Bab 2 Teknik Digital

  • Uploaded by: Andi Ruswendi
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Bab 2 Teknik Digital as PDF for free.

More details

  • Words: 3,668
  • Pages: 52
TEKNIK DIGITAL BAB II

Sistem Bilangan dan Sistem Kode Oleh : M. Rustam

07/08/09

Bab 2 Teknik Digital

1

Sistem Bilangan Ada beberapa sistem bilangan yang digunakan dalam sistem digital: – Bilangan Desimal – Bilangan Biner – Bilangan Oktal – Bilangan Heksadesimal – Bilangan BCD 07/08/09

Bab 2 Teknik Digital

2

Bilangan Desimal •

Bilangan Desimal terdiri atas 10 angka atau lambang,yaitu –





• 07/08/09

D = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Sistem bilangan desimal disebut juga sistem bilangan basis 10 karena mempunyai 10 digit Ciri suatu bilangan desimal adalah adanya tambahan subskrip des atau 10 di akhir suatu bilangan Contoh: 357des = 35710 = 357 Bab 2 Teknik Digital

3

Bilangan Bulat Desimal •

Representasi bilangan bulat desimal m digit : –

(dm-1, … di, … , d1, d0) dengan di ∈ D

Sehingga suatu bilangan desimal m digit akan m−1 mempunyai nilai: N = ∑di ⋅ 10i i=0

Contoh: Bilangan 357 – – – –

Digit 3 = 3x100 = 300 (Most Significant Digit, MSD) Digit 5 = 5x10 = 50 Digit 7 = 7x1 = 7 (Least Significant Digit, LSD) Jumlah = 357

07/08/09

Bab 2 Teknik Digital

4

Bilangan Pecahan Desimal • Representasi Bilangan Pecahan Desimal: – (dm-1, … di, … , d1, d0, d-1, ... , dn) dengan di ∈ D

Sehingga suatu bilangan desimal pecahan akan mempunyai nilai: m−1

N=

∑di ⋅ 10i i=n

Contoh: Bilangan 245,21 – Koma desimal memisahkan pangkat positif dengan pangkat negatifnya.

• Bilangan 245,21 berarti – (2 X 10+2) + (4 X 10+1) + (5 X 100) + (2 X 10-1) + (1 X 10-2) 07/08/09

Bab 2 Teknik Digital

5

Bilangan Biner • Digit bilangan biner disebut binary digit atau bit. Empat bit dinamakan nibble. Delapan bit dinamakan byte. Sejumlah bit yang terdiri dari karakter berupa huruf, angka atau lambang khusus dinamakan word. • Sistem bilangan biner merupakan sistem bilangan basis dua. Pada sistem bilangan ini hanya dikenal dua lambang, yaitu: – B = 0, 1.

• Ciri suatu bilangan biner adalah adanya tambahan subskrip bin atau 2 di akhir suatu bilangan • Contoh: 1010011bin = 10100112. 07/08/09

Bab 2 Teknik Digital

6

Bilangan Bulat Biner • Representasi bilangan biner bulat m bit adalah sebagai berikut, – (bm-1, … bi, … , b1, b0) dengan bi ∈ B

• Sehingga suatu bilangan biner m bit akan mempunyai m−1 nilai: N =∑ bi ⋅ 2i i=0

• Bit paling kiri dari suatu bilangan biner disebut bit paling berarti (Most Significant Bit, MSB), sedangkan bit paling kanan disebut bit paling tidak berarti (Least Significant Bit, LSB) • Contoh : 101 = 1x22 + 0x21 + 1x20 = 4 + 0 + 1 = 5 07/08/09

Bab 2 Teknik Digital

7

Bilangan Pecahan Biner • Representasi bilangan biner pecahan: – (dm-1, … di, … , d1, d0, d-1, ... , dn) dengan di ∈ B

• Sehingga suatu bilangan biner pecahan akan mempunyai nilai: m−1

N=

∑bi ⋅ 2i i=n

• Contoh : 101,01 = 1x22 + 0x21 + 1x20 + 0x2-1 + 1x2-2 = 4 + 0 + 1 + 0 + 0,25 = 5,25 07/08/09

