1.4
Circuit Theorems
1. vTH , RTH = ?
(C) 1 V, 3W
2W
5 W 6
(D) -1 V,
6 W 5
4. A simple equivalent circuit of the 2 terminal 6W
6V
vTH, RTH
network shown in fig. P1.4.4 is
R
Fig. P.1.4.1
(A) 2 V, 4 W
(B) 4 V, 4 W
(C) 4 V, 5 W
(D) 2 V, 5 W
i
v
Fig. P.1.4.4
2. i N , R N = ? 2W
R
2W
R 4W
15 V
v
iN, RN
(A)
(B)
Fig. P.1.4.2
(A) 3 A,
R R
10 W 3
i
(B) 10 A, 4 W
(C) 1,5 A, 6 W
i
(D) 1.5 A, 4 W
(C)
(D)
5. i N , R N = ?
3. vTH , RTH = ?
2W
2W
3W
2A
1W
vTH, RTH
6A
6 W 5
(B) 2 V,
3W
iN RN
Fig. P.1.4.5
Fig. P.1.4.3
(A) -2 V,
4W
5 W 6
(A) 4 A, 3 W
(B) 2 A, 6 W
(C) 2 A, 9 W
(D) 4 A, 2 W
www.nodia.co.in
34
Circuit Theorems
6. vTH , RTH = ?
Chap 1.4
The value of the parameter are vTH
RTH
iN
RN
(A)
4 V
2 W
2 A
2 W
(B)
4 V
2 W
2 A
3 W 1.2 W 5 W
25 W
30 W 20 W
vTH, RTH
5V 5A
Fig. P.1.4.6
(A) -100 V, 75 W
(B) 155 V, 55 W
(C) 155 V, 37 W
(D) 145 V, 75 W
(C)
8 V
1.2 W
30 A 3
(D)
8 V
5 W
8 A 5
10. v1 = ? 2W
1W
7. RTH = ? 6W
2W
8V
6W
3W
1W
+ v1
6W
18 V
–
6W
2A
RTH
Fig. P.1.4.10
5V
(A) 6 V
(B) 7 V
(C) 8 V
(D) 10 V
Fig. P.1.4.7
(A) 3 W
(B) 12 W
(C) 6 W
(D) ¥
11. i1 = ? 4 kW
i1
20 V
4 kW
6 kW
8. The Thevenin impedance across the terminals ab of the network shown in fig. P.1.4.8 is
12 V
24 V
3 kW
4 kW
a 3W
Fig. P.1.4.11 6W
2A
8W
2V 8W
b
(B) 6 W
(C) 6.16 W
(D)
(B) 0.75 mA
(C) 2 mA
(D) 1.75 mA
Statement for Q.12–13:
Fig. P.1.4.8
(A) 2 W
(A) 3 A
A circuit is given in fig. P.1.4.12–13. Find the Thevenin equivalent as given in question..
4 W 3
10 W
16 W
x
y
9. For In the the circuit shown in fig. P.1.4.9 a network 2W
8W
3W
x’
RTH 4V
40 W
5V
and its Thevenin and Norton equivalent are given
iN
2A vTH
Fig. P.1.4.9
y’
Fig. P.1.4.12–13 RN
12. As viewed from terminal x and x¢ is (A) 8 V, 6 W
(B) 5 V, 6 W
(C) 5 V, 32 W
(D) 8 V, 32 W
www.nodia.co.in
1A
Chap 1.4
Circuit Theorems
13. As viewed from terminal y and y¢ is (A) 8 V, 32 W
(B) 4 V, 32 W
(C) 5 V, 6 W
(D) 7 V, 6 W
35
(C) 0 A, 20 W
(D) 0 A, -20 W
19. vTH , RTH = ? i1
6W
14. A practical DC current source provide 20 kW to a 50 W load and 20 kW to a 200 W load. The maximum
3i1
power, that can drawn from it, is (A) 22.5 kW
(B) 45 kW
(C) 30.3 kW
(D) 40 kW
RN
Fig. P1.4.19
Statement for Q.15–16: In the circuit of fig. P.1.4.15–16 when R = 0 W , the current iR equals 10 A.
(A) 0 W
(B) 1.2 W
(C) 2.4 W
(D) 3.6 W
20. vTH , RTH = ?
