Circuit

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Circuit as PDF for free.

More details

  • Words: 3,523
  • Pages: 10
1.4

Circuit Theorems

1. vTH , RTH = ?

(C) 1 V, 3W

2W

5 W 6

(D) -1 V,

6 W 5

4. A simple equivalent circuit of the 2 terminal 6W

6V

vTH, RTH

network shown in fig. P1.4.4 is

R

Fig. P.1.4.1

(A) 2 V, 4 W

(B) 4 V, 4 W

(C) 4 V, 5 W

(D) 2 V, 5 W

i

v

Fig. P.1.4.4

2. i N , R N = ? 2W

R

2W

R 4W

15 V

v

iN, RN

(A)

(B)

Fig. P.1.4.2

(A) 3 A,

R R

10 W 3

i

(B) 10 A, 4 W

(C) 1,5 A, 6 W

i

(D) 1.5 A, 4 W

(C)

(D)

5. i N , R N = ?

3. vTH , RTH = ?

2W

2W

3W

2A

1W

vTH, RTH

6A

6 W 5

(B) 2 V,

3W

iN RN

Fig. P.1.4.5

Fig. P.1.4.3

(A) -2 V,

4W

5 W 6

(A) 4 A, 3 W

(B) 2 A, 6 W

(C) 2 A, 9 W

(D) 4 A, 2 W

www.nodia.co.in

34

Circuit Theorems

6. vTH , RTH = ?

Chap 1.4

The value of the parameter are vTH

RTH

iN

RN

(A)

4 V

2 W

2 A

2 W

(B)

4 V

2 W

2 A

3 W 1.2 W 5 W

25 W

30 W 20 W

vTH, RTH

5V 5A

Fig. P.1.4.6

(A) -100 V, 75 W

(B) 155 V, 55 W

(C) 155 V, 37 W

(D) 145 V, 75 W

(C)

8 V

1.2 W

30 A 3

(D)

8 V

5 W

8 A 5

10. v1 = ? 2W

1W

7. RTH = ? 6W

2W

8V

6W

3W

1W

+ v1

6W

18 V



6W

2A

RTH

Fig. P.1.4.10

5V

(A) 6 V

(B) 7 V

(C) 8 V

(D) 10 V

Fig. P.1.4.7

(A) 3 W

(B) 12 W

(C) 6 W

(D) ¥

11. i1 = ? 4 kW

i1

20 V

4 kW

6 kW

8. The Thevenin impedance across the terminals ab of the network shown in fig. P.1.4.8 is

12 V

24 V

3 kW

4 kW

a 3W

Fig. P.1.4.11 6W

2A

8W

2V 8W

b

(B) 6 W

(C) 6.16 W

(D)

(B) 0.75 mA

(C) 2 mA

(D) 1.75 mA

Statement for Q.12–13:

Fig. P.1.4.8

(A) 2 W

(A) 3 A

A circuit is given in fig. P.1.4.12–13. Find the Thevenin equivalent as given in question..

4 W 3

10 W

16 W

x

y

9. For In the the circuit shown in fig. P.1.4.9 a network 2W

8W

3W

x’

RTH 4V

40 W

5V

and its Thevenin and Norton equivalent are given

iN

2A vTH

Fig. P.1.4.9

y’

Fig. P.1.4.12–13 RN

12. As viewed from terminal x and x¢ is (A) 8 V, 6 W

(B) 5 V, 6 W

(C) 5 V, 32 W

(D) 8 V, 32 W

www.nodia.co.in

1A

Chap 1.4

Circuit Theorems

13. As viewed from terminal y and y¢ is (A) 8 V, 32 W

(B) 4 V, 32 W

(C) 5 V, 6 W

(D) 7 V, 6 W

35

(C) 0 A, 20 W

(D) 0 A, -20 W

19. vTH , RTH = ? i1

6W

14. A practical DC current source provide 20 kW to a 50 W load and 20 kW to a 200 W load. The maximum

3i1

power, that can drawn from it, is (A) 22.5 kW

(B) 45 kW

(C) 30.3 kW

(D) 40 kW

RN

Fig. P1.4.19

Statement for Q.15–16: In the circuit of fig. P.1.4.15–16 when R = 0 W , the current iR equals 10 A.

(A) 0 W

(B) 1.2 W

(C) 2.4 W

(D) 3.6 W

20. vTH , RTH = ?