Bab 2 Teknik Digital

8

Konversi Bilangan Biner Ke Desimal Contoh Bilangan Bulat: • 1010011 =1 X 26 + 0 X 25 + 1 X 24 + 0 X 23 + 0 X 22 + 1 X 21 + 1 X 20 = 64 + 0 + 16 + 0 + 0 + 2 + 1 = 83des

Contoh Bilangan Pecahan: • 111,01 = 1 X 22 + 1 X 21 + 1 X 20 + 0 X 2-1 + 1 X 2-2 = 4 + 2 + 1 + 0 + 0,25 = 7,25des

07/08/09

Bab 2 Teknik Digital

9

Konversi Bilangan Bulat Desimal Ke Biner • Konversi bilangan bulat desimal ke biner dilakukan dengan membagi secara berulang-ulang suatu bilangan desimal dengan 2. Sisa setiap pembagian merupakan bit yang didapat – Contoh: Konversi 625des ke biner – 625 / 2 = 312 sisa 1 (LSB) 312 / 2 = 156 0 156 / 2 = 78 0 78 / 2 = 39 0 39 / 2 = 19 1 19 / 2 = 9 1 9/2 =4 1 4/2 =2 0 2/2 =1 0 1/2 =0 1 (MSB) – Jadi 625des = 1001110001bin 07/08/09

Bab 2 Teknik Digital

10

Konversi Bilangan Pecahan Desimal Ke Biner Caranya : Kalikan suatu bilangan desimal pecahan dengan 2. Bagian pecahan dari hasil perkalian ini dikalikan dengan 2. Langkah ini diulang hingga didapat hasil akhir 0. Bagian bulat dari setiap hasil perkalian merupakan bit yang didapat

– Contoh: Konversi 0,75 des ke Biner – 0,75 X 2 = 1,50 sisa 1 (MSB) 0,50 X 2 = 1,00 1 0X2 = 0,00 0 (LSB) – Jadi 0,75des = 0,110bin

07/08/09

Bab 2 Teknik Digital

11

Bilangan Oktal •

Merupakan sistem bilangan basis delapan. Pada sistem bilangan ini terdapat delapan lambang, yaitu: –

O = 0, 1, 2, 3, 4, 5, 6, 7.

Ciri sistem bilangan oktal adalah adanya tambahan subskrip okt atau 8 di akhir suatu bilangan. • Contoh: 1161okt = 11618. •

07/08/09

Bab 2 Teknik Digital

12

Bilangan Bulat Oktal • Representasi suatu bilangan oktal bulat m digit adalah sebagai berikut, – (om-1, … oi, … , o1, o0) dengan oi ∈ O

• Sehingga suatu bilangan oktal bulat m digit akan mempunyai nilai: m−1

Z=

∑oi ⋅ 8i i=0

07/08/09

Bab 2 Teknik Digital

13

Bilangan Pecahan Oktal • Representasi bilangan pecahan oktal : – (om-1, … oi, … , o1, o0, o-1, ... , on) dengan oi ∈ O

• Sehingga suatu bilangan oktal pecahan akan mempunyai nilai: m−1

Z=

∑oi ⋅ 8i i=n

07/08/09

Bab 2 Teknik Digital

14

Konversi Bilangan Oktal ke Desimal • Contoh bilangan bulat: • 1161okt = 625des • 1161okt Berarti :

– = 1 X 83 + 1 X 82 + 6 X 81 + 1 X 80 = 512+64+48+1 = 625des

• Contoh bilangan pecahan: • 13,6okt = 11,75des • 13,6okt Berarti : – = 1 X 81 + 3 X 80 + 6 X 8-1 = 8 + 3 + 0,75 = 11,75des

