Archive-jee-main-solutions-mathematics.pdf

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Archive-jee-main-solutions-mathematics.pdf as PDF for free.

More details

  • Words: 22,054
  • Pages: 47
3

Unit 1.

MATHEMATICS

Answer (1)

Z



5.

4 2 Z Z

z

4 4  |Z| Z |Z|

 |Z|



4 2 |z|

– 2|Z| – 4  0 6.

1  5  | Z |  1 5

1 1  z 2 2



1 1  2 2 2



z



zmin. 

1 2

3 2

Answer (3) ⎛ z1  2z2 ⎞ ⎜ ⎟ 1 ⎝ 2  z1z2 ⎠

Hence maximum value = 1  5 2.

1 2

So, | z | 

 |Z|2 – 4 – 2|Z|  0 |Z|2

Answer (4)

Answer (2)

⎛ z1  2z2 ⎞ ⎛ z1  2z2 ⎞ ⎜ ⎟⎜ ⎟ 1 ⎝ 2  z1z2 ⎠ ⎝ 2  z1z2 ⎠

(0, 1)

z1z1  2z1z2  2z2 z1  4z2 z2

(–1, 0)

(1, 0)

 4  2z1z2  2z1z2  z1z1z2 z2

O

z1z1  4z2 z2  4  z1z1z2 z2

zz1 1  z2 z2   4 1  z2 z2   0

|z + i| We have,

 z1z1  4 1  z2z2   0

|z – 1| = |z + 1| = |z – i|

 z1z1  4

Clearly z is the circumcentre of the triangle formed by the vertices (1, 0) and (0, 1) and (–1, 0), which is unique. 3.

Answer (4)

4.

Answer (3)

|z| = 2 i.e. z lies on circle of radius 2. 7.

Answer (3)

2 + 3i sin θ 1 + 2i sin θ = purely in imaginary × 1 − 2i sin θ 1 + 2i sin θ

⎛ 1 z ⎞ ⎛ zz  z ⎞ arg ⎜  arg ⎜ ⎟ ⎟ ⎝ 1 z ⎠ ⎝ 1 z ⎠ = arg (z) = 

 2 – 6sin2 = 0  sin2 =  sin = ±

1 3

1 3

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

60 8.

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

11. Answer (3)

Answer (2) bx2 + cx + a = 0

Coeff. of x = – 7

Roots are imaginary c2 – 4ab < 0

Constant term = 6

f(x) = 3b2x2 + 6bcx + 2c2

 The quadratic eqaution is x2 – 7x + 6 = 0

D = 36b2c2 – 24b2c2 = 12b2c2

 x = 1, 6 12. Answer (4)

∵ 3b2 > 0 

Let f(x) = 2x3 + 3x + k

⎛ D ⎞ f (x)  ⎜  ⎟ ⎝ 4a ⎠

f ( x )  c

f (x) = 6x2 + 3 > 0,  xR  f(x) is strictly increasing function for all real values of k.

2

 No real k exists such that equation has two distinct roots in [0, 1].

Now c2 – 4ab < 0 c2 < 4ab –c2

9.

13. Answer (1)

> – 4ab

 f(x) > – 4ab.

∵ The equation x2 + 2x + 3 = 0 has complex roots and coefficients of both equations are real.

Answer (3)

 Both roots are common.

 and  are roots of the equation x2 – x + 1 = 0.   = 1,  = 1 

x

1  3i 1  3i 1– 3i , , 2 2 2

 x = – or

a b c   1 2 3 14. Answer (3) 

From equation, +=6

2

 = –2

Thus,  = –2, then  = –  = –, then  =

–2

3

where

The value of

=1

a10 – 2a8 10  10  (8  8 )  2a9 2(9  9 )

2009 + 2009 = (–)2009 + (–2)2009 =– =

[(3)669.2

–[2

+

(3)1337.]

+ ] = –(–1) = 1

10. Answer (2) p(x) = 0  (a – a1)x2 + (b – b1)x + (c – c1) Let p(x) = 1x2 + 2x + 3

 x = 1, 4

p(–1) = 0  – 21 + 2 = 0

…(ii)

or x2 – 5x + 5 = – 1

p(–2) = 2 41 – 22 + 3 = 2

…(iii)

 x = 2, 3

1 = 2 2 = 4 p(x) = 2x2 + 4x + 2 p(2) = 2.22 + 4.2 + 2 =8+8+2 = 18



 6  3 2 2

x2 – 5x + 5 = 1 …(i)

3 = 2

9 (  )  9 (  ) 2(9  9 )

15. Answer (4)

p(–1) = 0  1 –2 + 3 = 0

(ii)  2 + (iii)



or x2 + 4x – 60 = 0  x = –10, 6  x = 3 will be rejected as L.H.S. becomes –1 So, sum of value of x = 1 + 4 + 2 – 10 + 6 = 3 16. Answer (3) Rearranging equation, we get

nx 2  1  3  5  ....  (2n  1) x  1 2  2  3  ...  (n  1)n  10n

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

⇒ nx 2  n 2 x 

ANSWERS AND SOLUTIONS

(n  1)n(n  1)  10n 3

⎛ n 2  31 ⎞ ⇒ x 2  nx  ⎜ ⎟0 ⎝ 3 ⎠

Given difference of roots = 1

 n[log4 – log3]  log10 10 = 1 1  n  log 4  log 3

20. Answer (1) Put n = 0 Then when 1 – 62 is divided by 9 then remainder is same as when 63–61 is divided by 9 which is 2.

 || = 1  D1  n2 

61

4 2 (n  31)  1 3

So, n = 11

21. Answer (3) 10

S2  ∑ j

10

j 1

17. Answer (3)

C j  10.29

 Statement-2 is false.

2| x – 3 |  x ( x – 6)  6  0 2| x – 3|  ( x – 3  3)( x – 3 – 3)  6  0 2

Only choice is (3). 22. Answer (3) Statement 1 : (n + 1)7 – n7 – 1

2| x – 3|  ( x – 3) – 3  0

= n7 + 7C1n6 + 7C2n5 + ... + 7C6 n + 7C7 – n7 – 1

( x – 3)2  2| x – 3| – 3  0

= 7C1n6 + 7C2n5 + ... + 7C6n

(| x – 3 | 3)(| x – 3 | –1)  0

Statement 1 is true.

 | x – 3|  1, | x – 3|  3  0

Statement 2 : By mathematical induction

= 7m mI.

n7 – n is divisible by 7 (true)



x – 3  1

Let n7 – n = 7p pI



x  4, 2

 n7 = 7p + n

x = 16, 4

...(i)

(n + 1)7 – n7 – 1 = (n + 1)7 – (7p + n) – 1 = (n + 1)7 – (n + 1) – 7p

18. Answer (3) x2 – x + 1 = 0

= 7l + 7p

Roots are –, –2

Statement 2 is a correct explanation of statement 1.

Let  = –,  = –2

23. Answer (4)

101 + 107 = (–)101 + (–2)107

24. Answer (3)

= –(101 + 214)

n(A × B) = 2 × 4 = 8

= –(2 + )

The number of subsets of A × B having 3 or more elements.

=1

= 8C3 + 8C4 + ... + 8C8

19. Answer (4) n

9 ⎛3⎞ 1 ⎜ ⎟  10 ⎝4⎠ n

9 1 ⎛3⎞   ⎜ ⎟  1 10 10 ⎝4⎠ n

l,pI

⎛4⎞  ⎜ ⎟  10 ⎝3⎠

= 28 – 8C0 – 8C1 – 8C2 = 256 – 1 – 8 – 28 = 219 25. Answer (3) Given expression can be written as 10

⎛ x1/2  1 ⎞ ⎪⎫ ⎪⎧ 1/3 ⎨ x  1  ⎜⎜ 1/2 ⎟⎟ ⎬ ⎪⎩ ⎝ x ⎠ ⎪⎭







 x1/3  x 1/2



10

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

62

ANSWERS AND SOLUTIONS

General term =

ARCHIVE - JEE (Main)

 

10

Cr  x1/3

10  r



 x 1/2



r

Sum of coefficient of integral power of x 

From question,

50

C0 20 50 C2  22 50 C4  24   50 C50  250

We know that

10 r r   0 3 3 2

(1 + 2)50 =

 r=4

50

C0 50 C1  2  ..... 50 C50  250

Then,

i.e., constant term 

10

C4  210

50

26. Answer (2)

X  {(1  3)n  3n  1, n  N }

C0 50 C2  22  ..... 50 C50  250 

350  1 2

30. Answer (3) Number to terms is 2n + 1 which is odd but it is given 28. If we take (x + y + z)n then number of terms is n + 2C2 = 28

= 32 ( n C2  nC3 .3  ...  3n 2 ), n  N } = {Divisible by 9}

Hence n = 6

Y = {9(n – 1), n  N}

6

= (All multiples of 9} So, X  Y

2 4 ⎞ ⎛ 2 6 ⎜ 1   2 ⎟  a0  a1x  a2 x  ......  a6 x x ⎝ x ⎠

i.e., X  Y  Y

Sum of coefficients can be obtained by x = 1 (1 – 2 + 4)6 = 36 = 729

27. Answer (2) (1 + ax + bx2) (1 – 2x)18 (1 + ax + bx2)[18C0 – Coeff. of x3 =

18C (2x) + 18C (2x)2 – 1 2 18C (2x)3 + 18C (2x)4 – .......] 3 4 –18C3.8 + a × 4.18C2 – 2b × 18 = 0

18  17  16 4a  18  17 .8   36b  0 6 2 = –51 × 16 × 8 + a × 36 × 17 – 36b = 0

So according to what the examiner is trying to ask option 3 can be correct. 31. Answer (3) 21

C1  21C2  ...  21C10 

= 

= –34 × 16 + 51a – 3b = 0

28. Answer (1) n(A) = 4, n(B) = 2 Required numbers = 8C3 + 8C4 + ...... + 8C8 = 28 – (8C0 + 8C1 + 8C2) = 219

C0 



10

C1  10C2  ...  10C10  210  1

= 220 – 210 32. Answer (4)



  5



x  x3  1  x  x3  1

5

 2 ⎡⎣x 5  10( x 6  x 3 )  5 x ( x 6  2 x 3  1)⎤⎦

 2 ⎡⎣5 x 7  10 x 6  x 5  10 x 4  10 x 3  5 x⎤⎦

29. Answer (1) 50



 2 ⎡⎣x 5  10 x 6  10 x 3  5 x 7  10 x 4  5 x⎤⎦

= 256 – 37





C0  21C1  ...  21C21  1

 2 ⎡⎣ 5C0 x 5  5C2 x 3 ( x 3  1)  5C4 x ( x 3  1)2 ⎤⎦

n(A × B) = 8

50

21

= 220 – 1

... (i)

Only option number (2) satisfies the equation number (i).

1 2 x 



 Required sum = (220 – 1) – (210 – 1)

= 51a – 3b = 34 × 16 = 544 = 51a – 3b = 544

1 2

50



C1 2 x



1

50 C2 (2 x )2  .....

50 C50 ( 2 x )50

Sum of odd degree terms coefficients = 2(5 + 1 – 10 + 5) =2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

33. Answer (3) The number of ways in which 4 novels can be selected = 6C4 = 15 The number of ways in which 1 dictionary can be selected = 3C1 = 3 4 novels can be arranged in 4! ways.  The total number of ways = 15 × 4! × 3 = 15 × 24 × 3 = 1080.

3 red balls

9 distinct blue balls

Urn A

Urn B

Two balls from urn A and two balls from urn B can be selected in 3C2 × 9C2 ways = 3 × 36 = 108 35. Answer (3)

C3  C3  10 C2  10

Words starting with SL = 3! = 6 Next words is SMALL  Rank = 12 + 24 + 12 + 3 + 6 + 1 = 58 X(4 L 3 G)

Y(3 L 4 G)

3L0G

0L3G

2L1G

1L2G

1L2G

2L1G

0L3G

3L0G

Required number of ways = 4C3  4C3 

4

C2  3C1

  2

4

C1  3C2

  C  2

3

2

3

= 16 + 324 + 144 + 1 = 485

 Atleast 1000

37. Answer (2)

41. Answer (1)

4 digit numbers

6,

7,

8

Let S  1 

2 6 10 14     ..... 3 3 2 33 3 4

S 1

2 6 10 14     ..... 3 3 2 33 3 4

678 4



Required arrangements = 6C4 × 3C1 × 4! = 1080

 n=5

3

3! 3 2!

Number of ways of selecting 1 dictionary from 3 dictionaries = 3C1

n

5,

Words starting with SA 

Number of ways of selecting 4 novels from 6 novels = 6C4

n

3,

4!  12 2!

