Integral Sub Topics I. Definition of Integral II. Properties of integral III Definite Integral IV Application of definite Integral V. Problems I. Definition of Integral Suppose Function F(x) where F’(x)=f(x). F(x) is called an antiderivative of f(x). In general, F(x)+c where c=constant is also an antiderivative of f(x). F(x)+c is called integral indefinite integral (integral tak tentu ) of f(x), denoted
∫ f(x) dx = F(x) + c II Properties of Integral 1. ∫ 1 dx = c
2. . ∫ a f(x) dx = a ∫ f(x) dx where a = contant 3. . ∫ {f(x) + g(x)} dx =
∫ f(x) dx + ∫ g(x) dx
a n +1 x +c n +1 5. . ∫ u dv = uv - ∫ v du is called integral by part (integral parsial) 4. . ∫ a x n dx =
Example: x ∫ 2 x e dx = ..........
Suppose : u =2x and dv=ex , then du=2 dx and v= ex x x x x x ∫ 2 x e dx = ∫ u dv = 2x e - 2∫ e dx = 2x e - 2 e + C.. Problems 8 x3 − 4x 1. ∫ dx = 4 2 x −x 2. ∫ 2 x sin x dx = .......... Note: When F(x)=sin(x) then F’(x)= cos(x) and when F(x)=cos(x)then F’(x)= -sin(x) When F(x)=sin(ax) maka F’(x)= a cos(ax) and when F(x)=cos(ax) then F’(x)= -a sin(ax) 43
So: ∫ cos(ax) dx = 1/a sin(ax) + C and ∫ sin(ax) dx = -1/a cos(ax) + C ax ax When F(x)= e then F’(x)= a e ax ax So : ∫ e dx = 1/a e +C III Definite Integral
Definite Integral f(x) in close interval [a,b] denoted, b
∫ f ( x)dx = F (b) − F (a) a
where F(x) antiderivative of f(x). It is described by an area under a curve y=f(x) , line x=a and x=b and X axis. Example. 3
∫−x
2
+ 9dx = F (3) − F (1) ,where F(x)= -1/3 X3+9X
1
= [-1/3 · 33+9 · 3] - [-1/3 · 13+9 · 1] = 18 – 26/3 = 28/3 Graph 10 8 6 4 Y
2 0 -2
-1
-2 0
1
2
3
4
5
-4 -6 -8 X
IV Application of definite Integral Look at supply curve and demand curve and market equilibrium.
44
80 70 60 50 40 P
30 20 10 0 -2
-10 0
2
4
6
8
10
-20 -30 Q
where : S : P=5Q +28 D: P=-Q2+64 Equilibrium point at: 5Q +28 = -Q2+64 Q2+5Q-36=0 (Q+9)(Q-4)=0 Q=-9 or Q=4 So, Equilibrium point at Q0=4 dan P0=48 4.a Consumer Surplus In the interval 0<=Q<= Q0, actually the consumers ready to pay more than P0 . In fact they pay at a lower price P0 So, they have an advantage which is called consumer surplus. The formula is:
CS =
Q0
∫ P dQ − P Q D
0
0
0
where PD is Demand curve Based on the example above,
45
4
CS = ∫ − Q 2 + 64dQ − 4 • 48 0
= F(4) –F(0) – 192 , where F(Q)= -1/3 · Q3+64Q = [ -1/3 · 43+64·4]-0-192 =-64/3+256-192= 128/3
4.b Producer Surplus
In the interval 0<=Q<= Q0, actually the producers ready to offer more than P0 . In fact they got a higher price P0 So, they have an advantage which is called producer surplus. The formula is: Q0
PS = P0Q0 − ∫ PS dQ 0
where PS Supply Curve Based on the example above,, 4
PS = 4 • 48 − ∫ 5Q + 28dQ 0
= 192- {F(4) –F(0)} , where F(Q)= 5/2 · Q2+28Q = 192- [ 5/2 · 42+28·4]-0 =192-80/2-112=40 V Problems Problem1. f(x)= x4- 3x2+2,: Find : 4
∫ f ( x)dx = 0
Problem2. Given the supply function and demand function as follows: S : P=3Q2 +5 D: P=-2Q2+50
Find consumer surplus Find producer surplus
46