Boltgrp

  • Uploaded by: Phanikrishnab
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Boltgrp as PDF for free.

More details

  • Words: 5,389
  • Pages: 18
"BOLTGRP" --- BOLT GROUP and BOLT STRESS ANALYSIS PROGRAM Program Description: "BOLTGRP" is a spreadsheet program written in MS-Excel for the purpose of analysis of bolt groups using either the ultimate strength method (also known as "instantaneous center of rotation" method) or the "elastic" (vector) method ("Alternate Method 1" in AISC Manual). There is also a worksheet for bolt stress analysis, and a separate worksheet that contains data tables for bolts. This program is a workbook consisting of thirteen (13) worksheets, described as follows:

Worksheet Name

Description

Doc Table XI Table XII Table XIII Table XIV Table XV Table XVI Table XVII Table XVIII Bolt Group (<=25) Bolt Group (<=75) Bolt Stress Bolt Data

This documentation sheet Bolt group instantaneous center analysis for one row of bolts Bolt group instantaneous center analysis for two rows spaced at 3" Bolt group instantaneous center analysis for two rows spaced at 5-1/2" Bolt group instantaneous center analysis for two rows spaced at 8" Bolt group instantaneous center analysis for three rows spaced at 3" Bolt group instantaneous center analysis for three rows spaced at 6" Bolt group instantaneous center analysis for four rows spaced at 3" Bolt group instantaneous center analysis for four rows spaced at 4" Bolt group elastic analysis for up to 25 total bolts and 4 load points Bolt group elastic analysis for up to 75 total bolts and 8 load points Bolt Stress Analysis for H.S. Bolts subject to tension and/or shear Bolt Data Tables

Program Assumptions and Limitations: 1. The AISC eccentric loads on bolt groups worksheets (Tables XI through XVIII, pages 4-62 through 4-69) are applicable for only in-plane shear loads and torques (moments) on the bolt group. 2. The elastic method worksheets, "Bolt Group(<=25)" and "Bolt Group(<=75)", can be used for all cases of in-plane and out-of-plane loads on the bolt group, or where geometry limitations of the AISC Tables XI through XVIII are ecceeded. The "elastic" method (AISC "Alternate" Method 1) will always give conservative results when compared to using the AISC Tables. 3. The elastic method worksheets, "Bolt Group(<=25)" and "Bolt Group(<=75)", assume a minimum of 2 bolts and a maximum of either 25 or 75 bolts for a bolt group. 4. The elastic method worksheets, "Bolt Group(<=25)" and "Bolt Group(<=75)", assume that all the bolts contribute to the moment of inertia of the group, and the applied loads are linearly distributed among the bolts based on the location of the bolts from the centroidal axes. 5. The elastic method worksheets, "Bolt Group(<=25)" and "Bolt Group(<=75)", assume an orthogonal X-Y-Z coordinate system. All bolts and loads points MUST BE located in the "positive" (1st) quadrant. "Negative" bolt or load point location coordinates are NOT permitted. "Right-Hand-Rule" sign convention is used for all applied forces and moments at load point locations. 6. In the elastic method worksheets, "Bolt Group(<=25)" and "Bolt Group(<=75)", the bolts and load points can be numbered in any desired order. However, the user should make sure to either clear the contents of all spreadsheet cells that are not used for input or those cell values should be input = 0. All bolts and load points MUST BE input in proper numerical sequence with no "breaks" in the numerical order of input data. 7. The "Bolt Stress" analysis worksheet checks allowable bolt tension and bolt shear against the applied values. High strength bolts from 3/4" up through 1-1/2" diameter are assumed. Effects of fatigue are considered if required. Bolts can be in either single or double shear. AISC 9th Edition Manual (ASD) is used.

8. This program contains numerous “comment boxes” which contain a wide variety of information including explanations of input or output items, equations used, data tables, etc. (Note: presence of a “comment box” is denoted by a “red triangle” in the upper right-hand corner of a cell. Merely move the mouse pointer to the desired cell to view the contents of that particular "comment box".) 9. The Bolt Data worksheet contains 2 pages of data tables for bolt allowable tension and shear forces, bolt length determination, bolt hole dimensions, and minimum edge distances. All data is per AISC 9th Edition Manual (ASD).

"BOLTGRP.xls" Program Version 2.6

ECCENTRIC LOADS ON BOLT GROUPS - FOR ONE VERTICAL ROW Based on the Instantaneous Center of Rotation Method and Alternate Method 2 Using Table XI from AISC 9th Ed. Manual (ASD) - page 4-62 Job Name: Subject: Job Number: Originator: Checker: Input Data: L=8.625

Vertical Load, Pv = Horizontal Load, Ph = No. Bolts in Vert. Row, n = Vertical Bolt Spacing, b = Dist. from Pv to C.G., L = Bolt Diameter, db = ASTM Bolt Desig. = Bolt Type (N, X, or SC) = Bolt Hole Type = Single or Double Shear?

25.00 0.00 6 3.0 8.625 0.750 A325 N STD SS

Pv=25 k

kips

θ

kips

P=Pv in.

b=3 (Typ.)