40. Answer (1)

36. Answer (2)



Words starting with M 

39. Answer (4)

34. Answer (4)

n 1

63

ANSWERS AND SOLUTIONS

5

2

= 72

S 1 2 6 10 14  2  3  4  5  ..... 3 3 3 3 3

5 digit numbers



5 5 × 4 × 3 × 2 × 1 = 120

2 2 4 4 4 (S  1)   2  3  4  ..... 3 3 3 3 3

 S  1  1

Total number of integers = 72 + 120 = 192 38. Answer (3)

4!  12 Words starting with A  2! Words starting with L = 4! = 24

 S  2

2 2 2  2  3  ..... 3 3 3

2 3 1

1 3

=2+1 =3

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

64

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

42. Answer (2)

47. Answer (2)

Number of notes person counts in 10 minutes. = 10 × 150 = 1500

∵ p, q, r are in AP 2q = p + r

Since, a10, a11, a12, ....... are in A.P. with common difference = –2  Let n be the time taken to count remaining 3000 notes, then

Also 

n [2  148  (n  1)  –2]  3000 2  n2 – 149n + 3000 = 0

...(i)

1 1  4    4  q p   4 ⇒ q  –4r r p –

 (n – 24) (n – 125) = 0  n = 24, 125 Time taken by the person to count all notes = 10 + 24 = 34 minutes

...(ii)

From (i) 2(–4r) = p + r p = – 9r

43. Answer (4) a2 + a4 + a6 + .... + a200 = 

...(i)

a1 + a3 + a5 + ... + a199 = 

...(ii)

a2 – a1 = a3 – a2 = ... = d common difference.

q = – 4r r=r 2 Now |  –  |  (  ) – 4

subtract (i) & (ii)

2

⎛ –q ⎞ 4r  ⎜ ⎟ – p p ⎝ ⎠

100 d =  –  – 100 44. Answer (1)

d=



q 2 – 4 pr |p|



16r 2  36r 2 | –9r |

45. Answer (3) 46. Answer (3) S = 0.7 + 0.77 + 0.777 + ... upto 20 terms =

7 .9 + .99 + .999 + ....  9

=

7 ⎡1 – 0.1 + 1 – 0.01 + 1 – 0.001 ⎤ ⎥ 9 ⎢⎣ + ...upto 20 terms ⎦

=

7 9

⎡ 1 1 1 ⎞⎤ ⎛ 1 ⎢ 20 – ⎜ 10 + 2 + 3 + ... + 20 ⎟ ⎥ 10 10 10 ⎠ ⎦ ⎝ ⎣

7 = 9

⎛ 1 ⎛ 1 ⎞⎞ ⎜ ⎜ 1 – 20 ⎟ ⎟ 10 10 ⎠ ⎟ ⎝ ⎜ 20 – 1⎞ ⎟ ⎛ ⎜ ⎜ 1 – 10 ⎟ ⎟ ⎜ ⎝ ⎠ ⎠ ⎝

7 = 9

⎡ 1⎛ 1 ⎢ 20 – 9 ⎜ 1 – 1020 ⎝ ⎣

=

7 ⎡ 1 ⎤ 179 + 20 ⎥ ⎢ 81 ⎣ 10 ⎦

=

7 ⎡ 179 +10 –20 ⎤⎦ 81 ⎣

⎞⎤ ⎟⎥ ⎠⎦

=

2 13 9

48. Answer (1) 10 9 + 2(11)(10) 8 + 3(11) 2(10) 7 + ... + 10(11) 9 = k(10)9 x = 109 + 2(11)(10)8 + 3(11)2(10)7+ ... +10(11)9 11 x = 11108 + 2(11)2(10)7 +... + 9(11)9 + 1110 10

11 ⎞ ⎛ 9 8 2 7 9 10 x ⎜1  ⎟ = 10 + 11(10) + 11 ×(10) +... +11 – 11 10 ⎝ ⎠ ⎛ ⎛ 11 ⎞10 ⎞ ⎜ ⎜ ⎟  1⎟ x 10 ⎟  1110  109 ⎜ ⎝ ⎠   ⎜ 11 ⎟ 10 1 ⎟ ⎜⎜ ⎟ 10 ⎝ ⎠

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

  x  (1110  1010 )  1110   1010 10  x = 1011 = k109

51. Answer (2)

tn 

 k = 100 49. Answer (2) a, ar,

a, 2ar,



 G.P.

ar2

 A.P.

ar2

2 × 2ar = a + ar2 4r = 1 + r2  r2 – 4r + 1 = 0 r=

4  16  4  2 3 2

⎡ n  n  1 ⎤ ⎢ ⎥ 2 ⎣ ⎦ n2

2

 n  12 4



1⎡ 2 n  2n  1⎤⎦ 4⎣



1 ⎡ n  n  1 2n  1 2  n  n  1 ⎤   1⎥ ⎢ 4⎣ 6 2 ⎦



1 ⎡ 9  10  19 ⎤  9  10  9 ⎥ 4 ⎢⎣ 6 ⎦

= 96

r  2 3

52. Answer (1) a + d, a + 4d, a + 8d are in G.P.

r  2  3 is rejected

(a + 4d)2 = (a + d) (a + 8d)

∵ (r > 1)

 a2 + 8ad + 16d2 = a2 + 9ad + 8d2

G.P. is increasing.

 8d2 = ad 

50. Answer (2) l n m 2

a =8 d

 Common ratio =

l + n = 2m

…(i)

a + 4d 8+4 4 = = a+d 8 +1 3

53. Answer (1) 2 2 2 16 ⎛ 3⎞ ⎛ 2⎞ ⎛ 1⎞ 2   1 2 3 ⎜ 5⎟ ⎜ 5⎟ ⎜ 5 ⎟  4  ....... = 5 m ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 ⎞4

⎛n G1  l ⎜ ⎟ ⎝l ⎠

2

2

2

16 ⎛ 8 ⎞ ⎛ 12 ⎞ ⎛ 16 ⎞ ⎛ 20 ⎞  ⎜ ⎟  ⎜ ⎟  ⎜ ⎟  ⎜ ⎟  ....10 tens = m 5 5 5 5 6 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

⎛ n ⎞4 G2  l ⎜ ⎟ ⎝l ⎠

2

16 ⎛4⎞ 2 2 2 2 m  ⎜ ⎟ [2  3  4  5 ...... 10 terms] = 5 ⎝5⎠

3

⎛ n ⎞4 G3  l ⎜ ⎟ ⎝l ⎠

2 16 ⎛4⎞ 2 2 2 2 m  ⎜ ⎟ [2  3  4 .......  11 ] = 5 ⎝5⎠

Now G14  2G24  G33

l4 

65

2

n ⎛n⎞ ⎛n⎞  2  (l 2 ) ⎜ ⎟  l 4 ⎜ ⎟ l l ⎝ ⎠ ⎝l ⎠

= nl3 + 2n2l2 + n3l

2

3

16 ⎛4⎞ 2 2 2 2 2 m  ⎜ ⎟ [1  2  3 .......  11  1 ]  5 5 ⎝ ⎠ 2

⎛ 4 ⎞ ⎡11.12.23 ⎤ 16  1⎥  m (given)  ⎜ ⎟ ⎢ 6 5 ⎝5⎠ ⎣ ⎦



16 16 [22.23  1]  m 25 5

= nl(n + l)2 = nl (2m)2



1 (505)  m 5

= 4 nlm2

 m = 101

= 2n2l2 + nl(n2 + l2) = 2n2l2 + nl((n + l)2 – 2nl)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

66

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

54. Answer (1)

Solving (i) & (ii), We get d = 1, a = 8

9(25a2  b2 )  25(c 2  3ac )  15b (3a  c )  (15a)2  (3b)2  (5c )2  45ab  15bc  75ac  0  (15a  3b)2  (3b  5c )2  (15a  5c )2  0 It is possible when 15a  3b  0 and 3b  5c  0 and 15a  5c  0 15a  3b  5c

2 Now, a12  a22  .....  a17  140m

 82  92  .....  242  140m 

24  25  49 7  8  15   140m 6 6



m  34

57. Answer (2)

a b c   1 5 3

A  12  2.22  32  ....  2.202

 b, c, a are in A.P.

 (12  22  32  ....  202 )  4(12  22  32  ....  102 )

55. Answer (4)

20  21 41 4  10  11 21  6 6

As, f ( x  y )  f ( x )  f ( y )  xy



Given, f (1)  3

= 2870 + 1540 = 4410

Putting, x  y  1  f (2)  2f (1)  1  7

B  12  2.22  32  ....  2.402

Similarly, x  1, y  2  f (3)  f (1)  f (2)  2  12

 (12  22  32  ....  402 )  4(12  22  32  ....  202 )

10

Now,

∑ f (n ) =

n 1



f (1)  f (2)  f (3)  ...  f (10)

= 3 + 7 + 12 + 18 + ... = S (let) Now, Sn  3  7  12  18  ...  t n

58. Answer (4)

⎛1 * * ⎞ ⎜ ⎟ Consider ⎜ * 1 * ⎟ . By placing a1 in any one of ⎜ * * 1⎟ ⎝ ⎠

n (n  5) 2

n

∑ tn = 2 ∑ n 2  5 ∑ n 1

the 6 * position and 0 elsewhere. We get 6 nonsingular matrices.

n 1

=

So, S10 =

 B – 2A = 33620 – 8820 = 24800  = 248

We get, t n  3  4  5  ... n terms

i.e., Sn =

= 22140 + 11480 = 33620  100 = 24800

Again, Sn  3  7  12  ...  t n 1  tn

=

40  41 81 4  20  21 41  6 6

n (n  1)(n  8) 6

⎛ * * 1⎞ ⎜ ⎟ Similarly ⎜ * 1 * ⎟ gives at least one nonsingular ⎜1 * * ⎟ ⎝ ⎠

10  11 18  330 6

59. Answer (3)

56. Answer (3)

A satisfies A2 – Tr(A). A + (det A)I = 0 comparing with A2 – I = 0, it follows Tr A = 0, |A| = –1.

Let a1 = a and common difference = d

60. Answer (2)

Given, a1 + a5 + a9 + ..... + a49 = 416  a + 24d = 32

...(i)

R is Reflexive

Also, a9 + a43 = 66  a + 25d = 33

...(ii)

Let ARB

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

i.e., A = P–1BP

67

65. Answer (4)

PA = BP

⎡ 1 2 2 ⎤ ⎡ 1 2 a ⎤ ⎡9 0 0 ⎤ ⎢ 2 1 2⎥ ⎢ 2 1 2⎥⎥  ⎢⎢0 9 0 ⎥⎥ ⎢ ⎥⎢ ⎣⎢a 2 b ⎦⎥ ⎢⎣2 2 b ⎦⎥ ⎣⎢0 0 9 ⎦⎥

PAP–1 = B PAP–1  P–1 AP Hence R is not equivalence  Statement 1 is false

a  4  2b  0

 Statement 2 is true

2a  2  2b  0

61. Answer (2)

a  1 b  0

For skew-symmetric matrix

2a  2b  2

AT = – A (∵ det (–A) = – det A for matrix of odd order)

det AT = det (–A) det A = – det A 2 det A = 0

 det A = 0

Statement 1 is true.

a  2b   4

3a  6 a  2

Statement 2 : For every matrix det (AT ) = det (A) But det (–A) = – det A is true for matrix of odd order.  Statement 1 is ture and Statement 2 is false.

2  1  b  0

b=–1 a=–2 (–2, –1) 66. Answer (1)

62. Answer (2) ⎡ 0 ⎤ ⎡ 0 ⎤ H2  ⎢ ⎥⎢ ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦

⎡a b ⎤ Let A = ⎢c d ⎥ ⎣ ⎦

⎡2 H2  ⎢ ⎢⎣ 0

0⎤ ⎥ 2 ⎥⎦

⎡ d Then adj (A) = ⎢ – c ⎣

⎡3 H3  ⎢ ⎢⎣ 0

0⎤ ⎥ 3 ⎥⎦

⎡70 Similarly H 70  ⎢ ⎢⎣ 0

– b⎤ a ⎥⎦

 |A| = |adj A| = ad – bc ⎡a b ⎤ Also adj[adj A] = ⎢c d ⎥ = A ⎣ ⎦

0 ⎤ ⎡ 0 ⎤ ⎥⎢ ⎥ 70 ⎥⎦ ⎣ 0 ⎦

 Both statements are true but (2) is not correct explanation of (1). 67. Answer (2)

=H

Applying D' = D is first determinant and R2  R3 and R1  R2 in second determinant

 is complex cube root of unity

a b c a(1)n2 b(1)n1 c(1)n a 1 b 1 c 1  a 1 b 1 c 1  0 a 1 b 1 c 1 a 1 b 1 c 1

70

∵



63. Answer (3) 64. Answer (4)

BB '  ( A1.A ')( A( A1)') = A–1.A.A'.(A–1)1 =

I(A–1A)'

= I.I = I2 = I

{as AA' = A'A}

a  ( 1)n  2 a b  ( 1)n 1 b c  ( 1)n c Then a 1 b 1 c 1 0 a 1 b 1 c 1

if n is an odd integer.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

68

ANSWERS AND SOLUTIONS

68. Answer (4)

When k = 1, equation change to

The given system of linear equations can be put in the matrix form as

by R2  R2  2R1 R3  R3  3R1

R3  R3  R2

Subtracting the addition of first two equations from third equation, we get, 0 = –5, which is an absurd result. Hence the given system of equation has no solution. 69. Answer (3) For non-trivial solution

1 k  0 1

 1(– 3 + k) + k (– k + 3k) + 1(k – 9) = 0  k – 3 + 2k2 + k – 9 = 0  2k2 + 2k – 12 = 0 

k2



x + 4y = 2

 k + 2y = 3

and 3x + 6y = 8

and x + 2y =

+k–6=0

 (k + 3) (k – 2) = 0  k = – 3, 2 Thus, the set of values of k is R – {– 3, 2} for trivial solution.

 No solution

72. Answer (2)

⎡1  3⎤ ⎢1 3 3⎥ ⎢ ⎥ ⎢⎣2 4 4 ⎥⎦ |P| = 1(12 – 12) – (4 – 6) + 3(4 – 6) = 2 – 6 Also, |P| = |A|2 = 16 2 = 22  = 11 73. Answer (1)

1 1 1 1   

1   2  2

1   

1   2  2 1  3  3

1   2  2 1  3  3 1   4  4 1  

1 

2 1 1   1  1  2

 2 2 1 1 1

1

= [(1 – )(1 – )(1 – )]2 So, k  1 74. Answer (3) x1(2   )  2 x2  x3  0

70. Answer (2)

2 x1  x2 (   3)  2 x3  0

71. Answer (2)

 x1  2 x2  x3  0

k 1 8 0 k k 3

 k2 + 4k + 3 – 8k = 0  k = 1, 3

8 3

 One value of k exists for which system of equation has no solution.

