Hematopoyesis • Producción diaria de células hemáticas: – GR 200.000 millones – GB 70.000 millones •
Sin embargo es inefeciente sólo un 5% alcanzan el estadío final de maduración
• Vida Media de las células hemáticas: – GR 120 días – Granulocito 6-8 horas – Plaqueta 7-10 días
Índices • Hematocrito (Ht) – 47 ± 5 % – 42 ± 5 %
• Hemoglobina (Hb) – 13-15,5 g/dL – 12,5-14 g/dL •
Velocidad de Sedimentación Globular (VSG)
– 2-8 mm/h – 2-10 mm/h
•Hemoglobina Corpuscular Media (HCM) HCM = Hb(g/L)/nº de eritrocitos (cel/L) HCM = 150 g/L/5 x 10 12 cel./L =30 x 10- 12 g/cel •Concentración Media de Hemoglobina Corpuscular (CMHC) CMHC = Hb(g/L)/Ht CMHC = 150 g/L/0,45 = 333 g/L, 33 %. •Volumen Corpuscular Medio (VCM) VCM = Ht/nº de eirtrocitos VCM = 0,45 / 5 x 10 12 cel./L = 90 fL
Un eritrocito tiene un diametro aprox. 7,5 µ, un volumen de 90 fL y contiene 30 pg de Hb que ocupan el 33 % del volumen celular
Normal Hematopoiesis CD34+, CD38(
) Hematopoietic Stem Cell
c-kit+, Thy1+, CD71+, HLA-DR+, IL3Rα-
( ) SCID-Repopulating Cell
Modified from Dick: ASH Education Program Book, 2001
ERITROPOYESIS
Proeritroblasto
Células grandes (20-25 mm) Citoplasma pequeño Abundante mRNA
Eritroblasto policromatófilo
Células pequeñas (8-12 mm) Citoplasma grande Abundante Hb Eritroblasto ortocromático Células pequeñas (10 mm) Citoplasma grande Eritroblasto basófilo Abundante Hb Células grandes (16-18 mm) Al perder el núcleo se transforma Aumento relación citoplasma/núcleo en reticulocito (restos de síntesis de Hb organelas)
Disminución del tamaño celular Disminución del número de organelas Condensación nuclear Aumento del contenido de Hb
Figure 19-01 Copyright © 2005 Elsevier Inc. (USA) All rights reserved.
Figure 19-02 Copyright © 2005 Elsevier Inc. (USA) All rights reserved.
Table 19-02 Copyright © 2005 Elsevier Inc. (USA) All rights reserved.
Figure 19-03 Copyright © 2005 Elsevier Inc. (USA) All rights reserved.
Figure 19-04 Copyright © 2005 Elsevier Inc. (USA) All rights reserved.
FACTOR
TARGET CELLS
PRODUCING CELLS
RECEPTOR S
Erythropoietin
CFC-E
kidney cells
Interleukin 3 (IL-3)
multipotent stem cell, most progenitor cells, many terminally differentiated cells GM progenitor cells
T lymphocytes, epidermal cells
cytokine family cytokine
T lymphocytes, endothelial cells, fibroblasts
cytokine family
Granulocyte CSF (G-CSF)
GM progenitor cells and neutrophils
macrophages, fibroblasts
cytokine family
Macrophage CSF (M-CSF)
GM progenitor cells and macrophages
fibroblasts, macrophages, endothelial cells
Steel factor (stem cell factor)
hemopoietic stem cells
stromal cells in bone marrow and many other cells
receptor tyrosine kinase family receptor
Granulocyte/ macrophage CSF (GM-CSF)
family
tyrosine kinase
Total Blood
Total Body Pool
Red blood cell (× 1010/kg) Neutrophil (× 107/kg) Lymphocyte (× 107/kg) Platelet (× 1010/kg)
Circulatin Half-Life in g Pool Circulation
33
33
50 65 days
70 (14 160)
31 (11 46)
6.7 (4 10) hour
133 266
8 12
1 hour 1,500 days
Percentage of Volume Replaced Daily in Health Adult 0.8
230.0
2.8 (2.1 3.8)
2.1 (1.6 2.9)
4 5 days
10.0
Type
Characteristics
Type 1 cytokine receptor
Does not possess intrinsic kinase acivity.