2W

4W

iN,

4W

2W

4V +

E

4W

2W

R

4A

iR

vTH RTH

v1

5W

0.1v1



Fig. P.1.4.15–16. Fig. P.1.4.20

15. The value of R, for which it absorbs maximum power, is

(A) 8 V, 5 W

(B) 8 V, 10 W (D) 4 V, 10 W

(A) 4 W

(B) 3 W

(C) 4 V, 5 W

(C) 2 W

(D) None of the above

21. RTH = ? 3W

2W

16. The maximum power will be

+

(A) 50 W

(B) 100 W

(C) 200 W

(D) value of E is required

vx 4

4V

17. Consider a 24 V battery of internal resistance

the current drawn from the battery is i . The current drawn form the battery will be i 2 when RL is equal to (A) 2 W

(B) 4 W

(C) 8 W

(D) 12 W

Fig. P.1.4.21

(A) 3 W

(B) 1.2 W

(C) 5 W

(D) 10 W

22. In the circuit shown in fig. P.1.4.22 the effective resistance faced by the voltage source is 4W

18. i N , R N = ? 5W

10 W i1 20i1

iN,

30 W

vs

RN

i

i 4

Fig. P.1.4.22 Fig. P.1.4.18

(A) 2 A, 20 W

RTH



r = 4 W connected to a variable resistance RL . The rate of heat dissipated in the resistor is maximum when

vx

(B) 2 A, -20 W

(A) 4 W

(B) 3 W

(C) 2 W

(D) 1 W

www.nodia.co.in

36

Circuits Theorems

Chap 1.4

23. In the circuit of fig. P1.4.23 the value of RTH at

ix

terminal ab is 16 V

0.75va

RL

3W

0.9 A 2W

Fig. P.1.4.26–27

8W

a



26. The value of RL will be

va +

4W

9V

b

Fig. P.1.4.23

(A) -3 W 8 (C) - W 3

(B) 3 W

(C) 1 W

(D) None of the above

27. The maximum power is

9 W 8

(B)

(A) 2 W

(D) None of the above

(A) 0.75 W

(B) 1.5 W

(C) 2.25 W

(D) 1.125 W

28. RTH = ?

24. RTH = ?

-2ix

200 W –

va 100

va +

100 W

50 W

RTH

100 W

300 W ix

Fig. P.1.4.24

(A) ¥ (C)

(B) 0

3 W 125

(D)

125 W 3

maximum power if RL is equal to

800 W

(C) 200 W

(D) 272.8 W

29. Consider the circuits shown in fig. P.1.4.29 ia

2W 6W

6W 2W

2W

RL

3i

RTH



(B) 136.4 W

100 W

200 W

vx

(A) 100 W

i 6V

+

Fig. P.1.4.28

25. In the circuit of fig. P.1.4.25, the RL will absorb

40 W

100 W

0.01vx

12 V 8V

12 V

Fig. P.1.4.25

6W

(A)

400 W 3

(B)

2 kW 9

(C)

800 W 3

(D)

4 kW 9

ib

2W 6W

6W

2W

2W

Statement for Q.26–27: In the circuit shown in fig. P1.4.26–27 the

18 V

6W

3A

maximum power transfer condition is met for the load RL .

Fig. P.1.4.29a & b

www.nodia.co.in

12 V

Chap 1.4

Circuit Theorems

37

33. If vs1 = 6 V and vs 2 = - 6 V then the value of va is

The relation between ia and ib is (A) ib = ia + 6

(B) ib = ia + 2

(A) 4 V

(B) -4 V

(C) ib = 15 . ia

(D) ib = ia

(C) 6 V

(D) -6 V

30. Req = ?

34. A network N feeds a resistance R as shown in fig. 12 W

P1.4.34. Let the power consumed by R be P. If an

4W

identical network is added as shown in figure, the Req

6W

power consumed by R will be

2W

18 W

6W 9W R

N

N

N

R

Fig. P.1.4.30

(A) 18 W (C)

(B)

36 W 13

72 W 13

Fig. P.1.4.34

(D) 9 W

31. In the lattice network the value of RL for the maximum power transfer to it is

(A) equal to P

(B) less than P

(C) between P and 4P

(D) more than 4P

35. A certain network consists of a large number of ideal linear resistors, one of which is R and two constant ideal source. The power consumed by R is P1

7W

when only the first source is active, and P2 when only

6

the second source is active. If both sources are active

W

simultaneously, then the power consumed by R is

5

W

RL

9W

(A) P1 ± P2

(B)

(C) ( P1 ± P2 ) 2

(D) ( P1 ± P2 ) 2

P1 ± P2

Fig. P.1.4.31

(A) 6.67 W

(B) 9 W

36. A battery has a short-circuit current of 30 A and an

(C) 6.52 W

(D) 8 W

open circuit voltage of 24 V. If the battery is connected to an electric bulb of resistance 2 W, the power dissipated by the bulb is

Statement for Q.32–33: A circuit is shown in fig. P.1.4.32–33.