Alter

3 1

x + 4y = 2

4x + 8y = 12

Clearly the given system of equations has no solution.

k 3

and x + 4y = 2



When k = 3

⎡ 1 2 1 ⎤ ⎡ x1 ⎤ ⎡ 3 ⎤ ~ ⎢⎢0 –1 –1⎥⎥ ⎢⎢ x2 ⎥⎥  ⎢⎢ –3 ⎥⎥ ⎢⎣0 –1 –1⎥⎦ ⎢⎣ x3 ⎥⎦ ⎢⎣ –8 ⎥⎦

1 k

2x + 8y = 4

 Infinitely many solutions

⎡ 1 2 1⎤ ⎡ x1 ⎤ ⎡3 ⎤ ⎢ 2 3 1⎥ ⎢ x ⎥  ⎢ 3 ⎥ ⎢ ⎥⎢ 2⎥ ⎢ ⎥ ⎢⎣3 5 2⎥⎦ ⎢⎣ x3 ⎥⎦ ⎢⎣ 1⎥⎦

⎡ 1 2 1⎤ ⎡ x1 ⎤ ⎡3 ⎤ ~ ⎢⎢0 1 1⎥⎥ ⎢⎢ x2 ⎥⎥  ⎢⎢3 ⎥⎥ ⎢⎣0 0 0 ⎥⎦ ⎢⎣ x3 ⎥⎦ ⎢⎣5 ⎥⎦

ARCHIVE - JEE (Main)

2 2 1 2   3 2 0 1 2 

(2   )(2  3  4)  2( 2  2)  (4    3)  0

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

2 2  6  8  3  3 2  4  4  4    1  0

= 3 (2 – 4)

  3   2  5  3  0

⎡⎛ 1  3i ⎞ ⎛ 1  3i ⎞ ⎤ ⎟⎜ ⎟⎥ = 3 ⎢⎜ 2 ⎠ ⎝ 2 ⎠⎦ ⎣⎝

  3   2  5  3  0

= 3 3i

3   2  2 2  2  3  3  0

= –3z

2

 (  1)  2 (  1)  3(  1)  0

 k = –z 78. Answer (1)

(  1)( 2  2  3)  0

⎡ 2 3 ⎤ A⎢ ⎥ ⎣ 4 1 ⎦

(  1)(  3)(  1)  0

   1, 1,  3 A  I 

Two elements.

2

3

4

1 

75. Answer (3)

1



69

= (2 – 2– + 2) – 12

1

f ( )   2  3  10

 1 1  0 1 1  1( + 1) – (–

2

∵ A satisfies f ( )

+1) + 1(–  –1) = 0

 A2 – 3A –10I = 0

3 –+ + 1 –  – 1 = 0

A2 – 3A = 10I

3 – = 0

3A2 – 9A = 30I

(2 –

3A2 + 12A = 30I + 21A

1) = 0

= 0, = ±1

⎡30 0 ⎤ ⎡ 42 63 ⎤ ⎢ ⎥⎢ ⎥ ⎣⎢ 0 30 ⎦⎥ ⎣⎢ 84 21 ⎦⎥

Exactly three values of  76. Answer (1)

⎡ 72 63 ⎤ ⎢ ⎥ ⎢⎣ 84 51 ⎥⎦

A - adj A = IAI = A.AT  adj A = AT ⎡ 2 b ⎤ ⎡ 5a 3 ⎤ ⎢ 3 5a ⎥  ⎢ b 2 ⎥ ⎣ ⎦ ⎣ ⎦

⎡ 51 63 ⎤ adj(3 A2  12 A)  ⎢ ⎥ ⎢⎣84 72 ⎥⎦

 5a = 2, b = 3

79. Answer (3)

So, 5a + b = 5

1 1 1

77. Answer (4)

1 a 10

2 + 1 = z, z  3 i

a b 1

1  3i  Cube root of unity. 2

 –(1 – a)2 = 0

C1  C1 + C2 + C3 1

1

1 2

1 1   1

2



1 1

2

1

3

1

2

1 2

 a=1 For a = 1 Eq. (1) & (2) are identical i.e.,x + y + z = 1

 1    0  

To have no solution with x + by + z = 0.

7

b=1

1 2



0 2



Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

70

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

83. Answer (2)

80. Answer (3) x  4 2x 2x   2x x  4 2x 2x

cos(  ) 

5   –   1st quadrant 13 2 = ( + ) + ( – )

x4

2x

sin(  ) 

x = –4 makes all three row identical hence (x + 4)2 will be factor



Also, C1  C1  C2  C2 5 x  4 2x   5x  4 x  4 5x  4

2x

4   +   1st quadrant 5

tan2 

tan(  )  tan(  ) 1  tan(  )tan(  )

3 5  56 = 4 12  3 5 33 1 . 4 12

2x 2x x4

84. Answer (3)

 5x – 4 is a factor

   (5 x  4)( x  4)2  B = 5, A = –4

R 2 n

81. Answer (2) ∵ System of equation has non-zero solution. 

 r n

a   sin 2R n

1 k 3 3 k –2  0 2 4 –3

 44 – 4k = 0  k = 11 Let z =   x + 11y = –3

a   tan 2r n



r   cos R n

n=3

gives

r 1  R 2

n=4

gives

r 1  R 2

n=6

gives

r 3  R 2

and 3x + 11y = 2 

x

5  ,y – ,z 2 2

85. Answer (2) sin + sin4 + sin7 = 0



xz y2

5 ·  2  10 2 ⎛ ⎞ ⎜– 2⎟ ⎝ ⎠

2sin4 cos3 + sin4 = 0 sin4 (2cos3 + 1) = 0 sin4 = 0 or cos3θ = –

82. Answer (2) 2(cos cos + sin sin) +2(cos cos + sin sin) +2(cos cos + sin sin) +

sin2

+

cos2

+

sin2

+

cos2

+

sin2

+

cos2

=0

 (sin + sin + sin)2 + (cos + cos + cos)2 = 0  sin + sin + sin = 0 = cos + cos + cos  Both A and B are true.

1 2

⎛ 2 ⎞  3 = 2n ± ⎜ ⎟ ⎝ 3 ⎠ =

2n 2  3 9

or 4 = n   n 4 =

  3  2 4  8  , , , , , 4 2 4 9 9 9

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

86. Answer (1)

89. Answer (2)

87. Answer (1)

A

q +

2

p

D

 q

B

f4 ( x )  f6 ( x )

p

C

AB BD  sin  sin(   ) AB 



1 (sink x  cosk x ) k

fk ( x ) 

2







=

1 1 (sin4 x  cos4 x )  (sin6 x  cos6 x ) 4 6

=

1 1 1  2 sin2 x cos2 x   1  3 sin2 x cos2 x  4 6

=

1 1 1  = 4 6 12

90. Answer (2)

p 2  q 2 ·sin  sin ·cos   cos ·sin 

p2  q 2 ·sin  sin ·

q p2  q 2

( p   q 2 )sin   p cos   q sin 

 cos ·

tan A cot A  1  cot A 1  tan A

tan2 A cot A   tan A  1 1  tan A tan2 A  cot A tan A  1

tan3 A  1  tan A(tan A  1)

tan2 A  tan A  1  tan A

p2  q 2

sin A cos A  1 cos A sin A

1  sin A cos A  sin A ·cos A = 1 + secA· cosecA

20 y

t=1s From figure tan 45  and tan30 

20 x

20 xy

so, y  20( 3  1) i.e., speed = 20( 3  1) m/s.

P

91. Answer (1) AO = h cot30º

h 3

h

BO = h

CO 

= tanA + 1 + cotA 

20

45° 30° x

p

B

A

88. Answer (2)



71



h 3

A

30º B

60º 45º C

O

AB AO  BO  h 3  h  3  h BC BO  CO h 3

92. Answer (2) cosx + cos2x + cos3x + cos4x = 0 2cos

5x 3c 5x x ⋅ cos + 2cos ⋅ cos = 0 2 2 2 2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

72

ANSWERS AND SOLUTIONS

2cos

x=

ARCHIVE - JEE (Main)

5x x × 2cos⋅ x cos = 0 2 2

(2n + 1) π (2k + 1) π ,

5

2

95. Answer (2)

tan  

, (2r + 1) π ,

tan     

0  x < 2

where n, k,

B

1 4

π 3 π 2π 9 π π 3 π Hence x = , , π, , , , 5 5 5 5 2 2



93. Answer (3)

1 2

h

30°

A

10v

B

x

h  tan 60 x

 cos 3 x  1

So, time = 5 minutes.

 3x 

94. Answer (3) 

5 tan2x = 9 cos2x + 7

x

5 sec2x – 5 = 9 cos2x + 7

 5 7 , , 9 9 9

 Sum 

5  9t  12 t

 k

9t2 + 12t – 5 = 0

1 2

 5 7 , , 3 3 3

Let cos2x = t

cos2 x 

2 9

⎛3 1 ⎞  8cos x ⎜   1  cos2 x ⎟  1 ⎝4 2 ⎠

 cos3 x 

t

A

96. Answer (2)

x 1  ⇒ x  5v  10v  x 3

as

4x

⎛ 3  4cos2 x ⎞  8cos x ⎜ ⎟ 1 ⎜ ⎟ 4 ⎝ ⎠

h  tan30 10v  x

1 3

P



 1⎞ ⎛ 8cos x  ⎜ cos2  sin2 x  ⎟  1 6 2⎠ ⎝

60°

let speed = v units/min

t



1  tan  1 4  1 2 1  tan  4

Solving tan  

x C x

13 9

13 9

97. Answer (1) 5 3

P

1 , cos 2x = 2cos2x – 1 3

= 

45º

1 3

T

cos4x = 2 cos2 2x – 1

2 = 1 9 = 

7 9

Q

30º

M

30º

R

Let height of tower TM be h  PM = h

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

tan30º 

In TQM,

h QM

⎛  x ⎞⎞ 1 ⎛ = tan ⎜ tan ⎜  ⎟ ⎟ ⎝ 4 2 ⎠⎠ ⎝

QM  3 h In PMQ,

=

PM 2  QM 2  PQ 2 2

2

h  ( 3h )  200 

4h 2  2002



h = 100 m



2y xz  2 1  xy 1 y



y 2  xz

y

xz ⎞ = tan ⎜ ⎟ ⎝ 1  xz ⎠ –1 ⎛

2tan–1y

102. Answer (1) Lines perpendicular to same line are parallel to each other.  p = –1  There is exactly one value of p. 103. Answer (1) Let (x, y) denote the coordinates of A, B and C.

99. Answer (1)

 1 x   2

Then, 1 x2

 8x2 + 8y2 – 20x + 8 = 0

x2  y 2 

1 ⎛ dy ⎞ ⎜ dx ⎟  2 ⎝ ⎠ x 1

5 x 1 0 2

⎛5 ⎞  A, B, C lie on a circle with C ⎜ , 0⎟ . ⎝4 ⎠

100. Answer (1)

104. Answer (4)

⎛ 2x ⎞ tan1 y  tan1 x  tan1 ⎜ ⎟ ⎝ 1 x2 ⎠ 3 1 ⎛ 3 x  x ⎞ 3tan–1 x = tan ⎜⎜ 2 ⎟ ⎟ ⎝ 1 3x ⎠

3x  x3 1 3x 2

13 32 32 8   1⇒    b  20 5 b b 5 The line K must have equation

x y x y  1   a or 5 a 20 a 5 20 Comparing with

101. Answer (1)

f ( x )  tan

( x  1)2  y 2 1  ( x  1)2  y 2 9

 9x2 + 9y2 – 18x + 9 = x2 + y2 + 2x + 1

dy x  dx 1 x2

1

 ⎞ 2 ⎛  2 ⎜ x  ⎟ ⇒ y  2x  3 6⎠ 3 ⎝

 –p(p2 + 1) = p2 + 1

 x=y=z

y

  1 and at x  , f ( x )  6 3 2

So, equation of normal is

 x, y, z are in GP

y  sec sec –1

 x  4 2

 f ( x ) 

2

98. Answer (1) ∵ 2y = x + z and

73

x y  1 c 3

3⎞ ⎛ ⎜ Given 20a  3, c  5a   4 ⎟ ⎝ ⎠

1  sin x 1  sin x

Distance between lines is 2

x x⎞ ⎛ ⎜ cos 2  sin 2 ⎟ ⎝ ⎠ = tan1 2 x x⎞ ⎛ cos sin  ⎜ 2 2 ⎟⎠ ⎝

=

3 1 23 20   1 1 17 17  25 400 400 a 1

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

74

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

105. Answer (4)

107. Answer (2)

Given

108. Answer (2)

x + y = |a|

(1, a – 1)

ax – y = 1

109. Answer (2) y

Reflected ray

x y  1 1 1 a

a 30°

 x + y = a.

0

...(i) for Ist quadrant

ax – y = 1.

x

(3, 0)

...(ii)

1

Slope of incident ray =  After solving (i) & (ii)

3

  = 150°

 x=1

 Slope of reflected ray = tan30°

 y=a–1 Clearly a – 1  0

=

 a1  a  [1, )

 Reflected ray is y =

106. Answer (4)

⎛ 9 – 2t ⎞ Let vertex of C be ⎜ t, 3 ⎟⎠ ⎝ C

A (2, – 3)

(t,



1 3

1 3 ( x  3)

3y  x  3

110. Answer (2)

9 – 2t ) 3 2x + 3y = 9

(0, 2) B

B (– 2, 1)

(0, 1)

(1, 1)

Let (h, k) be centroid

–3  1  t2– 2 , k=  h= 3 3 h= k =

t 3

...(i)

–6  9 – 2t 9

from (i) and (ii) k =

9 – 2t 3

...(ii)

O (0, 0)

So, x co-ordinate of incentre 



9k = 3 – 6h 6h + 9k = 3 2h + 3k = 1

A (2, 0)

Required triangle is OAB

3 – 2  3h  9

(1, 0)



20  2 2  2 2 0 222 2

4 42 2 2 2 2

Required locus is 2x + 3y = 1

 2 2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

75

111. Answer (4)

P(2,2)

(x, y)

Q(6,– 1)

R(7,3)

S

2(ad – bc ) –(5bc – 4ad )  –2ab –2ab

S is mid-point of QR

⎛ 7  6 3 – 1 ⎞  ⎛ 13 , So S  ⎜ , ⎜ 2 ⎟⎠ ⎝ 2 ⎝ 2

2ad – 2bc = – 5bc + 4ad

⎞ 1⎟ ⎠

 3bc – 2ad = 0

...(i)

113. Answer (4) 2–1 2 Slope of PS = – 13 9 2– 2

(0, 41) A39

2 Equation of line  y – (–1)  – ( x – 1) 9 9y + 9 = – 2x + 2 2x + 9y + 7 = 0 112. Answer (1) Let (, -) be the point of intersection 4a – 2a + c = 0 ⇒   

c 2a

and 5b – 2b + d = 0 ⇒   

d 3b





3bc = 2ad



3bc – 2ad = 0

A2

B2 B1

A1

(41, 0)

(0, 0)

Total number of integral coordinates as required = 39 + 38 + 37 + ....... + 1

39  40  780 2 114. Answer (3) 

A

Alternative method : The point of intersection will be

N (1, 2)

x –y 1 = = 2ad – 2bc 4ad – 5bc 8ab – 10ab 2(ad – bc ) –2ab



x



5bc – 4ad y –2ab

∵ Point of intersection is in fourth quadrant so x is positive and y is negative.

