6.002
CIRCUITS AND ELECTRONICS
Basic Circuit Analysis Method (KVL and KCL method)
6.002 Fall 2000
Lecture 2
1
Review Lumped Matter Discipline LMD:
Constraints we impose on ourselves to simplify our analysis
∂φ B =0 ∂t ∂q =0 ∂t
Outside elements Inside elements wires resistors sources
Allows us to create the lumped circuit abstraction
6.002 Fall 2000
Lecture 2
2
Review
LMD allows us to create the lumped circuit abstraction i
+
v
Lumped circuit element
power consumed by element = vi
6.002 Fall 2000
Lecture 2
3
Review Review Maxwell’s equations simplify to algebraic KVL and KCL under LMD! KVL:
∑ jν j = 0 loop
KCL:
∑jij = 0 node
6.002 Fall 2000
Lecture 2
4
Review a R1
+ –
b
R4
R3
R2
d R5
c
DEMO
6.002 Fall 2000
vca + vab + vbc = 0
KVL
ica + ida + iba = 0
KCL
Lecture 2
5
Method 1: Basic KVL, KCL method of Circuit analysis Goal: Find all element v’s and i’s 1. write element v-i relationships (from lumped circuit abstraction) 2. write KCL for all nodes 3. write KVL for all loops
lots of unknowns lots of equations lots of fun solve
6.002 Fall 2000
Lecture 2
6
Method 1: Basic KVL, KCL method of Circuit analysis
Element Relationships For R,
V = IR
For voltage source, V = V0
R +–
V0 For current source, I = I 0 J Io 3 lumped circuit elements
6.002 Fall 2000
Lecture 2
7
KVL, KCL Example a +
ν1 +
ν 0 = V0 –
–
+ –
+
ν2 –
+
R1
R3
b
+ν 3 – R2
ν4 –
R4
d +
ν5 –
R5
c The Demo Circuit
6.002 Fall 2000
Lecture 2
8
Associated variables discipline i
+ ν
Element e
Current is taken to be positive going into the positive voltage terminal
Then power consumed by element e
6.002 Fall 2000
Lecture 2
= νi is positive
9
KVL, KCL Example a +
+
ν 0 = V0 –
+ –
ν1
i0
L1
–
+
ν2 –
i4 i1 L 2 + R1 ν 4 R4 – R3 b i3 d +ν 3 – i2 i5 + R2 ν 5 R5 L3 –
c The Demo Circuit
6.002 Fall 2000
Lecture 2
L4
10
Analyze ν 0 …ν 5 ,ι0 …ι5 1. Element relationships (v, i ) given v3 = i3 R3 v0 = V0 v4 = i4 R4 v1 = i1 R1 v5 = i5 R5 v2 = i2 R2
12 unknowns 6 equations
2. KCL at the nodes a: i0 + i1 + i4 = 0 3 independent b: i2 + i3 − i1 = 0 equations d: i5 − i3 − i4 = 0 e: − i0 − i2 − i5 = 0 redundant 3. KVL for loops L1: − v0 + v1 + v2 = 0 3 independent equations L2: v1 + v3 − v4 = 0 L3: v3 + v5 − v2 = 0 s L4: − v0 + v4 + v5 = 0 redundant n o i t ns a w u o n k eq n u 1 2 12
/
ugh @#! 6.002 Fall 2000
Lecture 2
11
Other Analysis Methods Method 2— Apply element combination rules
A B
C
D
R1
R2 R3
G1
G2
V1
V2
+–
+–
GN
⇔
⇔
⇔
⇔
R1 + R2 +
G1 + G2
1 Gi = Ri
+ RN
+ GN
V1 + V2 +–
J
I2
J
J
I1
…
RN
I1 + I 2
Surprisingly, these rules (along with superposition, which you will learn about later) can solve the circuit on page 8
6.002 Fall 2000
Lecture 2
12
Other Analysis Methods Method 2— Apply element combination rules
I =?