C.G.

P = C*rv (for vertical load only) P = eccentric load on bolt group (kips) C = coefficient interpolated from Table XI rv = maximum shear on any bolt Vb = allowable shear per bolt Results: 2.691 25.00 0.000 N.A. N.A. N.A. N.A. N.A. 9.29 21.00 1 9.30

kips deg.

k/bolt ksi k/bolt

(interpolated from Table XI, page 4-62) P = SQRT(Pv^2+Ph^2) θ = 90-(ATAN(Pv/Ph) Co = C (from AISC Table XI) C(max) = n A = C(max)/Co >= 1.0 Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co rv =P/C Fv = from AISC Table J3.2, page 5-73 SF = Shear Factor = 1 for Single-Shear Vb = Fv*Ab*SF = Fv*(π*db^2/4)*SF Bolt group is adequate! rv = 9.29 <= 9.3 kips/bolt

k Index:

### ###

in.

Nomenclature:

C= P= Angle θ = Co = C(max) = A= Ca/Co = Ca = rv = Fv = SF = Vb =

### ### ### ### ### ### ###

1

3 of 18

Ph=0

### ### ### ### ### ### ### ### A325 A490 N X SC STD OVS SS DS ### ### ### ### ### ### ### ### ### ### ### ### ### ### For: b = 6" ### ###

10/11/2009 10:40:00

"BOLTGRP.xls" Program Version 2.6

ECCENTRIC LOADS ON BOLT GROUPS - FOR TWO VERTICAL ROWS Based on the Instantaneous Center of Rotation Method and Alternate Method 2 Using Table XII from AISC 9th Ed. Manual (ASD) - page 4-63 Job Name: Subject: Job Number: Originator: Checker:

### ### ### ### ### ### ### ###

Input Data: Vertical Load, Pv = Horizontal Load, Ph = No. Bolts in Vert. Row, n = Vertical Bolt Spacing, b = Dist. from Pv to C.G., L = Bolt Diameter, db = ASTM Bolt Desig. = Bolt Type (N, X, or SC) = Bolt Hole Type = Single or Double Shear?

57.00 0.00 6 3.0 7.500 0.750 A325 N STD SS

L=7.5

kips

Pv=57 k

kips

θ

P=Pv

in. in.

b=3 (Typ.)

Ph=0

3

Nomenclature: P = C*rv (for vertical load only) P = eccentric load on bolt group (kips) C = coefficient interpolated from Table XII rv = maximum shear on any bolt Vb = allowable shear per bolt Results: C= P= Angle θ = Co = C(max) = A= Ca/Co = Ca = rv = Fv = SF = Vb =

6.175 57.00 0.000 N.A. N.A. N.A. N.A. N.A. 9.23 21.00 1 9.30

kips deg.

k/bolt ksi k/bolt

(interpolated from Table XII, page 4-63) P = SQRT(Pv^2+Ph^2) θ = 90-(ATAN(Pv/Ph) Co = C (from AISC Table XII) C(max) = 2*n A = C(max)/Co >= 1.0 Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co rv =P/C Fv = from AISC Table J3.2, page 5-73 SF = Shear Factor = 1 for Single-Shear Vb = Fv*Ab*SF = Fv*(π*db^2/4)*SF Bolt group is adequate! rv = 9.23 <= 9.3 kips/bolt

k Index:

1

4 of 18

###

C.G.

### ### ### ### ### ### ### ### A325 A490 N X SC STD OVS SS DS ### ### ### ### ### ### ### ### ### ### ### ### ### ### For: b = 6" ### ###

10/11/2009 10:40:01

"BOLTGRP.xls" Program Version 2.6

ECCENTRIC LOADS ON BOLT GROUPS - FOR TWO VERTICAL ROWS Based on the Instantaneous Center of Rotation Method and Alternate Method 2 Using Table XIII from AISC 9th Ed. Manual (ASD) - page 4-64 Job Name: Subject: Job Number: Originator: Checker: Input Data: Vertical Load, Pv = Horizontal Load, Ph = No. Bolts in Vert. Row, n = Vertical Bolt Spacing, b = Dist. from Pv to C.G., L = Bolt Diameter, db = ASTM Bolt Desig. = Bolt Type (N, X, or SC) = Bolt Hole Type = Single or Double Shear?

23.90 41.40 6 3.0 16.000 0.875 A325 SC STD SS

L=16

kips

Pv=23.9 k

kips

θ

P=47.8 k

in. in.

b=3 (Typ.)

Ph=41.4 k (@ C.G.)