Also distance from axes is same So x = – y (∵ distance from x-axis is – y as y is negative)

(2, 3) ⎛ a  2 b  3⎞ M⎜ , ⎟ 2 ⎠ ⎝ 2

(a, b) B (Image of A)

After solving equation (i) & (ii) 2x – 3y + 4 = 0

...(i)

2x – 4y + 6 = 0

...(ii)

x = 1 and y = 2 Slope of AB × Slope of MN = – 1

b3 2 b3  2  1 a  2 a  2 1 2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

76

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

(y – 3)(y – 1) = –(x – 2)x – 4y + 3 =

A (2, –6)

+ 2x

– 2x – 4y + 3 = 0

Circle of radius =

8

+

y2

For k = 2

=

x2

–x2

2

E

m

y2

115. Answer (2)

(5, 2) B

Point of intersection of sides

D

D

C M (–1, –2)

m= –2 C (–2, 2)

m=0 Equation of AD, x=2

...(i)

Also equation of BE,

A

y 2 

B

(1, 2)

1 ( x  5) 2

x–y+1=0

2y  4  x  5

and 7x – y – 5 = 0

x  2y  1  0

 x = 1, y = 2 Slope of AM =

Solving (i) & (ii), 2y = 1

4 =2 2

y

1  Equation of BD : y + 2 = − ( x + 1) 2  x + 2y + 5 = 0 Solving x +2y + 5 = 0 and 7x – y – 5 = 0 x=

...(ii)

⎛1 8⎞ 1 8 ,y= −  ⎜⎝ , − ⎟⎠ 3 3 3 3

⎛ 1⎞ Orthocentre is ⎜ 2, ⎟ ⎝ 2⎠ 117. Answer (3) x y  1 a b (i) passes through the fixed point (2, 3)

Let the equation of line be



116. Answer (3) k 3 k 1 1 5 k 1  28 Area = 2 k 2 1

1 2

2 3  1 a b

...(i)

...(ii)

P(a, 0), Q(0, b), O(0, 0), Let R(h, k),

k  5 4k 0 5  k k  2 0   56 k 2 1

(k 2  7k  10)  4k 2  20k   56 5k 2  13k  10   56 5k 2  13k  46  0

5k 2  13k  46  0 k =

13  169  920 10

= 2, –4.6 reject

5K 2  13K  66  0

⎛h k ⎞ Midpoint of OR is ⎜ , ⎟ ⎝2 2⎠ ⎛a b⎞ Midpoint of PQ is ⎜ , ⎟ ⇒ h  a, k  b ... (iii) ⎝2 2⎠

From (ii) & (iii), 2 3  1 h k

 locus of R(h, k)

2 3  1 x y

 3x + 2y = xy

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

 k = 2

118. Answer (1) x2

(x2

y2

y2

+ + 3x + 7y + 2p – 5 + + + 2x + 2y – p 2 ) = 0,   –1 passes through point of intersection of given circles. Since it passes through (1, 1), hence 7 – 2p + (6 – p2) = 0  7 – 2p + 6 – p2 = 0 If

 = –1, then 7 – 2p – 6 + p2 = 0 p2 – 2p + 1 = 0 p=1

 The circle is (x –3)2 + (y + 2)2 = 4 Clearly the point (5, –2) lies on it. 123. Answer (1)

x2 y 2  1 16 9 9 = 16 (1 – e2)

e2 

7 16

e

7 4

∵  –1 hence p  1  All values of p are possible except p = 1 119. Answer (2) Centre  (2, 4)

r2 = 4 + 16 + 5 = 25

Distance of (2, 4) from 3x – 4y = m must be less than radius 

77

| 6  16  m | 5 5

foci  (  7, 0) Equation of required circle is (x – 0)2 + (y – 3)2 = 7 + 9  x2 + y2 – 6y – 7 = 0 124. Answer (2)

 –25 < 10 + m < 25

C

 –35 < m < 15 120. Answer (4)

(0, y)

(0, 1)

(1, 1)

T ⎛ 1 1⎞ ⎜ , ⎟ ⎝ 2 2⎠

(1, 0)

C  ( x  1)2  ( y  1)2  1 Radius of T = |y|

Equation of a circle is 

(x – 0) (x – 1) + (y – 1) (y – 0) = 0

T touches C externally

x2 + y2 – x – y = 0

(0 – 1)2 + (y – 1)2 = (1 + |y|)2

121. Answer (4)

 1 + y2 + 1 – 2y = 1 + y2 + 2|y|

122. Answer (3)

If y > 0,

Let the circle be (x – 3)2 + (y + k)2 = k 2

y2 + 2 – 2y = y2 + 1 + 2y  4y = 1  y=

1 4

If y < 0, (3, –k)

y2 + 2 – 2y = y2 + 1 – 2y  1 = 2 (Not possible)

It passes through (1, –2) 4 + (4 + k2 –4k) = k2



y

1 4

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

78

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

125. Answer (3)

128. Answer (2)

y

x2 + y2 – 4x – 6y – 12 = 0

P

22  32  12  5

C1(center) = (2, 3), r =

x2 + y2 + 6x + 18y + 26 = 0

 64  8

x

O

C2(center) (– 3, –9), r  9  81  26

x 2  ( y  4)

C1C2 = 13, C1C2 = r1 + r2

⎛t t2 Let a point on the parabola P ⎜⎜ , 4  4 ⎝2

Number of common tangent is 3. 126. Answer (3)

⎞ ⎟⎟ ⎠

Equation of normal at P is

k

6 (4, 4)

y

(h1 k)

(r = k)

Radius =

x axis

16  16  4  6



t2 1⎛ t⎞ 4  ⎜x  ⎟ 4 t⎝ 2⎠

x  ty 

t3 7  t 0 4 2

It passes through centre of circle, say (0, k)

(6 + k)2 = (h – 4)2 + (k – 4)2

tk 

Replace h  x, k  y (y + 6)2 – (y – 4)2 = x2 – 8x + 16 (2y + 2) (10) = x2 – 8x + 16 20y + 20 = x2 – 8x + 16

t3 7  t 0 4 2

t = 0, t 2  14  4k Radius = r 

x2 – 8x – 20y – 4 = 0

0k 2

(Length of perpendicular from (0, k) to y = x)

Centre lies on parabola 127. Answer (1)

 r 

(+2, –3) 50

...(i)

C1 5

k 2

A

Equation of circle is x 2  ( y  k )2 

k2 2

It passes through point P

C2(–3, 2)

Eq. x2 + y2 – 4x + 6y – 12 = 0 C1; (2, –3), r1  4  9  12  5 C2 = (– 3, 2)

2

⎞ t2 ⎛ t2 k2  ⎜⎜ 4   k ⎟⎟  4 ⎝ 4 2 ⎠

t 4  t 2 (8k  28)  8k 2  128k  256  0 For t = 0 

k 2  16k  32  0

k 84 2

C1C2  52  52  50 2

...(ii)

2

Then, C2 A  5  ( 50)  75  5 3



r

k 2

 4( 2  1)

(discarding 4( 2  1) ) ...(iii)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

∵ Line (i) touches the circle

For t   14  4k 2

2

(14  4k )  (14  4k )(8k  28)  8k  128k  256  0



2k 2  4k  15  0

k

2  34 2



r

k 2



2(–8) – (–6)  5 4 1

 100 – c

5  100 – c

 c = 95 131. Answer (1) 17  2 2

(Ignoring negative

...(iv)

A(2, 1) (0, 1)

value of r)

(2, 0)

From (iii) & (iv),

rmin 

79

ANSWERS AND SOLUTIONS

2

y x2 + =1 4 1

(4, 0)

17  2 2 x2 y 2  1 16 b 2

But from options, r  4( 2  1) y (0, 4)

Let the equation of the required ellipse is But the ellipse passes through (2, 1) x

(0, 0)



1 1  1 4 b2



1 3  b2 4

129. Answer (3) A (–3, 5) B (3, 3)

2  b 

A

B

Hence equation is

C

x2 y 2  3  1 16 4

So, AB  2 10 Now, as, AC 

So, radius =

 x2 + 12y2 = 16

3 AB 2

132. Answer (3) Locus of P from which two perpendicular tangents are drawn to the parabola is the directrix of the parabola

3 3 5 AB  10  3 4 2 2

130. Answer (4)

Hence locus is, x = –1

Equation of tangent at (1, 7) to curve x –1

4 3

x2

= y – 6 is

Co-ordinates of focus are (  2, 0)

1 ( y  7) – 6 2

2x – y + 5 = 0

133. Answer (4)

(  a e, 0) …(i)

Centre of circle = (–8, –6) Radius of circle  64  36 – c  100 – c

ae=2 e=2 a=1

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

80

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

b2 = a2(e2 – 1)

For hyperbola

y

b2 = 4 – 1 =3

( x 2  y 2 )2  a2 x 2  b2 y 2

x2 y 2  1 a2 b2



y2 = 4x …(1) x2 = –32y

⇒ 3x2 – y2 = 3

…(2)

m be slope of common tangent

134. Answer (1)

Equation of tangent (1)

135. Answer (4) 136. Answer (2)

1 m

y = mx +

5 2

…(i)

Equation of tangent (2) y = mx + 8m2 …(ii)

2

y  4 5x

(i) and (ii) are identical

Equation of tangent to parabola is

y  mx 

( x 2  y 2 )2  6 x 2  2y 2

138. Answer (3)

x2 y 2  1 1 3

x2  y 2 

...(ii)

Eliminating m, we get

Standard equation of hyperbola is



x m

5 m

…(i)

1 8

 m3 =

For circle, y  mx 

1 = 8m2 m

5 1  m2 2

…(ii)

(i) and (ii) are identical,

1 2

m

Alternative method :

5 5  (1  m 2 ) 2 2 m

Let tangent to y 2  4 x be

2 = m4 + m2

y  mx 

 m4 + m2 – 2 = 0

as this is also tangent to x 2  32y

 m = ±1 which satisfy given equation Statement (1) is true and statement (2) is true. 137. Answer (1) Here ellipse is

1 m

Solving x 2  32mx 

32 0 m

Since roots are equal x2 y 2   1 , where a2 = 6, b2 = 2 a2 b2

Now, equation of any variable tangent is

y  mx  a2m2  b2

...(i)

 D=0 ⇒ (32)2  4 

⇒ m3 

where m is slope of the tangent So, equation of perpendicular line drawn from centre to tangent is

⇒ m

32 0 m

4 32

1 2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

142. Answer (2)

139. Answer (4)

x2 y 2  1 Ellipse is 9 5

b e  a 2

2 3

We know that b 2  a 2 (e 2  1)

As, required area 

29 2a2   27 (2/3) e

b2 a

140. Answer (4) x2

2

= 8y

⎛ t2 ⎞ P  ⎜⎜ t , ⎟⎟ ⎝ 2⎠

 h = t, k 

e

y

2 3

2

1

Let P be (h, k)



 e2  1

4 e2 2  e2  1 , e  3 4

Let Q be (4t, 2t2) 

2b 2  8, 2b  ae a

Given

i.e., a2 = 9, b2 = 5 So, e 

81

O

t2 2

P

3

Q(4t, 2t )

143. Answer (1)

x

x = –4

2k  h2

 Locus of (h, k) is x2 = 2y. 141. Answer (4)

e

1 2

a  4 e

Let the normal of parabola be

a  4  e

a2 P(2m , –4m) 2

(0, –6)

C

y = mx – 4m – 2m3 (0, – 6) lies on it

Now, b2  a2 (1  e2 )  3 Equation to ellipse

x2 y 2  1 4 3

 – 6 = – 4m – 2m3

Equation of normal is

 m3 + 2m – 3 = 0

3 y x 1 2  4 x  2y  1  0  1 3 4 23

(m – 1)

(m2

+ m + 3) = 0

m=1  Point P: (2m2, –4m)

144. Answer (1)

= (2, – 4)  Equation of circle is (x – 2)2 + (y + 4)2 = (4 + 4)  x2 + y2 – 4x + 8y + 12 = 0

x2 y 2  1 a2 b2 a2  b2  4

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

82

ANSWERS AND SOLUTIONS

and

ARCHIVE - JEE (Main)

2 3  2 1 2 a b

2 4b

2



3 b2

4 2 i.e., tan   3 2 8 1 3

1

P(16, 16)

 b 3 2



 a2  1  x2 

C(4, 0)

A

B(24, 0)

y2 1 3 147. Answer (1)

 Tangent at P ( 2, 3) is

2x 

y 3

1

Clearly PQ is a chord of contact, i.e., equation of PQ is T  0  y = –12

Clearly it passes through (2 2, 3 3)

Solving with the curve, 4x2 – y2 = 36

145. Answer (2)



As, |a – 5| < 1 and |b – 5| < 1  4 < a, b < 6 and

(a  6)2 (b  5)2  1 9 4

i.e., P (3 5,  12); Q( 3 5,  12); T (0,3) Area of PQT is

Taking axes as a-axis and b-axis (a  6)2 (b  5)2  1 9 4

a=6 (6, 7)

b (3, 5)

(6, 5)



P Q (6, 6)

y T (0, 3)

1    6 5  15 2

x

= 45 5



Q

P

148. Answer (2)

(9, 5)

b=5

(4, 5) (6, 4) S R (6, 3) (0, 0)

x  3 5, y  12

a

The set A represents square PQRS inside set B representing ellipse and hence A  B.

p

q

~q

p  (~q)

~[p  (~q)]

p q

T

T

F

F

T

T

T

F

T

T

F

F

F

T

F

T

F

F

F

F

T

F

T

T

 Statement (1) is true and statement (2) is false.