(A) 80 W

(B) 1800 W

(C) 112.5 W

(D) 228 W

12 W 1W

3W

3W

37.

1W

va

1W

following

results

were

obtained

from

measurements taken between the two terminal of a

+ vs1

The

vs2

resistive network



Fig. P.1.4.32–33

32. If vs1 = vs 2 = 6 V then the value of va is

Terminal voltage

12 V

0V

Terminal current

0A

1.5 A

The Thevenin resistance of the network is

(A) 3 V

(B) 4 V

(A) 16 W

(B) 8 W

(C) 6 V

(D) 5 V

(C) 0

(D) ¥

www.nodia.co.in

38

Circuit Theorems

Chap 1.4

38. A DC voltmeter with a sensitivity of 20 kW/V is

Solutions

used to find the Thevenin equivalent of a linear network. Reading on two scales are as follows

1. (B) vTH =

(a) 0 - 10 V scale : 4 V (b) 0 -15 V scale : 5 V The

Thevenin

voltage

the

Thevenin

2. (A) 2W

resistance of the network is 16 1 (A) V, MW 3 15

32 V, 3

200 kW 3

(D) 36 V,

200 kW 3

(B)

2 MW 15

(C) 18 V,

and

( 6)( 6) = 4 V, RTH = ( 3||6) + 2 = 4 W 3+ 6

isc

Fig. S.1.4.2

15 10 2 =6W R N = 2 ||4 + 2 = W, v1 = 1 1 1 3 + + 2 2 4 v isc = i N = 1 = 3 A 2

+ RL

4W

15 V

39. Consider the network shown in fig. P.1.4.39.

Linear Network

2W

v1

vab –

Fig. P.1.4.39

The power absorbed by load resistance RL is

3. (C) vTH =

shown in table : RL

10 kW

30 kW

P

3.6 MW

4.8 MW

(2)( 3)(1) 5 = 1 V, RTH = 1||5 = W 3+ 3 6

4. (B) After killing all source equivalent resistance is R Open circuit voltage = v1

The value of RL , that would absorb maximum

5. (D) isc =

6´ 4 = 4 A = i N , R N = 6 ||3 = 2 W 4+2 2W

power, is (A) 60 kW

(B) 100 W

(C) 300 W

(D) 30 kW

isc 3W

4W

6A

40. Measurement made on terminal ab of a circuit of fig.P.1.4.40 yield the current-voltage characteristics

Fig. S1.4.5

shown in fig. P.1.4.40. The Thevenin resistance is 6. (B) RTH = 30 + 25 = 55 W, vTH = 5 + 5 ´ 30 = 155 V

i(mA) +

30 Resistive Network

20 10 -4

-3 -2

-1

0

vab –

1

2

v

a

7. (C) After killing the source, RTH = 6 W

b

6W

6W

Fig. P.1.4.40

RTH

(A) 300 W

(B) -300 W

(C) 100 W

(D) -100 W Fig. S.1.4.7 ***********

www.nodia.co.in

Chap 1.4

Circuit Theorems

8. (B) After killing all source, RTH = 3||6 + 8 ||8 = 6 W

6W

8W 8W

If we Thevenized the left side of xx¢ and source transformed right side of yy¢ 4 8 + 8 24 RTH = 8 ||(16 + 8) = 6 W = 5 V, vxx ¢ = vTH = 1 1 + 8 24

a

3W

39

b

Fig. S1.4.8

13. (D) v yy¢ = vTH

9. (D) voc = 2 ´ 2 + 4 = 8 V = vTH RTH = 2 + 3 = 5 W = R N ,

iN =

vTH 8 = A RTH 5

4 8 + 24 8 = 7 V, R = ( 8 + 16)||8 = 6 W = TH 1 1 + 24 8

14. (A)