07/08/09

Bab 2 Teknik Digital

15

Konversi Bilangan Desimal ke Oktal • Contoh Bilangan Bulat : • 625des = 1161okt • 625 / 8 = 78 sisa 1 (LSB) 78 / 8 = 9 6 9/8 =1 1 1/8 =0 1 (MSB) • Contoh Bilangan Pecahan : • 0,1des = 0,063….okt • 0,1 X 8 = 0,8 sisa 0 (MSB) 0,8 X 8 = 6,4 6 0,4 X 8 = 3,2 3 (LSB) 07/08/09

Bab 2 Teknik Digital

16

Konversi Bilangan Oktal ke Biner • Konversi bilangan oktal ke biner lebih mudah dibandingkan dengan konversi bilangan oktal ke desimal. Satu digit oktal dikonversi ke 3 bit biner • Contoh: 1161okt = 001001110001bin 1 1 6 1 001 001 110 001 • Contoh: 0,063okt = 0,000110011bin 0 6 3 000 110 011

07/08/09

Bab 2 Teknik Digital

17

Konversi Bilangan Biner ke Oktal • Contoh Bilangan Bulat: • 1001110001bin = 1161okt 001 001 110 001 1

1

6

1

• Contoh Bilangan Pecahan: • 0,000110011bin = 0,063okt 000 110 011 0 6 3 07/08/09

Bab 2 Teknik Digital

18

Bilangan Heksadesimal • Merupakan sistem bilangan basis enam belas. Penerapan format heksadesimal banyak digunakan pada penyajian lokasi memori, penyajian isi memori, kode instruksi dan kode yang merepresentasikan alfanumerik dan karakter nonnumerik. • Pada sistem bilangan ini terdapat enam belas lambang, yaitu: – H = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

• Ciri bilangan heksadesimal adalah adanya tambahan subskrip heks atau 16 di akhir suatu bilangan. Contoh: 271heks = 27116 07/08/09

Bab 2 Teknik Digital

19

Bilangan Bulat Heksadesimal • Representasi suatu bilangan heksadesimal bulat adalah sebagai berikut, – (hm-1, … hi, … , h1, h0) dengan hi ∈ H

• Sehingga suatu bilangan heksadesimal m digit akan mempunyai nilai: m−1

Z=

∑hi ⋅ 16i i=0

07/08/09

Bab 2 Teknik Digital

20

Bilangan Pecahan Heksadesmial • Untuk bilangan heksadesimal pecahan, representasi nilainya menjadi sebagai berikut, – (hm-1, … hi, … , h1, h0, h-1, ... , hn) dengan hi ∈ H

• Sehingga suatu bilangan heksadesimal pecahan akan mempunyai nilai: m−1

Z=

∑hi ⋅ 16i i=n

07/08/09

Bab 2 Teknik Digital

21

Konversi Bilangan Heksadesimal ke Desimal • 271heks = 625des • 271heks = 2 X 162 + 7 X 161 + 1 X 160 = 512 + 112 + 1 = 625des

• 0,Cheks = 0,75des • 0,C heks = 0 X 160 + 12 X 16-1 = 0 + 0,75 = 0,75des 07/08/09

Bab 2 Teknik Digital

22

Konversi Bilangan Bulat Desimal ke Heksadesimal • Konversi bilangan bulat desimal ke heksadesimal dilakukan dengan membagi secara berulang-ulang suatu bilangan desimal dengan 16. Sisa setiap pembagian merupakan digit heksadesimal yang didapat. • Contoh: Konversi 625des ke Heksadesimal • 625 / 16 = 39 sisa 1 (LSB) 39 / 16 = 2 7 2 / 16 = 0 2 (MSB) • Jadi 625des = 271heks

07/08/09

Bab 2 Teknik Digital

23

Konversi Bilangan Pecahan Desimal ke Heksadesimal •

Konversi bilangan pecahan desimal ke heksadesimal dilakukan dengan cara mengalikan suatu bilangan desimal pecahan dengan 16. Bagian pecahan dari hasil perkalian ini dikalikan dengan 16. Langkah ini diulang hingga didapat hasil akhir 0. Bagian bulat dari setiap hasil perkalian merupakan digit yang didapat.