2W
4W
iN,
4W
2W
4V +
E
4W
2W
R
4A
iR
vTH RTH
v1
5W
0.1v1
–
Fig. P.1.4.15–16. Fig. P.1.4.20
15. The value of R, for which it absorbs maximum power, is
(A) 8 V, 5 W
(B) 8 V, 10 W (D) 4 V, 10 W
(A) 4 W
(B) 3 W
(C) 4 V, 5 W
(C) 2 W
(D) None of the above
21. RTH = ? 3W
2W
16. The maximum power will be
+
(A) 50 W
(B) 100 W
(C) 200 W
(D) value of E is required
vx 4
4V
17. Consider a 24 V battery of internal resistance
the current drawn from the battery is i . The current drawn form the battery will be i 2 when RL is equal to (A) 2 W
(B) 4 W
(C) 8 W
(D) 12 W
Fig. P.1.4.21
(A) 3 W
(B) 1.2 W
(C) 5 W
(D) 10 W
22. In the circuit shown in fig. P.1.4.22 the effective resistance faced by the voltage source is 4W
18. i N , R N = ? 5W
10 W i1 20i1
iN,
30 W
vs
RN
i
i 4
Fig. P.1.4.22 Fig. P.1.4.18
(A) 2 A, 20 W
RTH
–
r = 4 W connected to a variable resistance RL . The rate of heat dissipated in the resistor is maximum when
vx
(B) 2 A, -20 W
(A) 4 W
(B) 3 W
(C) 2 W
(D) 1 W
www.nodia.co.in
36
Circuits Theorems
Chap 1.4
23. In the circuit of fig. P1.4.23 the value of RTH at
ix
terminal ab is 16 V
0.75va
RL
3W
0.9 A 2W
Fig. P.1.4.26–27
8W
a
–
26. The value of RL will be
va +
4W
9V
b
Fig. P.1.4.23
(A) -3 W 8 (C) - W 3
(B) 3 W
(C) 1 W
(D) None of the above
27. The maximum power is
9 W 8
(B)
(A) 2 W
(D) None of the above
(A) 0.75 W
(B) 1.5 W
(C) 2.25 W
(D) 1.125 W
28. RTH = ?
24. RTH = ?
-2ix
200 W –
va 100
va +
100 W
50 W
RTH
100 W
300 W ix
Fig. P.1.4.24
(A) ¥ (C)
(B) 0
3 W 125
(D)
125 W 3
maximum power if RL is equal to
800 W
(C) 200 W
(D) 272.8 W
29. Consider the circuits shown in fig. P.1.4.29 ia
2W 6W
6W 2W
2W
RL
3i
RTH
–
(B) 136.4 W
100 W
200 W
vx
(A) 100 W
i 6V
+
Fig. P.1.4.28
25. In the circuit of fig. P.1.4.25, the RL will absorb
40 W
100 W
0.01vx
12 V 8V
12 V
Fig. P.1.4.25
6W
(A)
400 W 3
(B)
2 kW 9
(C)
800 W 3
(D)
4 kW 9
ib
2W 6W
6W
2W
2W
Statement for Q.26–27: In the circuit shown in fig. P1.4.26–27 the
18 V
6W
3A
maximum power transfer condition is met for the load RL .
Fig. P.1.4.29a & b
www.nodia.co.in
12 V
Chap 1.4
Circuit Theorems
37
33. If vs1 = 6 V and vs 2 = - 6 V then the value of va is
The relation between ia and ib is (A) ib = ia + 6
(B) ib = ia + 2
(A) 4 V
(B) -4 V
(C) ib = 15 . ia
(D) ib = ia
(C) 6 V
(D) -6 V
30. Req = ?
34. A network N feeds a resistance R as shown in fig. 12 W
P1.4.34. Let the power consumed by R be P. If an
4W
identical network is added as shown in figure, the Req
6W
power consumed by R will be
2W
18 W
6W 9W R
N
N
N
R
Fig. P.1.4.30
(A) 18 W (C)
(B)
36 W 13
72 W 13
Fig. P.1.4.34
(D) 9 W
31. In the lattice network the value of RL for the maximum power transfer to it is
(A) equal to P
(B) less than P
(C) between P and 4P
(D) more than 4P
35. A certain network consists of a large number of ideal linear resistors, one of which is R and two constant ideal source. The power consumed by R is P1
7W
when only the first source is active, and P2 when only
6
the second source is active. If both sources are active
W
simultaneously, then the power consumed by R is
5
W
RL
9W
(A) P1 ± P2
(B)
(C) ( P1 ± P2 ) 2
(D) ( P1 ± P2 ) 2
P1 ± P2
Fig. P.1.4.31
(A) 6.67 W
(B) 9 W
36. A battery has a short-circuit current of 30 A and an
(C) 6.52 W
(D) 8 W
open circuit voltage of 24 V. If the battery is connected to an electric bulb of resistance 2 W, the power dissipated by the bulb is
Statement for Q.32–33: A circuit is shown in fig. P.1.4.32–33.