5-1/2

P = Ca*rv (for inclined load) P = eccentric load on bolt group (kips) Ca = coefficient for inclined load, Alternate Method 2) rv = maximum shear on any bolt Vb = allowable shear per bolt Results: 3.550 47.80 60.002 3.550 12 3.380 1.322 4.695 10.18 17.00 1 10.20

kips deg.

k/bolt ksi k/bolt

(interpolated from Table XIII, page 4-64) P = SQRT(Pv^2+Ph^2) θ = 90-(ATAN(Pv/Ph) Co = C (from AISC Table XIII) C(max) = 2*n A = C(max)/Co >= 1.0 Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co rv = P/Ca Fv = from AISC Table J3.2, page 5-73 SF = Shear Factor = 1 for Single-Shear Vb = Fv*Ab*SF = Fv*(π*db^2/4)*SF Bolt group is adequate! rv = 10.18 <= 10.2 kips/bolt

k Index:

1

5 of 18

###

C.G.

Nomenclature:

C= P= Angle θ = Co = C(max) = A= Ca/Co = Ca = rv = Fv = SF = Vb =

### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### A325 A490 N X SC STD OVS SS DS ### ### ### ### ### ### ### ### ### ### ### ### ### ### For: b = 6" ### ###

10/11/2009 10:40:01

"BOLTGRP.xls" Program Version 2.6

ECCENTRIC LOADS ON BOLT GROUPS - FOR TWO VERTICAL ROWS Based on the Instantaneous Center of Rotation Method and Alternate Method 2 Using Table XIV from AISC 9th Ed. Manual (ASD) - page 4-65 Job Name: Subject: Job Number: Originator: Checker: Input Data: Vertical Load, Pv = Horizontal Load, Ph = No. Bolts in Vert. Row, n = Vertical Bolt Spacing, b = Dist. from Pv to C.G., L = Bolt Diameter, db = ASTM Bolt Desig. = Bolt Type (N, X, or SC) = Bolt Hole Type = Single or Double Shear?

23.90 41.40 6 3.0 16.000 0.875 A325 SC STD SS

L=16

kips

Pv=23.9 k

kips

θ

P=47.8 k

in. in.

b=3 (Typ.)

Ph=41.4 k (@ C.G.)

8

P = Ca*rv (for inclined load) P = eccentric load on bolt group (kips) Ca = coefficient for inclined load, Alternate Method 2) rv = maximum shear on any bolt Vb = allowable shear per bolt Results: 3.910 47.80 60.002 3.910 12 3.069 1.279 4.999 9.56 17.00 1 10.20

kips deg.

k/bolt ksi k/bolt

(interpolated from Table XIV, page 4-65) P = SQRT(Pv^2+Ph^2) θ = 90-(ATAN(Pv/Ph) Co = C (from AISC Table XIV) C(max) = 2*n A = C(max)/Co >= 1.0 Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co rv = P/Ca Fv = from AISC Table J3.2, page 5-73 SF = Shear Factor = 1 for Single-Shear Vb = Fv*Ab*SF = Fv*(π*db^2/4)*SF Bolt group is adequate! rv = 9.56 <= 10.2 kips/bolt

k Index:

1

6 of 18

###

C.G.

Nomenclature:

C= P= Angle θ = Co = C(max) = A= Ca/Co = Ca = rv = Fv = SF = Vb =

### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### A325 A490 N X SC STD OVS SS DS ### ### ### ### ### ### ### ### ### ### ### ### ### ### For: b = 6" ### ###

10/11/2009 10:40:01

"BOLTGRP.xls" Program Version 2.6

ECCENTRIC LOADS ON BOLT GROUPS - FOR THREE VERTICAL ROWS Based on the Instantaneous Center of Rotation Method and Alternate Method 2 Using Table XV from AISC 9th Ed. Manual (ASD) - page 4-66 Job Name: Subject: Job Number: Originator: Checker: Input Data: Vertical Load, Pv = Horizontal Load, Ph = No. Bolts in Vert. Row, n = Vertical Bolt Spacing, b = Dist. from Pv to C.G., L = Bolt Diameter, db = ASTM Bolt Desig. = Bolt Type (N, X, or SC) = Bolt Hole Type = Single or Double Shear?

23.90 41.40 6 3.0 16.000 0.875 A325 SC STD SS

L=16

kips

Pv=23.9 k

kips

θ

P=47.8 k

in. in.

b=3 (Typ.)

Ph=41.4 k (@ C.G.) 3

3 6

P = Ca*rv (for inclined load) P = eccentric load on bolt group (kips) Ca = coefficient for inclined load, Alternate Method 2) rv = maximum shear on any bolt Vb = allowable shear per bolt Results: 5.190 47.80 60.002 5.190 18 3.468 1.334 6.923 6.90 17.00 1 10.20

kips deg.

k/bolt ksi k/bolt

(interpolated from Table XV, page 4-66) P = SQRT(Pv^2+Ph^2) θ = 90-(ATAN(Pv/Ph) Co = C (from AISC Table XV) C(max) = 3*n A = C(max)/Co >= 1.0 Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co rv = P/Ca Fv = from AISC Table J3.2, page 5-73 SF = Shear Factor = 1 for Single-Shear Vb = Fv*Ab*SF = Fv*(π*db^2/4)*SF Bolt group is adequate! rv = 6.9 <= 10.2 kips/bolt

k Index:

1

7 of 18

###

C.G.