146. Answer (2)

149. Answer (3)

y2 = 16x Tangent at P(16, 16) is 2y = x + 16

... (1)

150. Answer (1)

Normal at P(16, 16) is y = –2x + 48

... (2)

A T

B T

T F

F T

T T

T F

F F

T F

F

F

F

F

F

F

i.e., A is (–16, 0); B is (24, 0) Now, Centre of circle is (4, 0) Now, mPC  mPB = –2

4 3

A  B A  ( A  B) ( A  B ) A  ( A  B ) T T T T

(3) and (4) are not tautology according to above table.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

A B AB A (AB) T T T T T F F F F T T F F F T F

 A  ( A  B )  B

 A(AB) B T T T T

B (A (AB)) T T F T

is tautology according to above

table

= ( p  q )  ( p  q ) = ( p  q   p)  ( p  q  q ) = t  (p  q) = pq 156. Answer (4)

151. Answer (4)

p

q

152. Answer (2)

T T F

T F T

F

F

p q ~ p ~ q a = (p  q) b = (~ q  ~ p) T T F F T T T F F T F F F T

T

F

T

T

F

T

T

T

T

F

a  b (p  ~ q)  (~ p  q) T F T T

F F

T

F

83

p  q (~p  q) (~p  q)  q (p  q)  [(~p  q)  q] T F T

T T T

T F T

T T T

T

F

T

T

(a tautology)

157. Answer (1) ∼ ( p  q )  (∼ p  q )

By property, ( ∼ p  ∼ q )  ( ∼ p  q ) = ~p 158. Answer (2) A  B = A  C and A  B = A  C  B=C

153. Answer (3) ~(p  ~ q)

159. Answer (2)

p

q

~q

p  ~q

~ (p  ~q)

F

F

T

F

T

F

T

F

T

F

T

F

T

T

F

T

T

F

F

T

160. Answer (3) Statement (2) is true.

var x =

Clearly equivalent to p  q 154. Answer (4) ∼ ( ∼ s  ( ∼ r  s ))

=

2 (n + 1) (2n + 1) – (n + 1)2 3

=

(n  1) {4n + 2 – 3n – 3) 3

=

(n  1) (n – 1) 3

=

n2 – 1 3

( p ∼ q )  q  (∼ p  q )

=  ( p  q )  ( ∼ q  q )  ( ∼ p  q ) = ( p  q )  t   (∼ p  q )

2

4 n (n  1) (2n  1) – (n + 1)2 6n

= sr 155. Answer (2)

n

⎛ ∑ xi ⎞ –⎜ ⎟ ⎝ n ⎠

=

= s  (r  ∼ s ) = (s  r )  (s  ∼ s )

∑ xi2

 Statement (1) is false. Statement (2) is true.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

84

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

161. Answer (2)

x

1  (1  d )  (1  2d )  .....(1  100d ) 101

164. Answer (3) 165. Answer (4)

101  d (1  2  3  .....100) x 101

x

But standard deviation will remain unaffected as each data has been decreased by a constant.

With increase in data, mean will also increase by the same, hence variance will remain unchanged.

100  101 2 101

101  d 

166. Answer (4) Variance =

x  1  50d

xi2  ( x )2 N

Mean deviation =

|1 50d  1|  |1 50d  1 d | .....|1 50d  1 100d | 101

=

50d  49d  48d  .....d  0  d  2d  .....50d 101

2   

=

 2 = 833 167. Answer (4)

 d = 10.1

Mean = 16

162. Answer (2) 



(E(X))2

E(X2)

Sum = 16 × 16 = 256 =4

New sum = 256 – 16 + 3 + 4 + 5 = 252

=4+4=8 Mean =

∑ X i2  40 E(Y2) = 5 + 16 = 21

Var = 2 =

∑Yi 2  105

 

2

2

22  32  a 2  112 ⎛ 2  3  a  11 ⎞ ⎜ ⎟  3.5 4 4 ⎝ ⎠

∑ ( X i  Yi )  30 ∑ ( X i2  Yi 2 )  145

 Variance(combined data) =

x12  x n

Standard Deviation =

∑ X i  10, ∑Yi  20 

252 = 14 18

168. Answer (1)

E(Y2) – (E(Y))2 = 5



4(12  22  32  ....  502 )  (51)2 50

= 3434 – 2601

50  51  d  255 101

E(X2)

2

⎛ 50  51 101 ⎞ 2 = 4⎜ ⎟  (51) 50  6 ⎝ ⎠

⎛ 50  51⎞ 2d ⎜ ⎝ 2 ⎟⎠ = 101 

22  42  ...  1002 ⎛ 2  4  ...  100 ⎞ ⎜ ⎟ 50 50 ⎝ ⎠

2



145 55 11 9   10 10 2

163. Answer (3)

134  a2 ⎛ 16  a ⎞ ⎜ ⎟ = (3.5)2 4 ⎝ 4 ⎠ 4 (134 + a 2 ) 16



(16

2

+ a 2 + 32a ) 16

= (3.5)2

Since weight of each fish is measured 2 gm lesser

536 + 4a2 – 256 – a2 – 32a = 196

 actual mean : 30 + 2 = 32

3a2 – 32a + 84 = 0

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

169. Answer (3)

Differentiating,

Standard deviation of xi – 5 is 9

∑ ( xi  5)2

i 1



9

⎛ 9 ⎞ ⎜ ∑ ( xi  5) ⎟ ⎜ i 1 ⎟ ⎜ ⎟ 9 ⎜ ⎟ ⎜ ⎟ ⎝ ⎠

2

2.x x .x x (1  loge x ) dy ⎡ ⎤ 2 ⎢  x x cosec 2 y  cot y .x x (1  log x ) ⎥  0 dx ⎣ ⎦

Put x = 1 and y = 2  2.

   5 1  2 As, standard deviation remains constant if observations are added/subtracted by a fixed quantity.

 2

dy  20  0 dx

dy  1 dx

174. Answer (3)

So,  of xi is 2

Given f(x) = (x – 1)2 + 1

170. Answer (3) R is not an equivalence relation because 0 R 1 but 1 R 0 , S is an equivalence relation.

 y = (x – 1)2 + 1  (x – 1)2 = y – 1



171. Answer (2)

We have, f(x) = (x +

1)2

– 1, x  – 1

 f(x) = 2 (x + 1)  0 for x  – 1  f(x) is one-one Since co-domain of the given function is not given, hence it can be considered as R, the set of reals and consequently R is not onto. Hence f is not bijective statement-2 is false. 1)2

Also

f(x) = (x +



Rf = [–1, )

– 1  –1 for x  – 1

x  1 y  1

 f–1(x) = 1  x  1 Statement-1 : f(x) = f–1(x)  (x – 1)2 + 1 = 1  x  1  (x – 1)4 = (x – 1)  (x – 1) ((x – 1)3 – 1) = 0 After solving  x = 1, 2  Statement-1 is true.

Clearly f(x) = f –1(x) at x = 0 and x = – 1.

Statement-2 :

Statement-1 is true.

f–1(x) = 1  x  1

172. Answer (2)

 Statement-2 is also true.

f(x) = x3 + 5x + 1 f (x) =

85

3x2

+5>0xR

Hence f(x) is monotonic increasing. Therefore it is one-one.

But statement-2 is a correct explanation of statement 1. 175. Answer (1) 176. Answer (3)

Also it onto on R

–3(x – [x])2 + 2[x – [x]) + a2 = 0

Hence it one-one and onto R.

3 {x}2 – 2{x} – a2 = 0

173. Answer (4)

∵ ( x x )2  2.x x cot y  1 ,  when x = 1, y =

 2

2 ⎛ ⎞ a  0, 3 ⎜ { x } 2  { x } ⎟  a2 3 ⎝ ⎠ 2

1⎞ 1 ⎛ a2  3 ⎜ { x }  ⎟  3⎠ 3 ⎝

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

86

ANSWERS AND SOLUTIONS

0  { x }  1and 

ARCHIVE - JEE (Main)

1 1 2  {x}   3 3 3

f(x) = f(–x) 

2

1⎞ 4 ⎛ 0  3 ⎜ {x}  ⎟  3 3 ⎝ ⎠ 

2 2 −x = − +x x x 4 =0 x

 2x −

2

1 1⎞ 1 ⎛  3 ⎜ {x}  ⎟   1 3 3⎠ 3 ⎝

 x= ± 2 179. Answer (2)

For non-integral solution 0 < a2 < 1 and a (–1, 0) (0, 1)

f (x) 

Alternative –3{x}2 + 2{x} + a2 = 0 Now,

–3{x}2

f ( x ) 

+ 2{x}

x 1 x2

(1  x 2 )  1  x  2 x 2 2

(1  x )



1 x2 (1  x 2 )2

f(x) changes sign in different intervals.  Not injective.

2/3

1

1

y

x 1 x2

yx 2  x  y  0 For y  0

to have no integral roots 0 < a2 < 1  a(–1, 0)  (0, 1) 177. Answer (2)

1 f '( x )   f (g ( x ))  x  f '(g ( x )) g '( x )  1 1  x5

g '( x ) 

1  1  (g ( x ))5 f '(g ( x ))

178. Answer (2)

For, y = 0 x = 0  Part of range ⎡ 1 1⎤  Range : ⎢  , ⎥ ⎣ 2 2⎦

 Surjective but not injective. 180. Answer (1) We have,

⎛ 1⎞ f ( x ) + 2f ⎜ ⎟ = 3 x ⎝x⎠ 3 ⎛ 1⎞  f ⎜⎝ ⎟⎠ + 2f ( x ) = x x

 3f(x) =

⎡ 1 1⎤ D  1  4 y 2  0 ⇒ y  ⎢  , ⎥  {0} ⎣ 2 2⎦

6 − 3x x

⎛2 ⎞  f(x) = ⎜⎝ − x ⎟⎠ x

f(–x) = −

2 +x x

f:RR

lim

x 

f (3 x ) 1 f (x)

⎛2 ⎞ f ⎜ x⎟ f (2 x ) f (2 x ) ⎝ 3 ⎠  . f (x) ⎛ 2 ⎞ f (x) f ⎜ x⎟ ⎝3 ⎠ ⎛x⎞ f⎜ ⎟ 1 f (2 x ) 3  . . ⎝ ⎠ ( ) f x 2 2 ⎛ ⎞ ⎛ x⎞ f ⎜ x⎟ f⎜ ⎟ ⎝3 ⎠ f ⎛ x⎞ ⎝ 3 ⎠ ⎜3⎟ ⎝ ⎠

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

f (2 x ) l x  f ( x )

Taking limit x and lim

 lim sin

(  sin2 x ) x2

 lim sin

(  sin2 x )  sin2 x  x2 (  sin2 x )

x 0

We find that,

1 1 l  1  1 l

x 0

2

181. Answer (2)

184. Answer (3)

f : R  (0, ) (f ( x ))2  9 x 5 | x 5|

2 sin2 x   3  cos x  x 2 =2  tan 4 x x  x x2  4x 4x lim

lim

⎛0⎞ For existance of limit above form must be ⎜ ⎟ ⎝0⎠ This is possible if and only if

lim f ( x )  3

185. Answer (2)



p = lim 1  tan2 x x 0

x 5

| x |⎞ ⎛ d ∵⎜ | x | x ⎟⎠ ⎝ dx

4f ( x ).f ( x ) | x  5 | lim | x 5| x 5 x 5 4f ( x ).f ( x ) Now R.H.L = lim x 5 0 x 5 1

L.H.L = lim x 5

4f ( x )f ( x ) 5  x 0 1

= e

lim 1 x 0 2

logp =

2 sin x  (3  cos x ) tan 4 x x 0 4x2  4x lim



2 4 2 4

183. Answer (2) sin(  cos2 x ) x 0 x2 lim

sin( (1– sin2 x ) x 0 x2

 lim

 lim sin x 0

(  –  sin2 x ) x2



1 2x

tan2 x

⎛ tan x ⎜⎜ x ⎝

⎞ ⎟⎟ ⎠

2

1

= e2

1 2

186. Answer (1) 1

⎡ (n  1)(n  2)(n  3)....(n  2n ) ⎤ n p  lim ⎢ ⎥ n. n. .....n n  ⎣ ⎦

1 2n ⎛nr ⎞ ∑ log ⎜⎝ n ⎟⎠ n  n r 1

log p  lim

182. Answer (4) 2

1

lim

= e x 0 2 x

Applying L' Hospital rule. 2.f ( x ).f ( x ) 1 | x 5| x 5 1 . 2 | x 5| x 5

[∵ sin(   )  sin ]

⎛ sin x ⎞  lim 1  ⎜ ⎟  x 0 ⎝ x ⎠

 l 2 = 1  l = 1.

lim

87

2

=

∫ log(1  x )dx

0

2

=

log(1  x )dx 02  ∫

0

1.x dx 1 x

⎡2 ⎛ 1 ⎞ ⎤ ⎢   2log3 1 ⎟ dx ⎥ ∫⎜ = ⎢⎣ 0 ⎝ 1  x ⎠ ⎦⎥ 2

= 2log3   x  log(1  x )0 = 2log3 – (2 – log3] logp = 3 log3 – 2

p  e3log32 

elog27 e

2



27 e2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

88

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

 gof is differentiable at x = 0.

