a repulsive force between the particles (when the particles move against this force, i.e. the angle between the force and the relative velocity is obtuse), then this potential energy is converted back to kinetic energy (when the particles move with this force, i.e. the angle between the force and the relative velocity is acute). The collisions of atoms are elastic collisions ( Rutherford backscattering is one example).

The molecules — as distinct from atoms — of a gas or liquid rarely experience perfectly elastic collisions because kinetic energy is exchanged between the molecules’ translational motion and their internal degrees of freedom with each collision. At any one instant, half the collisions are, to a varying extent, inelastic collisions (the pair possesses less kinetic energy in their translational motions after the collision than before), and half could be described as “superelastic” (possessing more kinetic energy after the collision than before). Averaged across the entire sample, molecular collisions can be regarded as essentially elastic as long as black-body photons are not permitted to carry away energy from the system. In the case of macroscopic bodies, elastic collisions are an ideal never fully realized, but approximated by the interactions of objects such as billiard balls.

As long as black-body radiation (not shown) doesn’t escape a system, atoms in thermal agitation undergo essentially elastic collisions. On average, two atoms rebound from each other with the same kinetic energy as before a collision. Here, roomtemperature helium atoms are slowed down two trillion fold. Five atoms are colored red to facilitate following their motions.

Related Documents


More Documents from ""