New directions in research, new findings and continuing key concerns issues on climate change and water resources Max Campos Regional Committe on Hydraulic Resources-Central America
Water resources and climate change Interdisciplinary analyses Lack of information about some parts of hydrological cycle Hydrological views of climate (design purposes)
Hydrological cycle
Biophysical impacts (man) Impacts cycle for water studies
Policy makers
Environmental & social
..... require an interdisciplinary approach comprehensive studies of climate and water issues have omitted the social scientists, producing results that are difficult for decision makers to use. .......particularly in the world of policy development, are the views of hydrologists about climate and its change. Most hydrologic studies of extreme events such as floods and droughts have assumed stationarity of climate over time
.......the importance of including climatic variability in water resources management), for example: moderate fluctuations in climate may produce major hydrologic changes, and in one case noted that a 25 % increase in precipitation in a basin increased the mean annual runoff by 50-70%. .......policy-makers addressing the impacts of climate change on water resources typically are most aware of views of hydrologists . This can result in confusion and loss of credibility about the issues, and inaction at the policy making levels.
Middle 80s. emphasis research: . the effects on precipitation of CO2 induced global warming. . how climate changes might alter extreme events (droughts and floods). . the relationship of climate alterations and water quality. . development of methods to better ascertain climate, water, and society.
Allee, David J., Leonard B. Dworsky, and Albert E. Utton (1993). Managing Transboundary Water Conflicts: The United States and its Boundary Commissions. AWRA 28th Annual Conference & Symposium, Reno, NV, AWRA. USMexico border, Canada. water supply, legal/policy/political issues. Allen, L.H., P. Jones, and J.W. Jones (1985). Rising Atmospheric CO2 and Evapotranspiration. St. Joseph, MI, American Society of Agricultural Engineers: 13 27. US. CO2 levels, evapotranspiration, agriculture.
Anderson, Jeffry L., S. Shiau, and Danny Harvey (1991). Preliminary Investigation of Trend/Patterns in Surface Water Characteristics and Climate Variations. NHRI Workshop, Saskatoon, Canada, National Hydrology Research Institute. unspecified/NA. hydrology/groundwater/river flows. Assel, Raymond A. (1988). Impact of Global Warming on Great Lakes Ice Cycles. The Potential Effects of Global Climate Change on the United States. J. B. Smith, and Dennis A. Tirpak. Washington, DC, U.S. EPA. EPA2300589051: 5.15.30. Eastern US, Great Lakes. lake level fluctuation/ice cover.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Climate change assessments Water planning and allocation Modelling data issues Soil moisture Evapotranspiration Recreation and tourism Animal ecology/wildlife/fisheries Economics valuation Historial climate Lakes Snowfall / snowmelts Hydrology/groundwater/riverflows Water supply Legal / policy / political issues CO2 levels Agriculture Irrigation Weather variations (extremes) Water use Lake level fluctuations / ice cover
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Sea level rise Land usemanagement Human health Floods Hydropower Navigation / transportation Water quality Desertification / droughts Plant ecology Forest Climate feedbacks Remote sensing Water transfer Water storage / reservoirs Precipitation Saline (estuary) Population and social Wetlands Hydrogeological cycle Water conservation Urban issues
Research on Climate Change and Water Resources 5.3
3.1
3.6
4.7
3.1 4.5
11.8
72%
3.3
5.1
8.5 4.9 14.0 Climate change assessments
Water planning and allocation
Modelling data issues
Animal ecology/wildlife/fisheries
Snowfall / snowmelts
Hydrology/groundwater/riverflows
Water supply
Legal / policy / political issues
CO2 levels
Agriculture
Lake level fluctuations / ice cover
Precipitation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Climate change assessments Water planning and allocation Modelling data issues Soil moisture Evapotranspiration Recreation and tourism Animal ecology/wildlife/fisheries Economics valuation Historial climate Lakes Snowfall / snowmelts Hydrology/groundwater/riverflows Water supply Legal / policy / political issues CO2 levels Agriculture Irrigation Weather variations (extremes) Water use Lake level fluctuations / ice cover
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Sea level rise Land usemanagement Human health Floods Hydropower Navigation / transportation Water quality Desertification / droughts Plant ecology Forest Climate feedbacks Remote sensing Water transfer Water storage / reservoirs Precipitation Saline (estuary) Population and social Wetlands Hydrogeological cycle Water conservation Urban issues
POLICY AND CLIMATE CHANGE W ho are the policy makers in water resources?