Receptors with tyrosine kinase domains (type) III
Large extracellular immunoglobulin-like domain, single transmembrane spinning region, and a cytoplasmic tyrosine kinase Seven transmembranedomain(s) spanning G protein-linke
Receptor Examples
IL-1, -2, -3, -4, -5, -6, -7, -9, -13, -18, - 21;GM-CSF; G-CSF; EPO; TPO; leukemia inhibitory factor; interferon and IL-10; fms (M-CSF Receptor acts as docking site receptor); flt3; c-kit (SCF for adaptor molecules, which receptor); PDGFR leads to phosphorylation of Type II cytokine cellular Containssubstrates. extracellular receptor fibronectin III type domain
Chemokine receptor
IL-8
regions Cysteine-rich repeats in the Tumor necrosis factor and extracellular domain, and Fas cytoplasmic 80-amino acid EPO = erythropoietin; G-CSF = granulocyte colony-stimulating factor; GM-CSF "death domain" = granulocyte-macrophage colony-stimulating factor; IL = interleukin; M-CSF = macrophage colony-stimulating factor; SCF = stem cell factor; TPO = Tumor necrosis factor family
Some Cytokines Using Subunit
Receptor Subunit Shared
IL-3, IL-5, and GM-CSF
β subunit
IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21
IL-2 receptor γc chain
IL-2 and IL-15
βchain of IL-2 receptor
IL-4 and IL-13
IL-4Rα and IL-13Rα1
IL-6, oncostatin M, leukemia inhibitory factor, and IL-11
gp130
IL10, IL-22
IL-10Rβ
IL-19, IL-20, IL-24
IL-20Rα, IL-20Rβ
IL-20, IL-22, IL-24
IL-22Rα
IL-12, IL-23
IL-12Rβ1
GM-CSF = granulocyte macrophage colony-stimulating factor; IL = interleukin.
Characteristic27
38
Stem Cell Factor
Comment
Chromosoma l localization
12q22 12q24
Natural forms of SCF
Transmembrane and soluble
Both forms are biologically active
Major sites of production
Marrow stroma
IL-1 and TNF increase stromal SCF reproduction
Hematopoietic cells Gut epithelial cells Central nervous system, thymus Skin keratinocytes Selected biologic activities
Promotes hematopoiesis at multiple levels; migration during embryonic life; Influences primordial germ cell and melanocyte Affects immunoregulatory cells (B and T cells, mast cells, NK cells, dendritic cells);
Receptor
Influences hematopoietic cell adhesive properties c-kit
Natural antagonists
Soluble c-kit receptor
Major clinical trials
Peripheral blood progenitor mobilization (SCF + G-CSF better than SCF alone); Aplastic anemia (trilineage responses seen after SCF)
Also known as CD117: encoded on 4q11 q13 (piebald locus) Kit is mutated in gastrointestinal stromal tumors
STI571 (Gleevec) targets the activated Kit kinase activity and produces striking responses in gastrointestinal stromal tumors with Kit mutations
Causes of Anemia, Thrombocytopenia, and Leukopenia in Cancer
Bone marrow replacement by primary tumor (eg, leukemia) Bone marrow involvement by metastatic tumor (eg, breast, prostate) Derangement of normal physiology Nutritional (eg, folate, iron, negative nitrogen balance) Abnormal feedback (eg, stimulation/inhibition of hematopoiesis) Bone marrow reaction (eg, fibrosis) Peripheral destruction (eg, immune hemolysis, diffuse intravascular coagulation, splenomegaly) Blood loss Myelosuppression by chemotherapy or radiotherapy
Summary The many types of blood cells, including erythrocytes, lymphocytes, granulocytes, and macrophages, all derive from a common multipotent stem cell. In the adult, hemopoietic stem cells are found mainly in bone marrow, and they depend on contact-mediated signals from the marrow stromal (connective-tissue) cells to maintain their stem-cell character. The stem cells normally divide infrequently to produce more stem cells (selfrenewal) and various committed progenitor cells (transit amplifying cells), each able to give rise to only one or a few types of blood cells. The committed progenitor cells divide extensively under the influence of various protein signal molecules (colony-stimulating factors, or CSFs) and then terminally differentiate into mature blood cells, which usually die after several days or weeks. Studies of hemopoiesis have been greatly aided by in vitro assays in which stem cells or committed progenitor cells form clonal colonies when cultured in a semisolid matrix. The progeny of stem cells seem to make their choices between alternative developmental pathways in a partly random manner. Cell death by apoptosis, controlled by the availability of CSFs, also plays a central part in regulating the numbers of mature differentiated blood cells.