10. (A) By changing the LHS and RHS in Thevenin i

equivalent 1W

1W

2W

1W

Fig. S1.4.14

+ 6W

4V

RL

r

v1

12 V



2

2

æ ir ö æ ir ö ÷ 50 = 20 k, ç ÷ 200 = 20 k ç è r + 50 ø è r + 200 ø Þ

( r + 200) 2 = 4( r + 50) 2

Fig. S1.4.10

Pmax

i = 30 A,

4 12 + + +2 =6 V 1 1 1 v1 = 1 1 1 + + 1+1 6 1+2

r = 100 W

( 30) 2 ´ 100 = = 22.5 kW 4

15. (C) Thevenized the circuit across R, RTH = 2 W 4W

2W

2W

11. (B) By changing the LHS and RHS in Thevenin 2W

4W

equivalent i1

2 kW

4 kW

20 V

2 kW

Fig. S1.4.15 6V

8V

17. (D) RL = r = 4 W, i =

Fig. S1.4.11

i1 =

20 - 6 - 8 = 0.75 mA 2k + 4k + 2k

24 3 = RL¢ + 4 2

12. (B) 8W

16 W

x

2

æ 10 ö ÷ ´ 2 = 50 W 16. (A) isc = 10 A, RTH = 2 W, Pmax = ç è 2 ø

y

Þ

24 =3 A 4+4

R¢L = 12 W

18. (C) i N = 0,

8W

1- i1 10 W

5W i1

4V

+

8V

20i1

30 W

1A

vtest –

x’

y’

Fig. S1.4.18

Fig. S1.4.12

www.nodia.co.in

40

Circuit Theorems

20 i1 = 30 i1 - 10(1 - i1 )

Þ

i1 = 0.5 A

22. (B) vs = 4 ´

vtest = 5 ´ 1 + 30 ´ 0.5 = 20 V v R N = test = 20 W 1

3i 4

vs = 3W i

Þ

voc voc - 9 + + 0.75 va = 0 4 8

23. (C) voc = vab = -va ,

19. (B) Circuit does not contains any independent source, vTH = 0 i1

6W

+ 4W

3i1

Chap 1.4

1A

vtest

2 voc + voc - 9 + 6( -voc ) = 0 , voc = - 3 V If terminal ab is short circuited, va = 0 9 v -3 -8 A and RTH = oc = isc = = W 8 isc 9 8 3 24. (D) Using source transform i1



100 W

200 W – +

Fig. S1.4.19

va

va

1A

vtest –

Applying 1 A at terminal, i1 = -1 A vtest vtest - 3( -1) . V + = 1 Þ vtest = 12 4 6 v RTH = test = 12 . W 1

+

Fig. S1.4.24

va = 100 i1 + 200 i1 + 50( i1 + 1) va = 100 i1 - va

Þ

va = 50 i1

50 i1 = 300 i1 + 50 i1 + 50

20. (B) 4V isc

Þ

i1 = -

1 A 6

æ 1 ö 125 vtest = 50ç 1 - ÷ = W 6ø 3 è 25. (C)

5W

0.1v1

50 W

100 W

2i 40 W

+

i

Fig. S1.4.20 200 W

6V

v1 = 4 + 5 ´ 0.1v1

Þ

3i

v1 = 8 V –

v1 = voc = vTH Fig. S1.4.25a

For isc , v1 = 0 4 v isc = A, RTH = oc = 10 W 5 isc 21. (D) vx = 2

vx +4 4

6 = 200 i - 40 ´ 2 i

Þ

i=

1 A 20

voc = 100 ´ 3i + 200 ´ i = 25 V Þ

vx = 8 V = voc

40 W

3W

2W

100 W

v1 i

isc 4V

voc

6V

vx 4

200 W

isc 3i1

Fig. S1.4.25b Fig. S1.4.21

If terminal is short circuited, vx = 0 4 v 8 isc = = 0.8 A, RTH = oc = = 10 W 2+3 isc 0.8