187. Answer (1)

lim

cot x  cos x

 x 2

⎧ – 2 x cos x 2 ⎪ (gof) (x) = ⎨ 0 ⎪ 2 ⎩ 2 x cos x

3

(  2x )

 x t Put, 2 lim

= lim

8t 3

LHD = lim –

– 2 x cos x 2 x

RHD = lim 

2 x cos x 2 x

x0

sin t  2 sin2 8t

t 0

3

t 2

x0

=2

190. Answer (2) We have,

188. Answer (3)

f : ( 1, 1)  R

1 ⎡ 1⎤ 1 1  ⎢ ⎥  As x ⎣x⎦ x

f (0)  1

g(x) = 2[ f(2f(x) + 2)] × f (2f(x) + 2) × 2f (x)  g(0) = 2[ f(2 f(0) + 2)] × f  (2 f(0) + 2) × 2f (0)

⎞ 15 ⎛ r ⎞

15

= 2[f(0)] × f (0) × 2f (0)

r

∑ ⎜⎝ x  1⎟⎠  ∑ ⎜⎝ x ⎟⎠  ∑ x

r 1

r 1

f (0)  1

g(x) = [ f(2f(x) + 2)]2

2 ⎡2⎤ 2 1  ⎢ ⎥  x ⎣x⎦ x ⎛r

=–2

 (gof) is not twice differentiable at x = 2.

1 = . 16

15

x0

For second derivative,

tan t  sin t

t 0

x0 x0

= 2 × –1 × 1 × 2 × 1 = –4

r 1

191. Answer (1)

⎛ 15 ⎡ r ⎤ ⎞ 120  lim x ⎜ ∑ ⎢ ⎥ ⎟  120 ⎜ ⎟ x 0 ⎝ r 1 ⎣ x ⎦ ⎠

f (0) 

 Statement-1 is true.

⎛ ⎡ 1⎤ ⎡2⎤ ⎡ 15 ⎤ ⎞ ⇒ lim x ⎜ ⎢ ⎥  ⎢ ⎥  ......  ⎢ ⎥ ⎟  120  x x ⎣ x ⎦⎠ ⎝⎣ ⎦ ⎣ ⎦ x 0

f (x) 

189. Answer (2) f(x) = x |x| and g(x) = sin x ⎧ – sin x 2 ⎪ (gof) (x) = ⎨ 0 ⎪ 2 ⎩ sin x

ex ex   e x  e x  4 2 2

x0



For first derivative LHD = lim

x0

– sin x x

=

lim

x  0–

=0 RHD =

– x sin x 2 x2

0

0  f (x) 

x0

sin x 2 x  =0 x x

1 3/4

4



4

1  43/4 4

1 2 2

Equality holds if ex = 2e–x  e2x = 2. Since

lim 

1 ex ex   e x  e x 2 2

By AM – GM

x0 x0

2

1 3

f (c ) 

1 1  by intermediate value theorem 3 2 2 1 same c  R. 3

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

192. Answer (1)

89

197. Answer (1)

⎧ ⎛ 1⎞ ⎪ x sin ⎜ ⎟ , x  0 F(x)  ⎨ ⎝x⎠ ⎪ 0 , x 0 ⎩ Statement-1

⎛ 1⎞ lim F ( x )  lim x sin ⎜ ⎟  0 x 0 x 0 ⎝x⎠ Also, F(0) = 0 

ANSWERS AND SOLUTIONS

lim F ( x )  F (0)

⎪⎧k x  1 , 0  x  3 g( x )  ⎨ ⎪⎩ mx  2 , 3  x  5

R.H.D.

g (3  h )  g (3) h

lim

h 0

m(3  h )  2  2k h 0 h

= lim

x 0

 F(x) is countinuous at x = 0  F(x) is countinuous  x  R Statement-2

 lim

h 0

(3m  2k )  mh  2 m h

and 3m – 2k + 2 = 0 L.H.D.

f1(x) = x  It is continuous on R

⎧ ⎛ 1⎞ , x0 ⎪sin f2 ( x )  ⎨ ⎜⎝ x ⎟⎠ ⎪ 0 , x 0 ⎩ lim sin

x 0

1 does not exist x

 It is not countinuous at x = 0  f2(x) is discontinuous on R Thus statement-2 is false. 193. Answer (1) x 2f (a )  a 2f ( x ) ⎛ 0 ⎞ lim ⎜0⎟ x a x a ⎝ ⎠

k (3  h )  1  2k h 0 h lim

k [ 4  h  2] h 0 h lim

lim  k 

h 0

4h4 h( 4  h  2)

k  m and 3m – 2k + 2 = 0 4 m

2 8 and k  5 5 8 2 10   2 5 5 5

k m 

2 x f (a )  a2f ( x ) x a 1

Alternative Answer

= 2a f(a) – a2 f '(a) 194. Answer (3)

⎪⎧k x  1 , 0  x  3 g( x )  ⎨ ⎪⎩ mx  2 , 3  x  5

195. Answer (1)

g is constant at x = 3

196. Answer (2)

k 4  3m  2

Using, mean value theorem

f (c ) 

f (1)  f (0) 4 1 0

g (c ) 

g (1)  g (0) 2 1 0

so, f (c )  2g (c )

k 4

From above,

Applying L' hospital rule

lim



2k = 3m + 2

…(i)

k ⎛ ⎞ m Also ⎜ ⎟ ⎝ 2 x  1 ⎠ x 3 k m 4

k = 4 m

…(ii)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

90

ANSWERS AND SOLUTIONS

Now P(–1) < P(1)

8m=3m+2 m

ARCHIVE - JEE (Main)

 P(–1) cannot be minimum in [–1, 1] as minima in this interval is at x = 0.

2 8 ,k  5 5

Hence in [–1, 1] maxima is at x = 1

2 8 mk   2 5 5

Hence P(–1) is not minimum but P(1) is the maximum of P.

198. Answer (1)

202. Answer (4)

g ( x )  f (f ( x )) | log2  sin | log2  sin x ||

Let there be a point P(t2, t) on x = y2 Its distance from x – y + 1 = 0 is

g(x) = f(f(x)) = log2 – sin(log2 – sinx)

t2  t  1

g(x) = cos(log2 – sinx)x – cosx

2

g (0) = cos(log2) 199. Answer (4)

f ( x )  2 tan1(3 x x )

Min (t2 – t + 1) is

1⎞ ⎛ For x  ⎜ 0, ⎟ ⎝ 4⎠

3 4

Shortest distance = f ( x ) 

9 x

3 4 2



3 2 8

203. Answer (4)

1 9x3

We have,

g( x ) 

9

y x

1 9x3

200. Answer (1)

f ( x )  | x   | (e|x|  1)sin| x | x = , 0 are repeated roots and also continuous. Hence, 'f' is differentiable at all x. 201. Answer (1)

4 x2

dy 8  1 3 dx x The tangent is parallel to x-axis, hence



dy 0 dx  x3 = 8

 x=2 and y = 3 The equation of the tangent to the given curve at (2, 3) is

(0, d) –1

O

1

We have P(x) = x4 + ax3 + bx2 + cx + d

⎛ dy ⎞ y 3  ⎜ ( x  2)  0 ⎟ ⎝ dx ⎠(2, 3)  y=3 204. Answer (4)

P (x) = 4x3 + 3ax2 + 2bx + c P (0) = 0  c = 0 Also P (x) = 0 only at x = 0

2x + 3 k – 2x

P (x) is a cubic polynomial changing its sign from (–)ve to (+)ve and passing through O.  P (x) < 0  x < 0 P (x) > 0  x > 0 Hence the graph of P(x) is upward concave, where P (x) = 0

1

k+2 –1 k+21  k  –1

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

205. Answer (4)

210. Answer (4)

P is point of contact

Curve is x2 + 2xy – 3y2 = 0

P is mid point of AB.

dy 2y  dx – 2x

dy ⎡ dy ⎤ Differentiate wr.t. x, 2 x  2 ⎢ x  y ⎥  6y  0 dx ⎣ dx ⎦

(0, 2y)A

P

(2, 3)

(x, y)

dy y – dx x

B (2x, 0)

dy – dy  y x

⎛ dy ⎞ 1  ⎜ ⎟ ⎝ dx ⎠(1, 1) So equation of normal at (1, 1) is y – 1 = – 1 (x – 1)

ln y = – ln x + c

...(i)

(i) passes through (2, 3)

 y=2–x Solving it with the curve, we get x2 + 2x(2 – x) – 3(2 – x)2 = 0

ln3 = – ln2 + c c = ln 6

 –4x2 + 16x – 12 = 0

 Equation of curve is xy = 6

 x2 – 4x + 3 = 0  x = 1, 3

206. Answer (4)

So points of intersections are (1, 1) & (3, –1) i.e. normal cuts the curve again in fourth quadrant.

tan x is even function. f(x) = x

211. Answer (3)

lim f  x   1

Let f(x) = a0 + a1x + a2x2 + a3x3 + a4x4

x 0

f(0 + h)  f(0)

⎡ f (x) ⎤ Using lim ⎢1  2 ⎥  3 x 0 ⎣ x ⎦

and f(0 – h)  f(0)  x = 0 is point of local minima



 f(x) has local minima at x = 0 also, f (x) = 0 at x = 0 but statement 2 is not correct explanation of statement 1 207. Answer (2)



lim

x 0

lim

f (x) 2 x2

a0  a1x  a2 x 2  a3 x 3  a4 x 4 x2

x 0

2

So, a0 = 0, a1 = 0, a2 = 2

208. Answer (1)

i.e., f(x) = 2x2 + a3x3 + a4x4

209. Answer (1)

Now, f (x) = 4x + 3a3x2 + 4a4x3

2

f ( x )   log | x | x  x f ( x ) 

91

= x[4 + 3a3x + 4a4x2] Given, f (1) = 0 and f (2) = 0

  2x  1  0 at x = –1, 2 x



3a3 + 4a4 + 4 = 0

…(i)

  2  1  0    2  1

...(i)

and 6a3 + 16a4 + 4 = 0

  4  1  0 2

...(ii)

Solving, a4 

   8  2

6  3      2

1 2

…(ii)

1 , a = –2 2 3

i.e., f ( x )  2 x 2 – 2 x 3 

1 4 x 2

i.e., f (2)  0

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

92

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

212. Answer (2) Length of wire = 2

r

r

r 2 ⎛ 20  2r ⎞ ⎜ ⎟ 2⎝ r ⎠

A

r

⎛ 20r  2r 2 ⎞ 2 A⎜ ⎟  10r  r ⎝ ⎠ 2



r

A to be maximum

x Given

dA  10  2r  0 ⇒ r  5 dr

4x + 2r = 2

 2x + r = 1

...(i) d2A

2

⎛ 1 − πr ⎞ + πr 2 A = x2 + r2 = ⎜ ⎝ 2 ⎟⎠ 

Hence for r = 5, A is maximum

dA ⎛ 1 − πr ⎞ ⎛ π ⎞ − + 2πr = 2⎜ ⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠ dr

Now, 10 + ·5 = 20  = 2 (radian) 2   5 2  25 sq m 2

Area =

dA For max and min  =0 dr

215. Answer (4)

(1 – r) = 4r 1 = 4r + r

 2  0

dr 2

...(ii)

from (i) and (ii) 2x + r = 4r + r

y2 = 6x ; slope of tangent at (x1, y1) is m1 

also 9 x 2  by 2  16; slope of tangent at (x1, y1) is

x = 2r 213. Answer (1)

m2 

y ( x  2)( x  3)  x  6

9x1 by1

As m1m2  1

At y-axis, x = 0, y = 1 Now, on differentiation.



dy ( x  2)( x  3)  y (2 x  5)  1 dx

27 x1

9  as y12  6 x1  2

216. Answer (4)

dy 6  1 dx 6

hx 

Now slope of normal = –1 Equation of normal y – 1 = –1(x – 0) ... (i)

⎛ 1 1⎞ Line (i) passes through ⎜ , ⎟ ⎝2 2⎠

214. Answer (2) 2r  r  20

A = area =

... (i)  r 2  r 2  2 2

 1

by12

 b

dy (6)  1( 5)  1 dx

y+x–1=0

3 y1

... (ii)

x2 

1

x2 x1 x



x



2 x1



2 x1

 x1

x

1  0, x

 x  1x  

x

1  0, x

 x  1x  





2 x1

x



x

 (2 2 , ]

x

 ( , 2 2]

Local minimum is 2 2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

221. Answer (1)

217. Answer (3) 218. Answer (3)

∫x 

5

2 x 12 + 5 x 9

∫ (x

 f ( x 3 )dx

1 3 x  f ( x 3 )  3 x 2dx 3∫

=





1 1   x 3 ∫ f ( x 3 )  3 x 2dx  ∫ 3 x 2  ∫ f ( x 3 )  3 x 2dx dx 3 3



1 3  x  ( x 3 )  ∫ x 2  ( x 3 )dx  C 3

dp(t ) 1  p(t )  200 dt 2

⎞ ⎜ 2 p(t )  200 ⎟ ⎝ ⎠

∫⎛

1 1⎞ ⎜⎝1 + 2 + 5 ⎟⎠ x x

3

1 1 + =t x2 x5



−dt 1 +C = 3 t 2t 2

 ∫ dt

=

⎛ p(t ) ⎞ 2log⎜  200⎟  t  cx ⎝ 2 ⎠ p(t )  200  2

dx

)

+ x3 + 1

5 ⎞ ⎛ 2 ⎜⎝ 3 + 6 ⎟⎠ dx x x

1+

= d ( p(t ))

2

5 ⎞ ⎛ 2 ⎜⎝ − 3 − 6 ⎟⎠ dx = dt x x

219. Answer (3)

∫⎛1

1 1 1⎞ ⎛ 2 ⎜1 + 2 + 5 ⎟ ⎝ x x ⎠

3

+C =

(

x10

)

2 x5 + x3 + 1

2

+C

222. Answer (1) In  ∫ tann xdx, n  1

t e2k

Using given condition p(t) = 400 – 300 et/2

I4  I6  ∫ (tan4 x  tan6 x )dx  ∫ tan4 x sec 2 xdx

220. Answer (4) dx I∫ 2 4 ∫ x ( x  1)3/4

Let tanx = t

dx 1 ⎞ ⎛ x 5 ⎜1  4 ⎟ x ⎠ ⎝

sec2x dx = dt

3/4

 ∫ t 4 dt

Let 1 

 4  t ⇒ 5 dx  dt x4 x



t5 C 5

So, I 

1 dt 1 3/ 4  t dt 4 ∫ t 3/ 4 4 ∫



1 tan5 x  C 5



93

1 ⎛ t 1/4 ⎞ ⎜ ⎟c 4 ⎜⎝ 1/ 4 ⎟⎠

a

1 ,b 0 5

223. Answer (2) 1/4

1 ⎞ ⎛ =  ⎜1  4 ⎟ x ⎠ ⎝

c

where c is an arbitrary constant. So, option (4) is right answer.