(A) 80 W
(B) 1800 W
(C) 112.5 W
(D) 228 W
12 W 1W
3W
3W
37.
1W
va
1W
following
results
were
obtained
from
measurements taken between the two terminal of a
+ vs1
The
vs2
resistive network
–
Fig. P.1.4.32–33
32. If vs1 = vs 2 = 6 V then the value of va is
Terminal voltage
12 V
0V
Terminal current
0A
1.5 A
The Thevenin resistance of the network is
(A) 3 V
(B) 4 V
(A) 16 W
(B) 8 W
(C) 6 V
(D) 5 V
(C) 0
(D) ¥
www.nodia.co.in
38
Circuit Theorems
Chap 1.4
38. A DC voltmeter with a sensitivity of 20 kW/V is
Solutions
used to find the Thevenin equivalent of a linear network. Reading on two scales are as follows
1. (B) vTH =
(a) 0 - 10 V scale : 4 V (b) 0 -15 V scale : 5 V The
Thevenin
voltage
the
Thevenin
2. (A) 2W
resistance of the network is 16 1 (A) V, MW 3 15
32 V, 3
200 kW 3
(D) 36 V,
200 kW 3
(B)
2 MW 15
(C) 18 V,
and
( 6)( 6) = 4 V, RTH = ( 3||6) + 2 = 4 W 3+ 6
isc
Fig. S.1.4.2
15 10 2 =6W R N = 2 ||4 + 2 = W, v1 = 1 1 1 3 + + 2 2 4 v isc = i N = 1 = 3 A 2
+ RL
4W
15 V
39. Consider the network shown in fig. P.1.4.39.
Linear Network
2W
v1
vab –
Fig. P.1.4.39
The power absorbed by load resistance RL is
3. (C) vTH =
shown in table : RL
10 kW
30 kW
P
3.6 MW
4.8 MW
(2)( 3)(1) 5 = 1 V, RTH = 1||5 = W 3+ 3 6
4. (B) After killing all source equivalent resistance is R Open circuit voltage = v1
The value of RL , that would absorb maximum
5. (D) isc =
6´ 4 = 4 A = i N , R N = 6 ||3 = 2 W 4+2 2W
power, is (A) 60 kW
(B) 100 W
(C) 300 W
(D) 30 kW
isc 3W
4W
6A
40. Measurement made on terminal ab of a circuit of fig.P.1.4.40 yield the current-voltage characteristics
Fig. S1.4.5
shown in fig. P.1.4.40. The Thevenin resistance is 6. (B) RTH = 30 + 25 = 55 W, vTH = 5 + 5 ´ 30 = 155 V
i(mA) +
30 Resistive Network
20 10 -4
-3 -2
-1
0
vab –
1
2
v
a
7. (C) After killing the source, RTH = 6 W
b
6W
6W
Fig. P.1.4.40
RTH
(A) 300 W
(B) -300 W
(C) 100 W
(D) -100 W Fig. S.1.4.7 ***********
www.nodia.co.in
Chap 1.4
Circuit Theorems
8. (B) After killing all source, RTH = 3||6 + 8 ||8 = 6 W
6W
8W 8W
If we Thevenized the left side of xx¢ and source transformed right side of yy¢ 4 8 + 8 24 RTH = 8 ||(16 + 8) = 6 W = 5 V, vxx ¢ = vTH = 1 1 + 8 24
a
3W
39
b
Fig. S1.4.8
13. (D) v yy¢ = vTH
9. (D) voc = 2 ´ 2 + 4 = 8 V = vTH RTH = 2 + 3 = 5 W = R N ,
iN =
vTH 8 = A RTH 5
4 8 + 24 8 = 7 V, R = ( 8 + 16)||8 = 6 W = TH 1 1 + 24 8
14. (A)
10. (A) By changing the LHS and RHS in Thevenin i
equivalent 1W
1W
2W
1W
Fig. S1.4.14
+ 6W
4V
RL
r
v1
12 V
–
2
2
æ ir ö æ ir ö ÷ 50 = 20 k, ç ÷ 200 = 20 k ç è r + 50 ø è r + 200 ø Þ
( r + 200) 2 = 4( r + 50) 2
Fig. S1.4.10
Pmax
i = 30 A,
4 12 + + +2 =6 V 1 1 1 v1 = 1 1 1 + + 1+1 6 1+2