Contoh: 0,75des = 0,Cheks – 0,75 X 16 = C



Contoh: 0,1des = 0,19 ...... heks 0,10 X 16 = 1,6 sisa 1 (MSB) 0,60 X 16 = 9,6 9 dst…. (LSB)

07/08/09

Bab 2 Teknik Digital

24

Konversi Bilangan Heksadesimal ke Biner • Konversi bilangan heksadesimal ke biner lebih mudah dibandingkan konversi bilangan heksadesimal ke desimal. Satu digit heksadesimal dikonversi ke 4 bit biner. • Contoh Bilangan Bulat: 271heks = 1001110001bin 2 7 1 0010 0111 0001

Contoh Bilangan Pecahan: 0,19heks = 0,00011001bin 0 1 9 0000 0001 1001 07/08/09

Bab 2 Teknik Digital

25

Konversi Bilangan Biner ke Heksadesimal • Untuk bilangan bulat, kelompokkan setiap empat bit biner dari paling kanan, kemudian konversikan setiap kelompok ke satu digit heksadesimal. Untuk bilangan pecahan, kelompokkan setiap empat bit biner dari paling kiri, kemudian konversikan setiap kelompok ke satu digit heksadesimal. • Contoh Bilangan Bulat: 1001110001bin = 271heks 10 0111 0001 2 7 1

Contoh Bilangan Pecahan: 0,00011001bin = 0,19heks 0000 0001 1001 0 1 9 07/08/09

Bab 2 Teknik Digital

26

BCD (Binary Coded Desimal) • Sistem bilangan BCD hampir sama dengan sistem bilangan biner. Pada sistem bilangan ini, setiap satu digit desimal diwakili oleh empat bit biner. Sistem bilangan BCD biasanya digunakan untuk keperluan penampil tujuh segmen (seven-segment), seperti pada jam digital atau voltmeter. • Contoh: 625des = 0110 0010 0101BCD 6 2 5 0110 0010 0101 07/08/09

Bab 2 Teknik Digital

27

Contoh Bilangan BCD Contoh: – 011101011000 BCD = 758 10 0111 0101 1000 7 5 8 • Contoh kasus : Umumnya, termometer digital menggunakan BCD untuk mengemudikan display 3 digit. Berapa banyak BCD yang dibutuhkan untuk mengemudikan display termometer 3 digit tersebut? Tampilkan bit untuk temperature 147 derajat! Dibutuhkan 12 bit, dengan 4 bit untuk masing-masing digit. Bit yang digunakan untuk menampilkan 147 derajat adalah 0001 0100 0111. 07/08/09

Bab 2 Teknik Digital

28

Tabel Konversi Antar Sistem Bilangan Desimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

07/08/09

Biner 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Oktal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

Heksadesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Bab 2 Teknik Digital

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 0001 0000 0001 0001 0001 0010 0001 0011 0001 0100 0001 0101

29

TUGAS 1. Konversikan bilangan heksadesimal berikut ke desimal : • • •

A7F 56,DF 38A,B9

2. Konversikan bilangan Biner berikut ke Heksadesimal : • • •

07/08/09

11010 1010,1011 01,011

Bab 2 Teknik Digital

30

Sistem Bilangan Biner Tidak Bertanda • Terdapat 2 sistem bilangan biner, yaitu bilangan biner tak bertanda dan bilangan biner bertanda. Pada sistem bilangan biner tak bertanda, hanya dikenal bilangan biner posisif dan tidak diijinkan adanya bilangan biner negatif. Di sini semua bit digunakan untuk merepresentasikan suatu nilai. • Contoh: – Bilangan biner 4 bit 1100. A3 A2 A1 A0 1 1 0 0 Pada bilangan biner tak bertanda di atas, nilai bilangan dihitung dari A3 sampai A0. Sehingga, 1100bin = 1 X 23 + 1 X 22 + 0 X 21 + 0 X 20 = 12des 07/08/09