I∫

(sin

sin2 x.cos2 x dx 2



x  cos2 x ) (sin3 x  cos3 x )

2

Dividing the numerator and denominator by cos6x

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

94

ANSWERS AND SOLUTIONS

 I∫

ARCHIVE - JEE (Main) 1

tan2 x sec 2 x dx (1  tan3 x )2

2

= ∫ x.0dx  ∫ 0

1

=0

Let, tan3x = z  3tan2x.sec2xdx = dz 1 dz 1 I ∫ 2  C 3 z 3z

1 C = 3(1  tan3 x )

x2 2

=

1 1  2 4

=

3 4

2 1

xdx  2∫

 x2

1.5 2

xdx

1.5 2

227. Answer (1) 228. Answer (3)

224. Answer (3) 

P

0

2000

I  ∫ [cot x ]dx



dp 

25

∫ 100 – 12 0



x dx



I  ∫ [cot(   x )]dx

 P – 2000 = 2500 – 12 ×

0

 P = 3500



2I  ∫ ([cot x ]  [  cot x ])dx

229. Answer (4)

0

Statement (1)



2I  ∫ ( 1)dx   0

I

2 × 125 = 1500 3

I

 2

 3

dx tan x

∫ 1  6

225. Answer (2)  I

We have, p(x) = p(1 – x),  x  [0, 1], p(0) = 1, p(1) = 41

 3

∫ 1 

dx cot x

6

p(x) = –p(1 – x) + C  3

 1 = –41 + C

 2I  ∫ dx

 C = 42

 6

 p(x) + p(1 – x) = 42 1

1

0

0

 2I 

I  ∫ p( x )dx  ∫ p(1  x )dx 1

1

0

0

I

 2I  ∫ ( p( x )  p(1  x ))dx  ∫ 42.dx  42

y  ∫ t dt 0

x[ x 2 ]dx

1

= ∫ x[ x 2 ] dx  ∫ 0

Statement (1) is false, Statement (2) is true.

x

226. Answer (1) 1.5

 12

230. Answer (1)

 I = 21

∫0

 6

1

2

x[ x 2 ] dx  ∫

1.5 2

x[ x 2 ] dx

dy |x| 2 dx x = ±2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

Case-1, x = 2

4

2I  ∫ 1dx

2

y  ∫ t dt  2

2

0

2I = 2

Equation of tangent is y – 2 = 2(x – 2) y x  1 2 1



3 4

∫

When x = –2 2

∫ 0

I=1 233. Answer (1)

x-intercept = 1

y

4

2

⎡ t2 ⎤ t dt  ⎢  ⎥ = –2 ⎣⎢ 2 ⎦⎥ 0

1 dx  x 2 2cos2 2 dx

 x-intercepts = ± 1

 tan

231. Answer (2)

0



 /3

∫ 0

x 1 ⎡ ⎤ ⎢sin 2  2 ⎥ ⎢ ⎥ ⎢⇒ x    x   ⎥ ⎢ 2 6 3⎥ ⎢ ⎥ x 5 5   ⎢  ⎥ x 6 3 ⎦⎥ ⎣⎢ 2

x  1 dx 2



x⎞ ⎛ ⎜ 1  2sin 2 ⎟ dx  ∫ ⎝ ⎠  /3  /3

x⎤ ⎡  ⎢ x  4cos ⎥ 2 ⎦0 ⎣

x ⎛ ⎞ ⎜ 2 sin 2  1⎟ dx ⎝ ⎠ 

x ⎡ ⎤  ⎢ 4 cos  x ⎥ 2 ⎣ ⎦  /3

⎛  3 3 ⎞  4  4  ⎜0    4  ⎟ ⎜ 3 2 2 3 ⎟⎠ ⎝  = 4 34 3

3 tan  8

4

log x 2 dx 2 2 2 log x  log(36 – 12 x  x )

4

log(6 – x )2 dx I∫ 2 2 2 log x  log(6 – x )

3 4  3 1  cos 4 1  cos

2 1 2 1



2 1 1

⎤ ⎥  2  1⎥ 2 1 ⎥ ⎥⎦

2 1

 ( 2  1)  ( 2  1) 2 234. Answer (4)

I

 2



  2

sin2 xdx

... (i)

1  2x

Also, I 

 2



2 x sin2 xdx 1  2x

  2

232. Answer (3) I∫

4

⎡  1  cos ⎢  4 ⎢ tan    8 ⎢ 1  cos ⎢⎣ 4

x x 1  4 sin  4 sin dx 2 2



x dx 2

3   tan 8 8

2

 ∫ 2sin

2

4

Hence, here x-intercept is –1

0

∫ sec

3

 y = 2x + 2



3 4

x⎤4 ⎡ tan ⎥ 1⎢ 2  ⎢ ⎥ 2⎢ 1 ⎥ ⎣ 2 ⎦

y + 2 = 2(x + y)



95

... (ii)

Adding (i) and (ii)

2I 

 2

2

∫ sin

xdx

  2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

96

ANSWERS AND SOLUTIONS  2

 2

0

0

ARCHIVE - JEE (Main)

237. Answer (4) The area loaded by the curves y2 = 4x and x2 = 4y

2I  2 ∫ sin2 xdx ⇒ I  ∫ sin2 xdx ... (iii)

Y

2

x = 4y

 2

I  ∫ cos2 xdx

(1, 1)

... (iv)

0

 2

2I  ∫ dx  0

X

(0, 0)

Adding (iii) & (iv)

  ⇒I  2 4

2

y = 4x

1 ⎛ x2 ⎞ A  ∫ ⎜⎜ 2 x  ⎟ dx 4 ⎟⎠ 0⎝

235. Answer (2) The equation of tangent at (2, 3) to the given parabola is x = 2y – 4



16 square units. 3

238. Answer (1)

(2, 3)

239. Answer (1)

(9, 3) ( –4, 0) 2

(y – 2) = (x – 1) Required area =

3

∫0

(3, 0)

{( y  2)2  1  2 y  4 }dy

9

3

⎡ ( y  2)3 ⎤  y 2  5y ⎥ = ⎢ 3 ⎣⎢ ⎦⎥ 0 1 8  9  15  = 3 3

= 9 sq. units.

Required area  ∫ x dx  0

 18 – 9  9 240. Answer (4)

I=

236. Answer (1)

O

 2

3 2



1 63 2



1⎫ ⎧ ⎛⎜ x  1 ⎞⎟ 1 ⎞ x ⎪ ⎪ ⎝ x⎠ ⎛  x ⎜ 1  2 ⎟ e x ⎬ dx ⎨e x ⎠ ⎝ ⎪⎩ ⎪⎭

= x.e As



x

1 x

c

( xf ( x )  f ( x ))dx  xf ( x )  c

241. Answer (3) Required area



 /4



(cos x  sin x )dx 

0

5  /4



(sin x  cos x )dx

 /4



3  /2



(cos x  sin x )dx

2

2

x +y =1

5  /4

 (4 2  2) sq. units

Shaded area

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

243. Answer (1)

1

(1)2   2∫ (1  x ) dx 2 0 

97

ANSWERS AND SOLUTIONS

 2(1  x )3/2  ( 1) 2 3/2



 4  (0  ( 1)) 2 3



 4  2 3

(2, 2)

1

0

(2, 0)

2

Area =

242. Answer (4)

y=1

1

π ⋅ 22 − ∫ 2 xdx 4 0

y=1 = π− 2⋅

1 2

= π−

2 32 x 3

2

0

8 3

244. Answer (3) y

y2

After solving y = 4x – 1 and

y  4

= 2x ) ,2 (1

2

y 1 2

(0, 1)

x

2y2 – y – 1 = 0

1 y  1, 2

1 1 8 1 3 y  4 4 1

1

y2 ⎛ y  1⎞ A ∫ ⎜ dy  ∫ dy ⎟ 4 ⎠ 2 1/2 ⎝ 1/2 1

1

⎤ 1 ⎡y2 1 ⎡y3 ⎤  ⎢  y⎥  ⎢ ⎥ 4 ⎣⎢ 2 ⎥⎦ 1/2 2 ⎣⎢ 3 ⎦⎥ 1/2





1 ⎡ 4  8  1  4 ⎤ 1 ⎡ 8  1⎤ ⎥  2 ⎢ 24 ⎥ 4 ⎢⎣ 8 ⎦ ⎣ ⎦ 1 ⎡15 ⎤ 9  4 ⎢⎣ 8 ⎥⎦ 48

=

15 6  32 32



9 32

O

(2, 1)

x=1 x=2

x+

x y=

3

x=0 y

Area of shaded region 1 2 ⎛ ⎛ x2 ⎞ x2 ⎞  ∫ ⎜ x  1 ⎟ dx  ∫ ⎜ (3  x )  ⎟ dx ⎝ 4 ⎠ ⎝ 4 ⎠ 0 1



5 sq. unit 2

245. Answer (1) 18 x 2  9x  2  0 (6 x  )(3 x  )  0    x , 6 3    ,  6 3

y  (gof )( x )  cos x

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

98

ANSWERS AND SOLUTIONS

Area =

=

=

 3  cos x dx 6



 sin x

 3  6

3 1  2 2 1 2



ARCHIVE - JEE (Main) 1

 I.F. = e



1 y



Put –

246. Answer (3) Put e c2  k Then y = c1.kx  loge y = loge c1 + x loge k 



= ∫e

1 y





which is linear in z

1 dy  dt y2



t t = – te – e  c





1 1 y   2 ( y )2  0 y y

dz 1   tan x  z   sec x, z  dx y

1 dy y3



= e

1 dy 1  tan x   sec x y 2 dx y

1 y

t = – ∫ e . t dt

t t = e – te  c

The given differential equation can be put in the form



1 t y



1 y

1



1 –y e c y 1

 x = 1

247. Answer (1)





1 y   loge k y

 yy = (y )2

= e

The required solution is x. e

3  1 sq. units

∫ y 2 dy

1  ce y y

Put x = 1, y = 1 1 = 1 + 1 + ce  ce = – 1

1 e

 c=–

1

1 ey  x = 1 – y e

249. Answer (4) tan x dx I.F  e ∫  eln sec x  sec x

The solution is z.sec x  ∫ sec 2 xdx  tan x  c

where c is a constant of integration

⇒ sec x  y  tan x  c  248. Answer (1) dy y3  The given diff. equation reduces to du 1 – xy



dx 1 – xy 1 x   3 – 2 dy y3 y y



dx x 1   dy y 2 y 3

250. Answer (3)* It is best option. Theoretically question is wrong, because initial condition is not given. x log x

dy + y = 2x logx dx

If x = 1 then y = 0

dy y  2 dx x log x 1

I.F.  e

∫ x log x dx

 eloglog x  log x

Solution is y  log x  ∫ 2log x dx  c y log x  2( x log x  x )  c

x = 1, y = 0 Then, c = 2, y(e) = 2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

251. Answer (3) ydx – xdy = 

ANSWERS AND SOLUTIONS

99

253. Answer (3) –y2xdx

ydx  xdy y2

  xdx

⎛x⎞  d ⎜ ⎟   xdx ⎝y⎠

sin x

dy  y cos x  4 x , x  (0, ) dx

dy 4x  y cot x  dx sin x



I.F.  e ∫

cot x dx

 sin x

 Solution is given by

On integrating both sides 2

x x  c y 2

y sin x 

y·sinx = 2x2 + c

it passes through (1, –1)  1 

1 1 c ⇒ c  2 2

x x2 1   So, y 2 2 

y

c–

2 2

 Equation is y sin x  2 x 2 –

2 2

when x 

when x 

2 x

⎛ 1⎞ 4 i.e., f ⎜  ⎟  x 1 ⎝ 2⎠ 5 2

252. Answer (4) (2  sin x )

dy  ( y  1)cos x  0 dx



ln| y  1|  ln(2  sin x )  ln C ( y  1)(2  sin x )  C

Put x = 0, y = 1 (1  1)  2  C  C = 4

Now, ( y  1)(2  sin x )  4 For, x 

 2

( y  1)(2  1)  4 y 1 y

4 3

4 1 1 3 3

y–

 ,y=0  2

 1 2  2 – then y ·  2· 6 2 36 2

8 2 9

254. Answer (2) Direction ratios are a = 6, b = –3 and c = 2 Then direction cosines are

6

⎛⎞ y (0)  1, y ⎜ ⎟  ? ⎝2⎠ 1 cos x dy  dx  0 2  sin x y 1

4x

∫ sin x ·sin x dx

36  9  4 =

,

3 36  9  4

,

2 36  9  4

6 3 2 , , 7 7 7

255. Answer (4)          [3u pv pw ]  [ pv w qu ]  [2w qv qu ]          = 3p2 [u .(v  w )]  pq[v .(w  u )]  2q 2 [w .(v  u )]     (3 p2  pq  2q 2 )[u .(v  w )]  0    But u .(v  w )  0  3p2 – pq + 2q2 = 0  p=q=0 256. Answer (1) We have     ab c  0       ⇒ a ab  ac  0



          ⇒ a .b  a  a.a  b  a  c  0

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ANSWERS AND SOLUTIONS

 2 i  2 j  4k  ⇒ b  i  j  2k 257. Answer (1) We have   a.b  2  4  2  0   a . c    1  2  0   b . c  2  4    0