6 15 15 3 40 V, i = A = v1 = = 1 1 1 4 4 ´ 200 160 + + 40 200 100

www.nodia.co.in

Chap 1.4

isc =

Circuit Theorems

16 3´ 3 3 v 25 800 A, RTH = oc = + = = W 4 ´ 100 160 32 isc 3 32 3

41

30. (D) Changing the D to Y 12 W

26. (B) ix + 0.9 = 10 ix

Þ

2 W 3

2W

ix = 0.1 A 10ix

2W

1W

Req

18 W

+

6W 9W

16 V

voc

3W

0.9 A

Fig. S1.4.30



Fig. S1.4.26

voc = 3 ´ 10 ix = 30 ix isc = 10 ix = 1 A, RTH

æ æ 2 öö Req = 18 ||çç 14 + 10 ||ç 6 + ÷ ÷÷ = 18 ||(14 + 4) = 9 W 3 øø è è

Þ voc = 3 V 3 = = 3W 1

31. (C) RTH = 7 ||5 + 6 ||9 = 6.52 W 7W 2

3 = 0.75 W 4´ 3

6 W

RTH W

27. (A) vTH = voc = 3 V, RL = 3 W, Pmax =

5

28. (A) ix = 1 A , vx = vtest -2ix

9W

Fig. S1.4.31 100 W

0.01vx 100 W

+

300 W

1A

vtest –

For maximum power transfer RL = RTH = 6.52 W 32. (D) The given circuit has mirror symmetry. It is modified and redrawn as shown in fig. S.1.4.32a.

ix

6W

800 W

Fig. S1.4.28

1W

vtest = 1200 - 800 ix - 3vtest

4 vtest = 1200 - 800 = 400 v RTH = test = 100 W 1

Þ

1W 3W

vtest = 100 (1 - 2 ix ) + 300 (1 - 2 ix - 0.01vx ) + 800 Þ

6W

6V

3W 2W

2W

vtest = 100 V

+ va

6V



Fig. S.1.4.32a

29. (C) In circuit (b) transforming the 3 A source in to

Now in this circuit all straight-through connection

18 V source all source are 1.5 times of that in circuit

have been cut as shown in fig. S1.4.32b

(a). Hence ib = 15 . ia . ib

6W 1W

2W 6W

3W

6W 2W

2W

2W

18 V 18 V

va –

12 V

Fig. S.1.4.32b

6W

Fig. S1.4.29

+

va =

www.nodia.co.in

6 ´ (2 + 3) =5 V 2 + 3+1

6V

42

Circuit Theorems

33. (B) Since both source have opposite polarity, hence short circuit the all straight-through connection as shown in fig. S.1.4.33 6W 1W 3W 2W

+ va

For 0 -50 V scale Rm = 50 ´ 20 k = 1 MW 4 For 4 V reading i = ´ 50 = 20 mA 10 vTH = 20mRTH + 20m ´ 200 k = 4 + 20mRTH 5 For 5 V reading i = ´ 50m = 5 mA 50

...(i)

vTH = 5m ´ RTH + 5m ´ 1M = 5 + 5mRTH

...(ii)

Solving (i) and (ii) 16 200 V, RTH = vTH = kW 3 3

6V



Fig. S1.4.33

va = -

39. (D) v10 k = 10 k ´ 3.6m = 6

6 ´ ( 6 ||3) = -4 V 2+1

v30 k = 30 k ´ 4.8m = 12 V 6 =

10 vTH 10 + RTH

12 =

30 vTH 30 + RTH

34. (C) Let Thevenin equivalent of both network RTH

Chap 1.4

RTH

RTH

Þ

Þ

10 vTH = 6 RTH + 60

5 vTH = 2 RTH + 60

RTH = 30 kW vTH

R

vTH

R

40. (D) At v = 0 , isc = 30 mA At i = 0, voc = - 3 V v -3 RTH = oc = = - 100 W isc 30m

Fig. S1.4.34 2

æ VTH ö ÷÷ R P = çç è RTH + R ø æ ç VTH P¢ = ç R ç ç R + TH è 2

vTH

2

ö ÷ æ VTH ÷ R = 4ç ç2R + R ÷ è TH ÷ ø

2

************

ö ÷÷ R ø

Thus P < P ¢ < 4 P 35. (C) i1 =

P1 P2 and i2 = R R

using superposition i = i1 + i2 =

P1 ± R

P2 R

i 2 R = ( P1 ± P2 ) 2 36. (C) r = P=

voc = 1. 2 W isc

24 2 ´ 2 = 112.5 W (1. 2 + 2) 2

37. (B) RTH =

38. (A) Let

voc 12 = =8W isc 15 .

1 1 = = 50 mA sensitivity 20 k

For 0 -10 V scale Rm = 10 ´ 20 k = 200 kW www.nodia.co.in

Related Documents

Circuit
November 2019 43
Circuit
November 2019 40
Circuit
November 2019 33
Circuit
November 2019 44
Circuit
November 2019 37
Circuit
October 2019 39