Bab 2 Teknik Digital

31

Sistem Bilangan Biner Bertanda • Pada bilangan biner bertanda, bit paling kiri menyatakan tanda, sehingga nilai bilangan dihitung dari A2 sampai A0 • Contoh : 1100bin – 100bin = 1 X 22 + 0 X 21 + 0 X 20 = 4des – Jadi 1100 bin = - 4 des

• Pada sistem ini, bit paling kiri yaitu A3 menyatakan tanda negatif atau positif nilai yang diwakilinya. Tanda positif diwakili oleh bit 0 dan tanda negatif diwakili oleh bit 1 • Bit A3 tersebut dinamakan bit tanda (sign bit), sedangkan bit-bit yang lain, yaitu bit A2 sampai A0 mewakili suatu nilai 07/08/09

Bab 2 Teknik Digital

32

Bilangan Biner Komplemen Satu • Terdapat 2 cara untuk mengubah suatu bilangan positif ke bilangan negatif, yaitu menggunakan : – Sistem bilangan biner komplemen satu – Sistem bilangan biner komplemen dua

• Cara pertama, merupakan cara yang paling mudah ditempuh. Dengan cara ini, untuk mengubah bilangan positif ke negatif cukup dilakukan dengan mengubah bit 0 ke 1 dan bit 1 ke 0 pada setiap bit suatu bilangan biner. 07/08/09

Bab 2 Teknik Digital

33

Contoh Bilangan Biner Komplemen Satu • Sebagai contoh, 101101 merupakan bilangan biner dengan nilai 45. Maka -45 sama dengan 010010. • 1 0 1 1 0 1 bilangan biner asli ↓ ↓ ↓ ↓ ↓ ↓ 0 1 0 0 1 0 bilangan biner komplemen satu • Sistem bilangan komplemen satu jarang digunakan karena tidak memenuhi satu kaedah matematis, yaitu jika suatu bilangan dijumlahkan dengan negatifnya, maka akan dihasilkan bilangan nol. •

+

1 0 1

0 1 1

1 0 1

1 0 1

0 1 1

1 0 1

• Pada contoh tersebut, 101101 + 010010 = 111111, sehingga 45 + (-)45 ≠ 0.

07/08/09

Bab 2 Teknik Digital

34

Bilangan Biner Komplemen Dua • Komplemen dua = Komplemen satu + 1 • Contoh, 101101 merupakan bilangan biner dengan nilai 45. Maka -45 sama dengan 010011 • 1 ↓ 0

0 ↓ 1

1 ↓ 0

1 ↓ 0

0 ↓ 1

0

1

0

0

1

07/08/09

1 biner asli ↓ 0 biner komplemen satu 1+ 1 biner komplemen dua

Bab 2 Teknik Digital

35

Pengubahan Bilangan Biner Negatif Menjadi Bilanagan Biner Positif • Pengubahan bilangan biner negatif menjadi bilangan biner positif dilakukan dengan mengurangi bilangan tersebut dengan satu kemudian mengubah bit 0 ke 1 dan bit 1 ke 0 pada setiap bitnya. • Contoh: • 0

1

0

0

1

0 ↓ 1

1 ↓ 0

0 ↓ 1

0 ↓ 1

1 ↓ 0

07/08/09

1 biner komplemen dua 10 biner komplemen satu ↓ 1 biner asli Bab 2 Teknik Digital

36

Kaidah Matematis Bilangan Biner Komplemen Dua • Sistem bilangan biner komplemen dua banyak digunakan dalam sistem digital dan komputer karena memenuhi kaidah matematis, yaitu jika suatu bilangan dijumlahkan dengan negatifnya, maka akan dihasilkan bilangan nol. •

1 0 1 1 0 1 + 0 1 0 0 1 1 1 0 0 0 0 0 0  bawaan 1 tidak digunakan • Pada contoh tersebut, bit 1 paling depan merupakaan bit bawaan dan tidak digunakan. Jadi 101101 + 010011 = 000000, sehingga 45 + (-)45 = 0. 07/08/09