C 4k

 3 j  3k  2i  j  k

262. Answer (3)    AB + AC AD = 2

2j +

     ⇒ 3a  2b  a  c  0       ⇒ 2 b  3a  a  c ; a  c  2i  j  k

ARCHIVE - JEE (Main)

A

=

(, ) = (–3, 2) 258. Answer (1)

   c  (a  3b )    b  2c  a     b  2(a  3b )  a

  1  6  b   2 –   a  0 6 + 1 = 0, 2 = 

 3iˆ + 4kˆ  +  5iˆ

 | AD | =



16 + 1+ 16 =

33

263. Answer (3) l+m+n=0 l2 = m2 + n2 Now, (–m – n)2 = m2 + n2  mn = 0 m = 0 or n = 0 If n = 0

If m = 0 then l = –n l2

+

m2

+

then l = –m

n2

=1

1

     1  Now, c   (a  3b )  6c  a  3b  0 6

i.e. (l1, m1, n1)

2

1 ⎞ ⎛ 1 , 0, = ⎜ ⎟ 2 2⎠ ⎝

259. Answer (2) Given vectors piˆ  ˆj  kˆ, iˆ  qjˆ  kˆ , iˆ  ˆj  rkˆ to be coplanar

l2 + m2 + n2 = 1  2m2 = 1

Gives  n

 m2 

1 2

1

 m Let m 

l 

p 1 1 1 q 1 0 1 1 r

2 1 2

1 2

n=0 (l2, m2, n2) ⎛ 1 1 ⎞ , ,0 ⎟ = ⎜ 2 2 ⎠ ⎝

p (qr – 1) – 1 (r – 1) + (1 – q) = 0 pqr – p – r + 1 – q + 1 = 0 

cos  

260. Answer (4) 261. Answer (1)



2

1 1  ,  6 3

pqr – p – q – r = – 2

– 2ˆj + 4kˆ

= 4iˆ – ˆj + 4kˆ

and 2 – 4 + 4 +  = 0  = –3

B

3i + 4k

Thus  = 1 – 2  3 = 6,  = 2

D

5i –

100



1 2

 3

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

264. Answer (2)

268. Answer (1)

    Clearly, u  (a  (a  b ))

L.H.S.

    = (a  b )  [(b  c )  (c  a )]

       u  ((a . b )a  | a |2 b )

          = (a  b )  [(b  c  a )c – (b  c  c )a]    = (a  b )  [[b c a ]c ]

    u  (2a  14b )  2 (2iˆ  3 jˆ  kˆ )  7( jˆ  kˆ )



   [∵ b  c . c  0]

= [a b c ]  (a  b  c )  [a b c ]

  as, u  b  24

      [a  b b  c c  a ]  [a b c ]2

 4(iˆ  2 jˆ  4kˆ )  ( jˆ  kˆ )  24

So  = 1

  = –1

265. Answer (1)

 So, u  4(iˆ  2 jˆ  4kˆ )

      1    (a  c ) b  ( b  c ) a  | b | | c | a 3 

  1    (b  c )  | b | | c | 3



cos   



sin  

  | u |2  336 269. Answer (1) The point (2, 1, –2) is on the plane x + 3y – z + =0

1 3

2 + 3 + 2 +  = 0

Hence

2 2 3

2 +  = –5 Also

266. Answer (3)

(

  

  

) = (aic ) b − (aib) c

=

3 – 15 – 2 = 0

3   b + c and 2

(

)

2 = –12  = –6 Put  = –6 in (i)

  3 a⋅b = − 2  cos = −

... (i)

1(3) + 3(–5) + –(2) = 0

after comparing

 =



  u  2 (2iˆ  4 ˆj  8kˆ )

2

   a× b×c

101

 = 12 – 5 = 7  (, )  (–6, 7)

3 2

270. Answer (3) cos245° + cos2120° + cos2 = 1

5π 6

267. Answer (1)    | (a  b )  c |  3

  a  b  2iˆ  2 ˆj  kˆ

   ⇒ | a  b | | c | sin 30  3  ⇒ |c | 2

  |c a | 3

    ⇒ | c |2  | a |2 2(a  c )  9   932 a c  2 2

   |a |  3  ab

1 1   cos2   1 2 4  cos2  

cos   

1 4

1 ⇒   60o or 120o 2

271. Answer (1) The image of the point (3, 1, 6) w.r.t. the plane x – y + z = 5 is x  3 y  1 z  6 2(3  1  6  5)    1 1 1 1 1 1

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

102

ANSWERS AND SOLUTIONS



x  3 y 1 z  6    2 1 1 1

 x=3–2=1

274. Answer (3) Any point on a line parallel to the given line x = y = z and passing through (1, – 5, 9) is ( + 1,  – 5,  + 9)

y=1+2=3

It lies on given plane

z=6–2=4 which shows that statement-1 is true. We observe that the line segment joining the points A(3, 1, 6) and B(1, 3, 4) has direction ratios 2, –2, 2 which one proportional to 1, –1, 1 the direction ratios of the normal to the plane. Hence statement2 is true. 272. Answer (3)

 ( + 1) – ( – 5) + (+ 9) = 5  + 15 = 5  = – 10 Point is (– 9, – 15, – 1)

102  102  102 = 10 3

Required distance = 275. Answer (4)

Maximum number of triangle = 10C3 – 6C3 =

ARCHIVE - JEE (Main)

276. Answer (2) 277. Answer (3)

10  9  8 6  5  4  0 32

5 8 7  units Distance between the planes  2 3 2

= 100 273. Answer (1)

278. Answer (3)

Let co-ordinates of Q be

P(3,–1, 11)

Q R x = y – 2= z – 3 = t 4 3 2 x = 2t y = 2 + 3t

1

1

–k

1 =0 Given lines are coplanar if k 2 1 –1 –1  1 (– 2 + 1) – 1 (– k – 1) – k (– k – 2) = 0 – 1 + k + 1 + k2 + 2k = 0  k = 0 or – 3  Exactly two values of k. 279. Answer (3)

z = 3 + 4t

A (1, 3, 4)

Direction ratios of PQ are (2t – 3, 3 + 3t, 4t – 8)

3iˆ + jˆ + kˆ

Direction ratios of . Q.R. are (2, 3, 4) PQ  QR  2(2t – 3) + 3(3 + 3t) + 4(4t – 8) = 0 29t – 29t = 0

P

 t=1

A

Co-ordinates of Q are

3iˆ + jˆ + 5kˆ

(a, b, c)

x = 2, y = 5, z = 7 The length of the perpendicular PQ

a 1 b  3 c  4    1 2 1

=

(3  2)2  ( 1  5)2  (11  7)2

=

12  62  4

 a = 2 + 1

=

53

c=4+

b=3–

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

 ⎞ ⎛ P  ⎜   1, 3  , 4  ⎟ 2 2⎠ ⎝ ⎞ ⎛ ⎞ ⎛ 2(  1)  ⎜ 3  ⎟  ⎜ 4  ⎟  3  0 2⎠ ⎝ 2⎠ ⎝ 2  2  3 +

  4 3 0 2 2

3 + 6 = 0   = – 2

ANSWERS AND SOLUTIONS

2l – m – 3 = 0

103

...(i)

(3, –2, –4) lies on the plane 3l – 2m + 4 = 9 3l – 2m = 5

...(ii)

Solving (i) and (ii) l = 1, m= –1 l2 + m2 = 2 283. Answer (1)

a = – 3, b = 5, c = 2 So the equation of the required line is

x 3 y 5 z2   3 1 5

(1, –5, 9) P

280. Answer (4)

x  2 y 1 z  2    3 4 12

P  3  2, 4  1, 12  2  Lies on plane x – y + z = 16

Q L: x = y = z Equation of line PQ:

Then,

An x point Q on the line PQ is ( + 1,  – 5.  + 9)

3  2  4  1  12  2  16

∵ Point Q lies on the plane : x – y + z = 5 (+ 1) – (– 5) + + 9 = 5

11  5  16  1

Distance =

P  5, 3, 14  16  9  144  169  13

281. Answer (3) Required plane is (2x – 5y + z – 3) + (x + y + 4z – 5) = 0 It is parallel to x + 3y + 6z = 1 

2   5   1  4   1 3 6

11 Solving  = 2  Required plane is

11 (x + y + 4z – 5) = 0 (2x – 5y + z – 3) – 2  x + 3y + 6z – 7 = 0

+ 10 = 0 = – 10 Point Q is (– 9, – 15, – 1) PQ =

(1 + 9)2 + ( −5 + 15)2 + (9 + 1)2 = 10 3

284. Answer (1) Let the plane be

a( x  1)  b( y  1)  c ( z  1)  0 It is perpendicular to the given lines a – 2b + 3c = 0 2a – b – c = 0 Solving, a : b : c = 5 : 7 : 3  The plane is 5x + 7y + 3z + 5 = 0 Distance of (1, 3, –7) from this plane =



 2i  j  3k    l i  m j  k   0

83

285. Answer (1)

282. Answer (3) Line is perpendicular to normal of plane

10

Equation of PQ,

x 1 y  2 z  3   1 4 5

Let M be (  1, 4  2, 5  3)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

104

ANSWERS AND SOLUTIONS

ARCHIVE - JEE (Main)

Length of projection of the line segment on the plane is AC

P

AC 2  AB 2  BC 2  2 

M

AC 2 

Q

4 2  3 3

2 3

288. Answer (4)

As it lies on 2x + 3y – 4z + 22 = 0

Restricting sample space as S = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 20, 30, 40}.

=1 For Q,  = 2 Distance PQ  2 12  42  52  2 42

 P(sum of digits is 8) =

286. Answer (2)

L1 is parallel to

289. Answer (2)

iˆ jˆ kˆ 2 –2 3  iˆ  jˆ

Total number of cases = 9C3 = 84 Favourable cases = 3C1.4C1.2C1 = 24

1 –1 1 iˆ jˆ kˆ L2 is parallel to 1 2 –1  3iˆ – 5 jˆ – 7kˆ 3 –1 2

So, required plane is

1 3

5 7

y–

8 7

p

290. Answer (3) The outcomes 2, 8, 14, 20 is an AP with common difference 6. 291. Answer (2)

z

1 –5

0 0 –7

⎛ Ac  B c P ⎜⎜ C ⎝

3

1



 7x – 7y + 8z + 3 = 0 Now, perpendicular distance 

24 2  84 7

Statement-2 is false.

⎛5 8 ⎞ Also, L2 passes through ⎜ , , 0 ⎟ ⎝7 7 ⎠ x–

162

1 . 14



3 2

287. Answer (4)

B (4, –1, 3) n=i+j+k

⎞ P ( Ac  Bc  C ) ⎟⎟  P (C ) ⎠

P (C )  P (C  A)  P (C  B )  P ( A  B  C ) P (C )

Let A, B, C be pairwise independent events



P (C )  P (C ).P ( A)  P (C ).P (B )  0 P (C )

= 1 – P(A) – P(B)

(∵ P(C)  0)

= P(Ac ) – P(B)

C

A (5, –1, 4)

292. Answer (1) 293. Answer (3)

 Normal to the plane x + y + z = 7 is n  iˆ  ˆj  kˆ   AB  iˆ  kˆ ⇒ | AB |  AB  2    BC = Length of projection of AB on n  | AB  nˆ |





 iˆ  kˆ 

 iˆ  ˆj  kˆ   3

2 3

4

Required probability

⎛ 1⎞ ⎛ 2⎞ ⎛ 1⎞  5C4 ⎜ ⎟ ⎜ ⎟  5C5 ⎜ ⎟ ⎝3⎠ ⎝3⎠ ⎝3⎠  5 

5

1 2 1   81 3 35

10 1 11   35 35 35

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

ARCHIVE - JEE (Main)

ANSWERS AND SOLUTIONS

294. Answer (1)

P( A  B) 

1 1 5 ⇒ P ( A  B )  1–  6 6 6

3 2 , q 5 5

var(X) = n.p.q

1 1 3 ⇒ P ( A)  1–  4 4 4

P ( A)  ∵

 p

= 10 

6 12  25 5

298. Answer (1)

P ( A  B )  P ( A)  P (B ) – P ( A  B )

5 3 1   P (B ) – 6 4 4

P ( A )  P (B )  P ( A  B ) 

1 4

1 3

P (B )  P (C )  P (B  C ) 

1 4

P (C )  P ( A)  P ( A  C ) 

1 4

P (B ) 

∵ P(A)  P(B) so they are not equally likely. Also P(A) × P(B) =

3 1 1   4 3 4

P ( A)  P (B )  P (C )  P ( A  B )  P (B  C )

= P(A B) ∵

 P( A  C ) 

P ( A  B )  P ( A)  P (B ) so A & B are independent.

∵ P( A  B  C ) 

295. Answer (1)* Question is wrong but the best suitable option is (1). Required probability =

12

C3



P( A  B  C ) 

11

29 55 ⎛ 2 ⎞ = 3 ⎜⎝ 3 ⎟⎠ 312

P (E2 ) 

3 8

1 16 3 1 7   8 16 16

299. Answer (4) Total number of ways =

296. Answer (3) P (E1) 

105

11C 2

= 55

1 6

Favourable ways are

1 6

Probability =

(0, 4), (0, 8), (4, 8), (2, 6), (2, 10), (6, 10)

P(E1  E2) = P(A shows 4 and B shows 2) =

300. Answer (2) E1 : Event that first ball drawn is red.

1  P (E1 ).P (E2 ) 36

E2 : Event that first ball drawn is black. E : Event that second ball drawn is red.

So E1, E2 are independent Also as E1  E2  E3 = 

⎛E ⎞ ⎛ E ⎞ P (E )  P (E1 ).P ⎜ ⎟  P (E2 ).P ⎜ ⎟ ⎝ E1 ⎠ ⎝ E2 ⎠

So P(E1  E2  E3)  P(E1. P(E2). P(E3) So E1, E2, E3 are not independent. 297. Answer (4)



4 6 6 4    10 12 10 12



2 5

n = 10 p(Probability of drawing a green ball) =

6 55

15 25

   Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456