Nomenclature:

C= P= Angle θ = Co = C(max) = A= Ca/Co = Ca = rv = Fv = SF = Vb =

### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### A325 A490 N X SC STD OVS SS DS ### ### ### ### ### ### ### ### ### ### ### ### ### ### For: b = 6" ### ###

10/11/2009 10:40:02

"BOLTGRP.xls" Program Version 2.6

ECCENTRIC LOADS ON BOLT GROUPS - FOR THREE VERTICAL ROWS Based on the Instantaneous Center of Rotation Method and Alternate Method 2 Using Table XVI from AISC 9th Ed. Manual (ASD) - page 4-67 Job Name: Subject: Job Number: Originator: Checker: Input Data: Vertical Load, Pv = Horizontal Load, Ph = No. Bolts in Vert. Row, n = Vertical Bolt Spacing, b = Dist. from Pv to C.G., L = Bolt Diameter, db = ASTM Bolt Desig. = Bolt Type (N, X, or SC) = Bolt Hole Type = Single or Double Shear?

23.90 41.40 6 3.0 16.000 0.875 A325 SC STD SS

L=16

kips

Pv=23.9 k

kips

θ

P=47.8 k

in. in.

b=3 (Typ.)

Ph=41.4 k (@ C.G.) 6

6 12

P = Ca*rv (for inclined load) P = eccentric load on bolt group (kips) Ca = coefficient for inclined load, Alternate Method 2) rv = maximum shear on any bolt Vb = allowable shear per bolt Results: 6.270 47.80 60.002 6.270 18 2.871 1.247 7.821 6.11 17.00 1 10.20

kips deg.

k/bolt ksi k/bolt

(interpolated from Table XVI, page 4-67) P = SQRT(Pv^2+Ph^2) θ = 90-(ATAN(Pv/Ph) Co = C (from AISC Table XVI) C(max) = 3*n A = C(max)/Co >= 1.0 Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co rv = P/Ca Fv = from AISC Table J3.2, page 5-73 SF = Shear Factor = 1 for Single-Shear Vb = Fv*Ab*SF = Fv*(π*db^2/4)*SF Bolt group is adequate! rv = 6.11 <= 10.2 kips/bolt

k Index:

1

8 of 18

###

C.G.

Nomenclature:

C= P= Angle θ = Co = C(max) = A= Ca/Co = Ca = rv = Fv = SF = Vb =

### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### A325 A490 N X SC STD OVS SS DS ### ### ### ### ### ### ### ### ### ### ### ### ### ### For: b = 6" ### ###

10/11/2009 10:40:02

"BOLTGRP.xls" Program Version 2.6

ECCENTRIC LOADS ON BOLT GROUPS - FOR FOUR VERTICAL ROWS Based on the Instantaneous Center of Rotation Method and Alternate Method 2 Using Table XVII from AISC 9th Ed. Manual (ASD) - page 4-68 Job Name: Subject: Job Number: Originator: Checker: Input Data: Vertical Load, Pv = Horizontal Load, Ph = No. Bolts in Vert. Row, n = Vertical Bolt Spacing, b = Dist. from Pv to C.G., L = Bolt Diameter, db = ASTM Bolt Desig. = Bolt Type (N, X, or SC) = Bolt Hole Type = Single or Double Shear?

23.90 41.40 6 3.0 16.000 0.875 A325 SC STD SS

L=16

kips

Pv=23.9 k

kips

θ

P=47.8 k

in. in.

b=3 (Typ.)

###

C.G.

Ph=41.4 k (@ C.G.) 3

3 9

3

Nomenclature: P = Ca*rv (for inclined load) P = eccentric load on bolt group (kips) Ca = coefficient for inclined load, Alternate Method 2) rv = maximum shear on any bolt Vb = allowable shear per bolt Results: C= P= Angle θ = Co = C(max) = A= Ca/Co = Ca = rv = Fv = SF = Vb =

7.390 47.80 60.002 7.390 24 3.248 1.304 9.639 4.96 17.00 1 10.20

kips deg.

k/bolt ksi k/bolt

(interpolated from Table XVII, page 4-68) P = SQRT(Pv^2+Ph^2) θ = 90-(ATAN(Pv/Ph) Co = C (from AISC Table XVII) C(max) = 4*n A = C(max)/Co >= 1.0 Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co rv = P/Ca Fv = from AISC Table J3.2, page 5-73 SF = Shear Factor = 1 for Single-Shear Vb = Fv*Ab*SF = Fv*(π*db^2/4)*SF Bolt group is adequate! rv = 4.96 <= 10.2 kips/bolt

k Index:

### ### ### ### ### ### ### ###

1

9 of 18

### ### ### ### ### ### ### ### A325 A490 N X SC STD OVS SS DS ### ### ### ### ### ### ### ### ### ### ### ### ### ### For: b = 6" ### ###

10/11/2009 10:40:02

"BOLTGRP.xls" Program Version 2.6

ECCENTRIC LOADS ON BOLT GROUPS - FOR FOUR VERTICAL ROWS Based on the Instantaneous Center of Rotation Method and Alternate Method 2 Using Table XVIII from AISC 9th Ed. Manual (ASD) - page 4-69 Job Name: Subject: Job Number: Originator: Checker: Input Data: Vertical Load, Pv = Horizontal Load, Ph = No. Bolts in Vert. Row, n = Vertical Bolt Spacing, b = Dist. from Pv to C.G., L = Bolt Diameter, db = ASTM Bolt Desig. = Bolt Type (N, X, or SC) = Bolt Hole Type = Single or Double Shear?