A variety of levels: -local -states and provinces -national level -international level.
POLICY AND CLIMATE CHANGE Needs for Information related to climate change by policy makers: More frequently asked questions being asked by policy makers: 1- what type of climate change is apt to occur?: -Will the variability of weather increase? -Will the mean or modal values of temperature, precipitation or other critical variables change? -What conditions will be altered and by how much? - Will there be more extremes with the normals not changing?
POLICY AND CLIMATE CHANGE 2- Are the changes beyond the stationarity assumptions that hydrologists typically consider in their current designs? -Can we prove or reasonably establish that the changes which may occur in the climate are greater than what has been assumed out of study of the historical records? 3- Can the presumed future changes be predicted (beginning, continuance and/or end? -What is the certainty of the situation? -What are the confidence bands and the probabilities for that the climate change will occur? -Credibility of the information from the scientific community: divergence of opinion between the scientific community leads to inaction by the policy makers.
POLICY AND CLIMATE CHANGE 4- How serious will the change be? -Who is affected, the cost, the social disruptions and an environmental impact what is affected; -what is the time reaction of the effect? 5- What are the potential solutions? Scientists should not present problems unless they also help us with their solutions. It implies information on potential adjustments:
Country
BELICE
Guatemala
Agriculture Contribution % of area) Countries of agriculture to economy % de GDP Guatemala (1999) 41.6
23
32.0 HONDURAS
Honduras
GUATEMALA
Honduras Belize 16
Agriculture US$ Area(GNI/cap.) under irrigation (%) 1.680
522,000 km2
6.6
760
2.730
30 Millones hab. 410 3.7
Belice
6.1
Nicaragua 19
Nicaragua
62.3
32 El Salvador
3.2
1.920
El Salvador
77.4
Costa 10 Rica
4.4
3.570
Costa Rica
55.7
11 Panama
25
3.080
EL SALVADOR Panamá
3.4
28.6 7 NICARAGUA Central America
4.9
Central América
43.4
16.8
7.3
Brasil
29.6
9
Estados Unidos
45.7
<6
Reino Unido
72.5
1
Suiza
COSTA39.9 RICA
2021.4
<6
Sudáfrica
81.6
4
Holanda
58.2
3
México
56.2
5
PANAMA
NOVIEMBRE
a
FEBRERO
EL NIÑO
El fenómeno de El Niño produce una reducción importante en la lluvia del Pacífico Centroamericano la cual puede ocasionar condiciones de sequía en algunos sitios específicos. A pesar de esto, El Niño solamente explica un porcentage de los eventos secos del Istmo. Areas propensas a sequía en Centroamerica. Ramírez P. , Amenazas Hidrometeorológicas en Centroamerica.. Informe consultoría IRG.
Resultados del Ier Foro Climático Junio-2001, Tegucigalpa, Honduras, NOAA-OGP, CRRH/SICA
2010 <1500 2000-1500
<1500
CHANGES IN YEARLY RAINFALL
2100 Rainfall in mm
<800 <800 1500-800
Results from Costa Rica – The Netherlands Climate change project Minister for Environment and Energy (MINAE) National Meteorological Institute (IMN)
CHANGES IN MEAN TEMPERATURE COSTA RICA
Mean temperature for year 2100 Based on model HADCM2 and IS-92a scenario.
Actual Actual mean mean temperature temperature Nat. Met. Institute-CR. Nat. Met. Institute-CR.