r = 100 W
( 30) 2 ´ 100 = = 22.5 kW 4
15. (C) Thevenized the circuit across R, RTH = 2 W 4W
2W
2W
11. (B) By changing the LHS and RHS in Thevenin 2W
4W
equivalent i1
2 kW
4 kW
20 V
2 kW
Fig. S1.4.15 6V
8V
17. (D) RL = r = 4 W, i =
Fig. S1.4.11
i1 =
20 - 6 - 8 = 0.75 mA 2k + 4k + 2k
24 3 = RL¢ + 4 2
12. (B) 8W
16 W
x
2
æ 10 ö ÷ ´ 2 = 50 W 16. (A) isc = 10 A, RTH = 2 W, Pmax = ç è 2 ø
y
Þ
24 =3 A 4+4
R¢L = 12 W
18. (C) i N = 0,
8W
1- i1 10 W
5W i1
4V
+
8V
20i1
30 W
1A
vtest –
x’
y’
Fig. S1.4.18
Fig. S1.4.12
www.nodia.co.in
40
Circuit Theorems
20 i1 = 30 i1 - 10(1 - i1 )
Þ
i1 = 0.5 A
22. (B) vs = 4 ´
vtest = 5 ´ 1 + 30 ´ 0.5 = 20 V v R N = test = 20 W 1
3i 4
vs = 3W i
Þ
voc voc - 9 + + 0.75 va = 0 4 8
23. (C) voc = vab = -va ,
19. (B) Circuit does not contains any independent source, vTH = 0 i1
6W
+ 4W
3i1
Chap 1.4
1A
vtest
2 voc + voc - 9 + 6( -voc ) = 0 , voc = - 3 V If terminal ab is short circuited, va = 0 9 v -3 -8 A and RTH = oc = isc = = W 8 isc 9 8 3 24. (D) Using source transform i1
–
100 W
200 W – +
Fig. S1.4.19
va
va
1A
vtest –
Applying 1 A at terminal, i1 = -1 A vtest vtest - 3( -1) . V + = 1 Þ vtest = 12 4 6 v RTH = test = 12 . W 1
+
Fig. S1.4.24
va = 100 i1 + 200 i1 + 50( i1 + 1) va = 100 i1 - va
Þ
va = 50 i1
50 i1 = 300 i1 + 50 i1 + 50
20. (B) 4V isc
Þ
i1 = -
1 A 6
æ 1 ö 125 vtest = 50ç 1 - ÷ = W 6ø 3 è 25. (C)
5W
0.1v1
50 W
100 W
2i 40 W
+
i
Fig. S1.4.20 200 W
6V
v1 = 4 + 5 ´ 0.1v1
Þ
3i
v1 = 8 V –
v1 = voc = vTH Fig. S1.4.25a
For isc , v1 = 0 4 v isc = A, RTH = oc = 10 W 5 isc 21. (D) vx = 2
vx +4 4
6 = 200 i - 40 ´ 2 i
Þ
i=
1 A 20
voc = 100 ´ 3i + 200 ´ i = 25 V Þ
vx = 8 V = voc
40 W
3W
2W
100 W
v1 i
isc 4V
voc
6V
vx 4
200 W
isc 3i1
Fig. S1.4.25b Fig. S1.4.21
If terminal is short circuited, vx = 0 4 v 8 isc = = 0.8 A, RTH = oc = = 10 W 2+3 isc 0.8
6 15 15 3 40 V, i = A = v1 = = 1 1 1 4 4 ´ 200 160 + + 40 200 100
www.nodia.co.in
Chap 1.4
isc =
Circuit Theorems
16 3´ 3 3 v 25 800 A, RTH = oc = + = = W 4 ´ 100 160 32 isc 3 32 3
41
30. (D) Changing the D to Y 12 W
26. (B) ix + 0.9 = 10 ix
Þ
2 W 3
2W
ix = 0.1 A 10ix
2W
1W
Req
18 W
+
6W 9W
16 V
voc
3W
0.9 A
Fig. S1.4.30
–
Fig. S1.4.26
voc = 3 ´ 10 ix = 30 ix isc = 10 ix = 1 A, RTH
æ æ 2 öö Req = 18 ||çç 14 + 10 ||ç 6 + ÷ ÷÷ = 18 ||(14 + 4) = 9 W 3 øø è è
Þ voc = 3 V 3 = = 3W 1
31. (C) RTH = 7 ||5 + 6 ||9 = 6.52 W 7W 2
3 = 0.75 W 4´ 3
6 W
RTH W
27. (A) vTH = voc = 3 V, RL = 3 W, Pmax =
5
28. (A) ix = 1 A , vx = vtest -2ix
9W
Fig. S1.4.31 100 W
0.01vx 100 W
+
300 W
1A
vtest –
For maximum power transfer RL = RTH = 6.52 W 32. (D) The given circuit has mirror symmetry. It is modified and redrawn as shown in fig. S.1.4.32a.