23.90 41.40 6 3.0 7.500 0.875 A325 SC STD SS

L=7.5

kips

Pv=23.9 k

kips

θ

P=47.8 k

in. in.

b=3 (Typ.)

###

C.G.

Ph=41.4 k (@ C.G.) 4

4 12

4

Nomenclature: P = Ca*rv (for inclined load) P = eccentric load on bolt group (kips) Ca = coefficient for inclined load, Alternate Method 2) rv = maximum shear on any bolt Vb = allowable shear per bolt Results: C= P= Angle θ = Co = C(max) = A= Ca/Co = Ca = rv = Fv = SF = Vb =

13.690 47.80 60.002 13.690 24 1.753 1.006 13.773 3.47 17.00 1 10.20

kips deg.

k/bolt ksi k/bolt

(interpolated from Table XVIII. Page 4-69) P = SQRT(Pv^2+Ph^2) θ = 90-(ATAN(Pv/Ph) Co = C (from AISC Table XVIII) C(max) = 4*n A = C(max)/Co >= 1.0 Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co rv = P/Ca Fv = from AISC Table J3.2, page 5-73 SF = Shear Factor = 1 for Single-Shear Vb = Fv*Ab*SF = Fv*(π*db^2/4)*SF Bolt group is adequate! rv = 3.47 <= 10.2 kips/bolt

k Index:

### ### ### ### ### ### ### ###

1

10 of 18

### ### ### ### ### ### ### ### A325 A490 N X SC STD OVS SS DS ### ### ### ### ### ### ### ### ### ### ### ### ### ### For: b = 6" ### ###

10/11/2009 10:40:03

'"BOLTGRP.xls" Program Version 2.6

BOLT GROUP ANALYSIS Using the Elastic Method for up to 25 Total Bolts

Input Data: Number of Bolts, Nb = 20 Bolt Coordinates: Xo (in.) Yo (in.) 0.000 0.000 #1: 5.500 0.000 #2: 0.000 3.000 #3: 5.500 3.000 #4: 0.000 6.000 #5: 5.500 6.000 #6: 0.000 9.000 #7: 5.500 9.000 #8: 0.000 12.000 #9: 5.500 12.000 #10: 0.000 15.000 #11: 5.500 15.000 #12: 0.000 18.000 #13: 5.500 18.000 #14: 0.000 21.000 #15: 5.500 21.000 #16: 0.000 24.000 #17: 5.500 24.000 #18: 0.000 27.000 #19: 5.500 27.000 #20:

No. of Load Points, N =

Bolt Dist. to X,Y axis: Bolt No.: Checker: ### ### ### ### Results: ### BOLT GROUP PLOT Bolt Reactions (k) ### 30.0 Axial Rz Shear Rh ### 2.64 7.58 ### 25.0 -4.64 8.89 ### 2.64 6.23 ### -4.64 7.77 ### 20.0 2.64 4.94 ### -4.64 6.78 ### 15.0 2.64 3.79 ### -4.64 5.99 ### 2.64 2.93 ### 10.0 -4.64 5.49 ### 2.64 2.67 ### 5.0 -4.64 5.35 ### 2.64 3.15 ### 0.0 -4.64 5.61 ### 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 2.64 4.13 ### X - AXIS (in.) -4.64 6.21 ### 2.64 5.34 ### -4.64 7.07 Bolt Group Properties: 2.64 6.65 Xc = 2.750 in. -4.64 8.11 Yc = 13.500 in. Ix = 1485.00 in.^2 Iy = 151.25 in.^2 J = 1636.25 in.^2 Ixy = 0.00 in.^2 θ = 0.000 deg. Σ Iy = Σ Loads @ C.G. of Bolt Group: Σ Pz = 20.00 kips Σ Px = 10.00 kips Σ Py = 80.00 kips Σ Mx = 0.00 in-k Σ My = -200.00 in-k Σ Mz = 800.00 in-k Σ Py = Bolt Reaction Summary: Rz(max) = 2.64 kips Rz(min) = -4.64 kips Rh(max) = 8.89 kips Subject: Originator:

1

Load Point Data: Point #1 X-Coordinate (in.) = 12.750 Y-Coordinate (in.) = 13.500 Z-Coordinate (in.) = 0.000 Axial Load, Pz (k) = 20.00 Shear Load, Px (k) = 10.00 Shear Load, Py (k) = 80.00 0.00 Moment, Mx (in-k) = Moment, My (in-k) = 0.00 0.00 Moment, Mz (in-k) =

#1: #2: #3: #4: #5: #6: #7: #8: #9: #10: #11: #12: #13: #14: #15: #16: #17: #18: #19: #20:

Y - AXIS (in.)