30 >T>27.5 T>30 C
27.5>T>25 25>T>22.5
22.5>T>20 Results from Costa Rica – The Netherlands Climate change project Minister for Environment and Energy (MINAE) National Meteorological Institute (IMN)
Rainfall (mm)-average 1971-90 (INETER 2000)
CHANGES IN RAINFALL NICARAGUA
Rainfall (mm) – year 2100 HADCM2 model and IS92-a Scenario (MARENA 2000)
Important reductions in precipitation are expected along the Pacific region of Nicaragua under IS-92-a: 2010………… -8.4% 2030……..… -14.5% 2050……….. -21.0% 2070……….. -27.3% 2100……….. -36.6%
INETER: Instituto Nicaraguense de Estudios Territoriales MARENA: Ministerio del Ambiente y Recursos Naturales
OBJETIVO: Comprender la respuesta hidrológica de las principales cuencas hidrográficas a diferentes escenarios de cambio climático. Criterio de selección: alto potencial de de generación hidroeléctrico, importantes fuentes de abastecimiento de agua para comunidades urbanas y rurales
METODOLOGIA: (Programa de los Estados Unidos para el Cambio Climático (US-CSP) y Expertos en hidrología y meteorología Centroamericanos (PCCC))
Utilización del modelo CLIRUM 3 (precipitación-escorrentía) para simular las variaciones en la escorrentía generada por precipitaciones derivadas de varios escenarios climáticos.
Fases: Manejo de información hidro-meteorológica básica. Calibración y validación del modelo CLIRUM 3 (balance hídrico). Estimación general de la vulnerabilidad de las cuencas seleccionadas ante cambios de precipitación y temperatura (estimación de la sensibilidad).
Información básica: Ecurrimiento superficial, temperatura, precipitación y evapotranspiración potencial.
PANAMA
Porcentajes de cambio entre la escorrentía observada y la simulada por cuenca y entre la escorrentía del mes más seco y más húmedo del registro. Cuenca del Río Chagres Caudal observado (mm/día)
+2 C +20% P
+2 C +10% P
+2 C -20% P
+2 C -10% P
4.78 +14%
3.00 -26%
3.57 -13%
Promedio Anual
4.06
5.41 +28%
Marzo (mes más seco)
0.67
0.77 +15%
0.72 +7%
0.55 -18%
0.60 -10%
8.3
11.0 +33%
9.79 +18%
6.10 -27%
7.32 -12%
Nov. (mes más húmedo)
Cuenca del Río Chiriquí Caudal Obs. (mm/día)
+2 C +15% P
+1 C +10% P
+2 C -15% P
+1 C -10 % P
Promedio Anual
9.57
10.3 +5%
9.89 +2%
7.13 -24%
7.77 -18%
Marzo (mes más seco)
2.27
2.16 -5%
2.15 -5%
1.84 -19%
1.93 -15%
Oct.(mes más húmedo)
22.2
23.9 +7%
22.9 +3%
16.7 -25%
18.1 -19%
Cuenca del Río La Villa Caudal Obs. (mm/día)
+2 C +15% P
+1 C +10% P
+2 C -15% P
+1 C -10%
Promedio Anual
2.71
2.86 +1%
2.81 +1%
1.68 -35%
1.99 -24%
Marzo (mes más seco)
0.44
0.30 -32%
0.32 -27%
0.27 -39%
0.30 -32%
Oct.(mes más húmedo)
7.38
7.94 +8%
7.71 +4%
4.38 -41%
5.32 -28%
• • •
120 cuencas principales-23 cuencas transfronterizas – 10.7% mundo 40 % del territorio regional ~ 191.500 km2 > cualquier país región Capitales en cuencas transfronterizas: • Managua-Cuenca río San Juan-Nicaragua • Tegucigalpa-Cuenca río Choluteca-Honduras • San Salvador – Cuenca río Lempa-El Salvador
Magnitud of the impact of hurricane Mitch •3.5 million were affected. •53% were children under 5. • The most affected sector of population was the poorest. •Total amount of damages • US$ 6,018 M.
Crecimiento anual del PIB %
Effects on regional GNP: -2.5% 7 6 5 4 3 2 1 0 1995
1996
1997
1998
1999
Central America before Mitch After the lost decade of the 80’s, Central American countries were making important progress in: ➣ Consolidation of democracy. ➣ Strengthening the integration process. ➣ Organizing their economies. ➣ Intensification of the intra regional commerce. ➣ More efficient insertion in the international economy.