Bab 2 Teknik Digital

37

Representasi Bilangan Biner Komplemen Dua • Pada suatu bilangan biner komplemen dua, harus diperhatikan bit tandanya • Jika bit tanda sama dengan 0, maka bit sesudahnya merupakan bentuk bilangan biner asli • Jika bit tanda sama dengan 1, maka bit sesudahnya merupakan bentuk bilangan biner komplemen dua • Contoh 0101101= +45des (101101=Biner asli) 1010011= -45des (010011=Komplemen 2)

07/08/09

Bab 2 Teknik Digital

38

Bilangan Biner Komplemen Dua Khusus • Terdapat kasus khusus pada sistem bilangan biner komplemen dua. Jika suatu bilangan biner mempunyai bit tanda = 1, namun bit di belakangnya 0 semua, maka nilai bilangan tersebut adalah -2N, dimana N merupakan jumlah bit yang mewakili suatu nilai. • Contoh: – 10bin = -21 = -2des – 1000bin = -23 = -8des – 10000000bin = -27 = -128des 07/08/09

Bab 2 Teknik Digital

39

Format Penulisan Bilangan Biner • Bilangan biner biasanya diformat dengan panjang bit tertentu. Panjang bit yang biasa digunakan adalah 2, 4, 8, 16 ... dan seterusnya, atau menurut aturan 2n dengan n bilangan bulat positif • Namun tetap dimungkinkan bilangan biner dengan format di luar ketentuan tersebut demi kepraktisan atau tujuan khusus. 07/08/09

Bab 2 Teknik Digital

40

Format Bilangan Biner Komplemen Dua Positif • Pengubahan format bilangan biner komplemen dua dari panjang n-bit menjadi mbit dengan n<m mengikuti aturan berikut : • Pengubahan format bilangan biner komplemen dua positif dilakukan dengan menambahkan bit 0 di depannya. • Contoh: • 4= 0100 format 4 bit 0000 0100 format 8 bit 0000 0000 0000 0100 format 16 bit 07/08/09

Bab 2 Teknik Digital

41

Format Bilangan Biner Komplemen Dua Negatif • • • •

07/08/09

Pengubahan format bilangan biner komplemen dua negatif dilakukan dengan menambahkan bit 1 di depannya. Contoh: -4= 1100 format 4 bit 1111 1100 format 8 bit 1111 1111 1111 1100 format 16 bit Perlu diingat pada contoh di atas bahwa bit paling depan merupakan bit tanda, sehingga pada format 4 bit hanya ada 3 bit yang merepresentasikan suatu nilai. Bab 2 Teknik Digital

42

Sistem Kode • Data yang diproses dalam sistem digital umumnya direpresentasikan dengan kode tertentu • Terdapat beberapa sistem kode : – Kode BCD – Kode Excess-3 (XS-3) – Kode Gray – Kode 7 Segment – Kode ASCII 07/08/09

Bab 2 Teknik Digital

43

Mengapa Sistem Kode ? • Sistem Bilangan hanya dapat menyajikan bilangan positif saja • Sistem Kode dapat menyajikan berbagai macam jenis data seperti bilangan, simbol, maupun huruf • Sistem Kode dapat menyajikan bilangan positif maupun bilangan negatif

07/08/09

Bab 2 Teknik Digital

44

Kode BCD (Binary Coded Decimal) • Kode BCD ditulis menggunakan kode biner 4 bit untuk merepresentasikan masing-masing digit desimal dari suatu bilangan • Contoh : 5 2 9 0101 0010 1001

Desimal BCD

• Dalam Kode BCD terdapat 6 buah kode yang tidak dapat digunakan (Invalid Code) yaitu 1010,1011,1100,1101,1110,1111 • Sehingga hanya ada 10 buah kode yang valid,yaitu kodekode untuk menyajikan bilangan desimal 0 - 9 07/08/09