Job Name: Job Number:

11 of 18

10/11/2009 10:40:03

"BOLTGRP.XLS" Program Version 2.6

BOLT GROUP ANALYSIS Using the Elastic Method for up to 75 Total Bolts Job Name: Job Number:

Subject: Originator:

Input Data: Number of Bolts, Nb = 60 Bolt Coordinates: Xo (in.) Yo (in.) 0.000 0.000 #1: 0.000 3.000 #2: 0.000 6.000 #3: 0.000 9.000 #4: 0.000 12.000 #5: 0.000 15.000 #6: 0.000 18.000 #7: 0.000 21.000 #8: 0.000 24.000 #9: 0.000 27.000 #10: 3.000 0.000 #11: 3.000 3.000 #12: 3.000 6.000 #13: 3.000 9.000 #14: 3.000 12.000 #15: 3.000 15.000 #16: 3.000 18.000 #17: 3.000 21.000 #18: 3.000 24.000 #19: 3.000 27.000 #20: 6.000 0.000 #21: 6.000 3.000 #22: 6.000 6.000 #23: 6.000 9.000 #24: 6.000 12.000 #25: No. Points =

#26: #27: #28: #29: #30: #31: #32: #33: #34: #35: #36: #37: #38: #39: #40: #41: #42: #43: #44: #45: #46: #47: #48: #49: #50:

Bolt Coordinates: Xo (in.) Yo (in.) 6.000 15.000 6.000 18.000 6.000 21.000 6.000 24.000 6.000 27.000 9.000 0.000 9.000 3.000 9.000 6.000 9.000 9.000 9.000 12.000 9.000 15.000 9.000 18.000 9.000 21.000 9.000 24.000 9.000 27.000 12.000 0.000 12.000 3.000 12.000 6.000 12.000 9.000 12.000 12.000 12.000 15.000 12.000 18.000 12.000 21.000 12.000 24.000 12.000 27.000

1

#51: #52: #53: #54: #55: #56: #57: #58: #59: #60:

Bolt Dist. to X,Y axis: Bolt No.: Checker: ### ### ### ### ### Bolt Coodinates: Xo (in.) Yo (in.) 15.000 0.000 15.000 3.000 15.000 6.000 15.000 9.000 15.000 12.000 15.000 15.000 15.000 18.000 15.000 21.000 15.000 24.000 15.000 27.000 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

Load Point Data: X (in.) = Y (in.) = Z (in.) = Pz (k) = Px (k) = Py (k) = Mx (in-k) = My (in-k) = Mz (in-k) =

Point #1 17.500 13.500 0.000 -20.00 100.00 -200.00 0.00 0.00 0.00

### ### ### ### ### ### ### ### ### (continued)

12 of 18

10/11/2009 10:40:03

"BOLTGRP.XLS" Program Version 2.6

Σ Loads @ C.G. of Bolt Group: Σ Pz = -20.00 kips Σ Px = 100.00 kips Σ Py = -200.00 kips Σ Mx = 0.00 in-k Σ My = 200.00 in-k Σ Mz = -2000.00 in-k

#1: #2: #3: #4: #5: #6: #7: #8: #9: #10: #11: #12: #13: #14: #15: #16: #17: #18: #19: #20: #21: #22: #23: #24: #25:

Bolt Reactions (k) Axial Rz Shear Rh -0.62 2.94 -0.62 2.00 -0.62 1.18 -0.62 0.86 -0.62 1.44 -0.62 2.32 -0.62 3.27 -0.62 4.24 -0.62 5.22 -0.62 6.20 -0.24 3.36 -0.24 2.59 -0.24 2.02 -0.24 1.85 -0.24 2.18 -0.24 2.84 -0.24 3.66 -0.24 4.54 -0.24 5.47 -0.24 6.41 0.14 3.99 0.14 3.37 0.14 2.95 0.14 2.84 0.14 3.07 Bolt Reaction Summary: Rz(max) = 1.29 kips Rz(min) = -0.62 kips Rh(max) = 8.46 kips

BOLT GROUP PLOT 30.0

25.0

20.0

Y - AXIS (in.)

Results: Bolt Group Properties: Xc = 7.500 in. Yc = 13.500 in. Ix = 4455.00 in.^2 Iy = 1575.00 in.^2 J = 6030.00 in.^2 Ixy = 0.00 in.^2 θ= 0.000 deg.

15.0

10.0

5.0

0.0 5.0

10.0

15.0

20.0

X - AXIS (in.)

