Capa de contacto GaAs (n+) [Zn], 0.5µm 6x1018 cm-3 (1)
Contacto frontal Au–Ag, 0.1–8µm (2) Capa antirreflectante TiO2 / Al2O3 (2)
Pasivación AlInP2 (n+) 2x1018 cm-3 [Si], 0.03 µm (3) Emisor GaInP2 (n+) 2x1018 cm-3 [Si], 0.05 µm (3) Celda “TOP” Base GaInP2 (p) 1.5x1017 cm-3 [Zn], 0.55 µm (3) BSF GaInP2 (p+) 3x1018 cm-3 [Zn], 0.05 µm (1) Juntura túnel
GaInP2 (p++ /n++ ) (8/10)x1018 cm-3 [Zn/Si], 0.015/0.015 µm (4) Pasivación AlInP2 (n+) 1x1019 cm-3 [Si], 0.05 µm (4) Emisor GaAs (n+) 2x1018 cm-3 [Si], 0.1 µm (4)
Celda “MIDDLE”
Base GaAs (p) 1x1017 cm-3 [Zn], 3.0 µm (4) BSF GaInP2 (p+) 2x1018 cm-3 [Zn], 0.1 µm (4)
Juntura túnel
GaAs (p++ /n++ ) (8/10)x1018 cm-3 [Zn/Si], 0.015/0.015 µm (3) Buffer AlGaAs (n+) [Si] Emisor Ge (n+) [As] (5)
Celda “BOTTOM”
Base Ge (p) 2x1017 (5)
Contacto posterior Au–Ag, 0.1–8µm (2) 1.
K.A. Bertness, S.R. Kurtz, D.J. Friedman, A.E. Kibbler, C. Kramer, J.M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells” Applied Physics Letters 65, 989 (1994).
2.
Estimación en base a los materiales detectados mediante análisis dispersivo de rayos X (EDAX) sobre celdas Emcore ATJ
3.
T. Takamoto, E. Ikeda, H. Kurita, “Over 30% efficient InGaP/GaAs tandem solar cells”, Applied Physics Letters 70, 381 (1997).
4.
N. Dharmarasu, A. Khan, M. Yamaguchi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, S. Matsuda, “Effects of proton irradiation on n+ p InGaP solar cells”, Journal of Applied Physics 91, 3306 (2002).
5.
N.H. Karam, R.R. King, B.T. Cavicchi, D.D. Krut, J.H. Ermer, M.Haddad, L. Cai, D.E. Joslin, M. Takahashi, J.W. Eldredge, W.T. Nishikawa, D.R. Lillington, B.M. Keyes, R.K. Ahrenkiel, “Development and Characterization of High-Efficiency GaInP/GaAs/Ge Dual- and TripleJunction Solar Cells”, IEEE Transactions on Electron Devices 46, 2116 (1999).