Bab 2 Teknik Digital

45

Kode Excess-3 (XS-3) • Untuk menyusun kode XS-3 dari suatu bilangan desimal, masing-masing digit dari suatu bilangan desimal ditambah dengan 3, kemudian hasilnya dikonversi seperti BCD • Contoh : – Ubah bilangan desimal 12 ke kode XS-3 1 2 Desimal 3+ 3+ 4 5 0100 0101 XS-3 07/08/09

Bab 2 Teknik Digital

46

Invalid Code XS-3 • Ada 6 kode XS-3 yang tidak dapat digunakan atau Invalid Code, Yaitu 0000, 0001, 0010, 1101, 1110, dan 1111 • Contoh : – Ubah kode XS-3 0111 0001 1010 ke desimal ! 0111 0001 1010 XS-3 7 1 10 3- 33– 4 -2 7 Desimal (invalid) 07/08/09

Bab 2 Teknik Digital

47

Kode Gray • Kode Gray biasanya digunakan sebagai data yang menunjukkan posisi dari suatu poros mesin yang berputar • Cara mengubah bilangan desimal ke kode Gray: • Contoh : Ubah bilangan desimal 13 ke kode Gray ! 13 Desimal + + + abaikan bawaannya 1 1 0 1 1 07/08/09

0

1

1

kode Gray Bab 2 Teknik Digital

48

Kode 7-Segment • Adalah piranti yang digunakan untuk menampilkan data dalam bentuk desimal • Setiap segment dari peraga 7-segment berupa LED yang susunannya membentuk suatu konfigurasi tertentu seperti angka 8 • Ada 2 jenis peraga 7-segment : – Common Cathode, sinyal tinggi (1)-LED nyala – Common Anodhe, sinyal rendah (0)-LED nyala 07/08/09

Bab 2 Teknik Digital

49

Kode ASCII • Singkatan dari American Standard Code for Information Interchange • Adalah kode biner untuk merepresentasikan bilangan, huruf, dan simbol, sehingga biasa disebut juga kode Alfanumerik • Dalam komunikasi data memungkinkan terjadi kesalahan pada bagian-bagian data. Untuk mendeteksi adanya kesalahan-kesalahan tersebut ditambahkan Bit Paritas (Parity Bit) yang ditempatkan sebagai MSB 07/08/09

Bab 2 Teknik Digital

50

Bit Paritas • Ada 2 Bit Paritas : – Bit Paritas Genap – Bit Paritas Ganjil

• Bit Paritas Genap : Nilai bit paritas dipilih sedemikian rupa sehingga jumlah bit 1 dalam suatu kode ASCII (termasuk bit paritasnya) berjumlah genap – Contoh : Kode ASCII untuk C adalah 1000011 Bit paritas genapnya 11000011

• Bit Paritas Ganjil : Nilai bit paritas dipilih sedemikian rupa sehingga jumlah bit 1 dalam suatu kode ASCII (termasuk bit paritasnya) berjumlah ganjil – Contoh : Kode ASCII untuk C adalah 1000011 Bit paritas ganjilnya 01000011

07/08/09

Bab 2 Teknik Digital

51

Nilai Heksadesimal Untuk Beberapa Kode ASCII 7-bit Simbol ASCII 0 30 1 31 2 32 3 33 4 34 5 35 6 36 7 37 8 38 9 39 : 3A ; 3B < 3C = 3D > 3E ? 3F @ 40 A 41 B 42 C 43 D 44 E 45 07/08/09

Simbol ASCII F 46 G 47 H 48 I 49 J 4A K 4B L 4C M 4D N 4E O 4F P 50 Q 51 R 52 S 53 T 54 U 55 V 56 W 57 X 58 Y 59 Z 5A

Simbol a b c d e f g h i j k l m n o p q r s t u v

ASCII 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76

Simbol w x y z

Bab 2 Teknik Digital

ASCII 77 78 79 7A

52

Related Documents


More Documents from "Mohd Syamsul Ariff"

Modul Rules&nat
December 2019 24
Rpp-tik-7
December 2019 39
Subnet Mask ( Cidr )
December 2019 46
Data Teknisi Sman 22
June 2020 21