Example
R1
V + –
R3
R2
I
I V + –
R1
R2 R3 R2 + R3
V + –
R = R1 +
R R2 R3 R2 + R3
V I= R 6.002 Fall 2000
Lecture 2
13
Method 3—Node analysis Particular application of KVL, KCL method 1. Select reference node ( ground) from which voltages are measured. 2. Label voltages of remaining nodes with respect to ground. These are the primary unknowns. 3. Write KCL for all but the ground node, substituting device laws and KVL. 4. Solve for node voltages. 5. Back solve for branch voltages and currents (i.e., the secondary unknowns)
6.002 Fall 2000
Lecture 2
14
Example: Old Faithful plus current source
V0
Step 1
6.002 Fall 2000
e2
R2
R5
J
+ V e1 – 0
R4
R1 R 3
I1
Step 2
Lecture 2
15
Example: Old Faithful plus current source
V0
R2
R4 e2
R5
J
+ V e1 – 0
R1 R 3
for I1 convenience, write 1 Gi = Ri
KCL at e1 (e1 − V0 )G1 + (e1 − e2 )G3 + (e1 )G2 = 0
KCL at e2 (e2 − e1 )G3 + (e2 − V0 )G4 + (e2 )G5 − I1 = 0 Step 3
6.002 Fall 2000
Lecture 2
16
Example: Old Faithful plus current source
V0 e2
R2
R5
J
+ V e1 – 0
R4
R1 R 3
I1
Gi =
KCL at e1 (e1 − V0 )G1 + (e1 − e2 )G3 + (e1 )G2 = 0
1 Ri
KCL at l2 (e2 − e1 )G3 + (e2 − V0 )G4 + (e2 )G5 − I1 = 0 move constant terms to RHS & collect unknowns
e1 (G1 + G2 + G3 ) + e2 (−G3 ) = V0 (G1 ) e1 (−G3 ) + e2 (G3 + G4 + G5 ) = V0 (G4 ) + I1 2 equations, 2 unknowns (compare units) 6.002 Fall 2000
Lecture 2
Solve for e’s Step 4 17
In matrix form: G1 + G2 + G3 − G3
− G3 e1 G1V0 = G V + I G3 + G4 + G5 e2 4 0 1
conductivity matrix
sources
unknown node voltages
Solve G3 G3 + G4 + G5 G1V0 G3 G1 + G2 + G3 G4V0 + I1 e1 e = (G1 + G2 + G3 )(G3 + G4 + G5 ) − G3 2 2
(
)(
) ( )(
)
G +G +G G V + G G V + I 3 4 5 1 0 3 4 0 1 e = 1 G G +G G +G G +G G +G G +G G +G 2 +G G +G G 1 3 1 4 1 5 2 3 2 4 2 5 3 3 4 3 5 e2 =
(G3 )(G1V0 ) + (G1 + G2 + G3 )(G4V0 + I 1 ) 2
G1G3 + G1G4 + G1G5 + G2G3 + G2G4 + G2 G5 + G3 + G3G4 + G3G5
(same denominator)
Notice: linear in V0 , I1 , no negatives in denominator 6.002 Fall 2000
Lecture 2
18
Solve, given G1 1 = G5 8.2 K
G2 1 = G4 3.9 K
1 G3 = 1.5 K
I1 = 0
(
)(
)
G G V + G +G +G G V + I e = 3 10 1 2 3 40 1 2 G + G + G + G + G + G −G 2 1 2 3 3 4 5 3 1 1 1 G +G +G = + + =1 1 2 3 8.2 3.9 1.5
(
G3 + G4 + G5 =
)(
)
1 1 1 + + =1 1.5 3.9 8.2
1 1 1 × + 1× 3.9 V e2 = 8.2 1.5 0 1 1− 2 1.5
Check out the DEMO
e2 = 0.6V0
If V0 = 3V , then e2 = 1.8V0 6.002 Fall 2000
Lecture 2
19