#26: #27: #28: #29: #30: #31: #32: #33: #34: #35: #36: #37: #38: #39: #40: #41: #42: #43: #44: #45: #46: #47: #48: #49: #50:

Bolt Reactions (k) Axial Rz Shear Rh 0.14 3.57 0.14 4.25 0.14 5.03 0.14 5.88 0.14 6.77 0.52 4.75 0.52 4.24 0.52 3.92 0.52 3.83 0.52 4.01 0.52 4.40 0.52 4.97 0.52 5.65 0.52 6.42 0.52 7.24 0.90 5.58 0.90 5.16 0.90 4.90 0.90 4.83 0.90 4.97 0.90 5.29 0.90 5.77 0.90 6.37 0.90 7.06 0.90 7.81

13 of 18

#51: #52: #53: #54: #55: #56: #57: #58: #59: #60:

25.0

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 30.0 ### ###

Bolt Reactions (k) Axial Rz Shear Rh 1.29 6.46 1.29 6.10 1.29 5.88 1.29 5.82 1.29 5.94 1.29 6.21 1.29 6.62 1.29 7.15 1.29 7.77 1.29 8.46

Σ My = Σ Mz =

10/11/2009 10:40:04

"BOLTGRP.xls" Program Version 2.6

BOLT STRESS ANALYSIS For High-Strength Bolts Subject to Tension and/or Shear Per AISC 9th Edition Manual (ASD) Subject: Originator: Checker:

Job Name: Job Number:

### ### ### ### ### ### ### ### A325 A490

Input Data: Tension Force/Bolt, T = 20.00 Shear Force/Bolt, V = 8.20 Bolt Diameter, db = 0.875 ASTM Bolt Desig. = A325 Bolt Type (N, X, or SC) = N Bolt Hole Type = Standard Single or Double Shear? Single No. of Loading Cycles = 20000

kips/bolt

V

kips/bolt in.

T

T

X SC Standard Oversized Single

db (for 25 years)

V

Results:

NOMENCLATURE Ab = Tb =

0.6013 39.00

in.^2 ksi

Ab = π*db^2/4 Tb = Tb from AISC Table J3.7 (for A325 bolts)

Bolt Tension: ft = Allow. Ft(w/o Shr.) = Use: Ft = T= B=

33.26 44.00 33.46 20.00 20.10

ksi

kips/bolt

B = Ft*Ab (for N, X bolts)

13.64 21.00 1 8.20 12.60

ksi

fv = V/Ab Fv = Fv from AISC Table J3.2 (for N, X bolts) SF = 1 for Single-Shear

ksi ksi

ft = T/Ab Ft = (Ft from Table J3.2, fatigue is not considered) Ft = SQRT(Ft^2-(Ft/Fv)^2*fv^2) (for N, X bolts)

kips/bolt

B >= T, O.K.

Bolt Shear: fv = Fv = Shear Fact. = V= Vb =

ksi kips/bolt kips/bolt

Vb = Fv*Ab*(SF)

Vb >= V, O.K.

Comments:

14 of 18

10/11/2009 10:40:04

BOLT DATA TABLES

ASTM Designation A307 bolts A325 bolts A490 bolts

ASTM ConnDesig- ection nation Type A307 ---

Hole Type STD, NSL STD

SC

OVS, SSL LSL

N

STD, NSL STD, NSL STD

A325

X

SC

OVS, SSL LSL

N

STD, NSL STD, NSL

A490

X

AISC Table I-A: Allowable Bolt Tension (kips) Nominal Bolt Diameter, 'd' (in.) Ft 5/8 3/4 7/8 1 1-1/8 1-1/4 1-3/8 (ksi) Bolt Area (based on Nominal Diameter), 'Ab' (in.^2) 0.31 0.44 0.6 0.79 0.9940 1.227 1.485 20.0 6.1 8.8 12.0 15.7 19.9 24.5 29.7 44.0 13.5 19.4 26.5 34.6 43.7 54.0 65.3 54.0 16.6 23.9 32.5 42.4 53.7 66.3 80.2

AISC Table I-D: Allowable Bolt Shear (kips) Nominal Bolt Diameter, 'd' (in.) Fv Loading 5/8 3/4 7/8 1 1-1/8 1-1/4 1-3/8 (ksi) (S or D) Bolt Area (based on Nominal Diameter), 'Ab' (in.^2) 0.31 0.44 0.6 0.79 0.9940 1.227 1.485 10.0 S 3.1 4.4 6.0 7.9 9.9 12.3 14.8 D 6.1 8.8 12.0 15.7 19.9 24.5 29.7 17.0 S 5.22 7.51 10.2 13.4 16.9 20.9 25.2 D 10.4 15.0 20.4 26.7 33.8 41.7 50.5 15.0 S 4.60 6.63 9.02 11.8 14.9 18.4 22.3 D 9.20 13.3 18.0 23.6 29.8 36.8 44.6 12.0 S 3.68 5.30 7.22 9.42 11.9 14.7 17.8 D 7.36 10.6 14.4 18.8 23.9 29.4 35.6 21.0 S 6.4 9.3 12.6 16.5 20.9 25.8 31.2 D 12.9 18.6 25.3 33.0 41.7 51.5 62.4 30.0 S 9.2 13.3 18.0 23.6 29.8 36.8 44.5 D 18.4 26.5 36.1 47.1 59.6 73.6 89.1 21.0 S 6.44 9.28 12.6 16.5 20.9 25.8 31.2 D 12.9 18.6 25.3 33.0 41.7 51.5 62.4 18.0 S 5.52 7.95 10.8 14.1 17.9 22.1 26.7 D 11.0 15.9 21.6 28.3 35.8 44.2 53.5 15.0 S 4.60 6.63 9.02 11.8 14.9 18.4 22.3 D 9.20 13.3 18.0 23.6 29.8 36.8 44.6 28.0 S 8.6 12.4 16.8 22.0 27.8 34.4 41.6 D 17.2 24.7 33.7 44.0 55.7 68.7 83.2 40.0 S 12.3 17.7 24.1 31.4 39.8 49.1 59.4 D 24.5 35.3 48.1 62.8 79.5 98.2 119.0