ix
6W
800 W
Fig. S1.4.28
1W
vtest = 1200 - 800 ix - 3vtest
4 vtest = 1200 - 800 = 400 v RTH = test = 100 W 1
Þ
1W 3W
vtest = 100 (1 - 2 ix ) + 300 (1 - 2 ix - 0.01vx ) + 800 Þ
6W
6V
3W 2W
2W
vtest = 100 V
+ va
6V
–
Fig. S.1.4.32a
29. (C) In circuit (b) transforming the 3 A source in to
Now in this circuit all straight-through connection
18 V source all source are 1.5 times of that in circuit
have been cut as shown in fig. S1.4.32b
(a). Hence ib = 15 . ia . ib
6W 1W
2W 6W
3W
6W 2W
2W
2W
18 V 18 V
va –
12 V
Fig. S.1.4.32b
6W
Fig. S1.4.29
+
va =
www.nodia.co.in
6 ´ (2 + 3) =5 V 2 + 3+1
6V
42
Circuit Theorems
33. (B) Since both source have opposite polarity, hence short circuit the all straight-through connection as shown in fig. S.1.4.33 6W 1W 3W 2W
+ va
For 0 -50 V scale Rm = 50 ´ 20 k = 1 MW 4 For 4 V reading i = ´ 50 = 20 mA 10 vTH = 20mRTH + 20m ´ 200 k = 4 + 20mRTH 5 For 5 V reading i = ´ 50m = 5 mA 50
...(i)
vTH = 5m ´ RTH + 5m ´ 1M = 5 + 5mRTH
...(ii)
Solving (i) and (ii) 16 200 V, RTH = vTH = kW 3 3
6V
–
Fig. S1.4.33
va = -
39. (D) v10 k = 10 k ´ 3.6m = 6
6 ´ ( 6 ||3) = -4 V 2+1
v30 k = 30 k ´ 4.8m = 12 V 6 =
10 vTH 10 + RTH
12 =
30 vTH 30 + RTH
34. (C) Let Thevenin equivalent of both network RTH
Chap 1.4
RTH
RTH
Þ
Þ
10 vTH = 6 RTH + 60
5 vTH = 2 RTH + 60
RTH = 30 kW vTH
R
vTH
R
40. (D) At v = 0 , isc = 30 mA At i = 0, voc = - 3 V v -3 RTH = oc = = - 100 W isc 30m
Fig. S1.4.34 2
æ VTH ö ÷÷ R P = çç è RTH + R ø æ ç VTH P¢ = ç R ç ç R + TH è 2
vTH
2
ö ÷ æ VTH ÷ R = 4ç ç2R + R ÷ è TH ÷ ø
2
************
ö ÷÷ R ø
Thus P < P ¢ < 4 P 35. (C) i1 =
P1 P2 and i2 = R R
using superposition i = i1 + i2 =
P1 ± R
P2 R
i 2 R = ( P1 ± P2 ) 2 36. (C) r = P=
voc = 1. 2 W isc
24 2 ´ 2 = 112.5 W (1. 2 + 2) 2
37. (B) RTH =
38. (A) Let
voc 12 = =8W isc 15 .
1 1 = = 50 mA sensitivity 20 k
For 0 -10 V scale Rm = 10 ´ 20 k = 200 kW www.nodia.co.in