Table Nomenclature: SC = Slip critical connection (friction-type connection) N = Bearing-type connection with threads iNcluded in shear plane X = Bearing-type connection with threads eXcluded from shear plane STD = Standard round holes (d+1/16") OVS = Oversize round holes LSL = Long-slotted holes SSL = Short-slotted holes NSL = Long-or short-slotted hole normal to load direction (required in bearing-type connection) S = Single shear (one shear plane on bolt) D = Double shear (two shear planes on bolt)

1-1/2 1.767 35.3 77.7 95.4

1-1/2 1.767 17.7 35.3 30.0 60.1 26.5 53.0 21.2 42.4 37.1 74.2 53.0 106.0 37.1 74.2 31.8 63.6 26.5 53.0 49.5 99.0 70.7 141.0

BOLT DATA TABLES (Continued)

Bolt

Dia. (in.) 5/8 3/4 7/8 1 1-1/8 1-1/4 1-3/8 1-1/2

Bolt

Dia. (in.) 5/8 3/4 7/8 1 1-1/8 1-1/4 1-3/8 1-1/2 Notes:

Standard Hole (Diameter) 11/16 13/16 15/16 1-1/16 1-3/16 1-5/16 1-7/16 1-9/16

AISC Table J3.1 - Nominal Hole Dimensions (in.) Oversize Short-Slot Hole Hole (Diameter) (Width x Length) 13/16 11/16x7/8 15/16 13/16x1 1-1/16 15/16x1-1/8 1-1/4 1-1/16x1-5/16 1-7/16 1-3/16x1-1/2 1-9/16 1-5/16x1-5/8 1-3/4 1-7/16x1-3/4 1-7/8 1-9/16x1-7/8

Long-Slot Hole (Width x Length) 11/16x1-9/16 13/16x1-7/8 15/16x2-3/16 1-1/16x2-1/2 1-3/16x2-13/16 1-5/16x3-1/8 1-7/16x3-7/16 1-9/16x3-3/4

AISC Table J3.5 - Minimum Edge Distance (in.) (Center of Standard Hole to Edge of Connected Part) At Rolled Edges of At Sheared Edges Plates, Shapes, or Bars, Gas Cut or Saw-cut Edges 1-1/8 7/8 1-1/4 1 1-1/2 1-1/8 1-3/4 1-1/4 2 1-1/2 2-1/4 1-5/8 2-3/8 1-3/4 2-5/8 1-7/8 1. For oversized or slotted holes, see AISC Table J3.6. 2. Edge distance for rolled edge (etc.) may be reduced by 1/8" at a point where actual stress is <= 25% of allowable stress. 3. For 7/8" and 1" dia. bolts at sheared edges, may use 1-1/4" at ends of beam conn. angles.

AISC Table J3.6 - Values of Edge Distance Increment, 'C2' (in.) Bolt Slotted Holes Dia. Oversize Holes Perpendicular to Edge Parallel to Edge (in.) Short Slot Long Slot 5/8 1/16 1/8 1/2 0 3/4 1/16 1/8 9/16 0 7/8 1/16 1/8 11/16 0 1 1/8 1/8 3/4 0 1-1/8 1/8 3/16 7/8 0 1-1/4 1/8 3/16 15/16 0 1-3/8 1/8 3/16 1-1/16 0 1-1/2 1/8 3/16 1-1/8 0 Notes: 1. Distance from center of oversize or slotted hole to edge of connected part shall not be less than that for standard hole plus applicable increment, 'C2', from table. 2. When length of slot is < maximum allowable (see Table J3.1), 'C2' may be reduced by 1/2 the difference between the maximum and actual slot lengths.

BOLT DATA TABLES (Continued) Required Bolt Length - A325, A490 Bolt Diameter (in.)

To Determine Required Bolt Length, Add the Following to "Grip" (in.)

5/8 7/8 3/4 1 7/8 1-1/8 1 1-1/4 1-1/8 1-1/2 1-1/4 1-5/8 1-3/8 1-3/4 1-1/2 1-7/8 Notes: 1. Required bolt length = table value + "grip" rounded up to next 1/4" length. 2. "Grip" = total thickness of of connected material, excluding washers. 3. Add 5/32" for each hardened flat washer used and 5/16" for each beveled washer used.

Related Documents

Boltgrp
June 2020 2

More Documents from "Phanikrishnab"

Boltgrp
June 2020 2
Bridge2000-2
June 2020 3