Am-sln-08(e)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Am-sln-08(e) as PDF for free.

More details

  • Words: 5,439
  • Pages: 9
120

Chapter 8 General Solutions of Trigonometric Equations

CHAPTER 8

8. 3 cos θ = 2 sin 2 θ − 3 3 cos θ = 2 − 2 cos 2 θ − 3

Exercise 8A (p.186)

2 cos 2 θ + 3 cos θ + 1 = 0 (2 cos θ + 1)(cos θ + 1) = 0 1 cos θ = − or cos θ = −1 2 2π θ = 2 nπ ± or θ = 2nπ ± π 3 where n is any integer.

1. cos θ = −1 for 0° ≤ θ ≤ 180° θ = 180° π π − 3 for − < θ < 2 2 2 − 3 tan θ = 12 θ = −0.14 (corr. to 2 d.p.)

2. 6 tan θ =

θ = nπ + ( −1) n 0.28 where n is any integer.

θ = nπ −

π 6

1 2

π 4 nπ n π θ= + ( −1) 3 12

3θ = nπ + ( −1) n

where n is any integer. π )= 3 4 π π 2θ − = nπ + 4 3 7π 2θ = nπ + 12 nπ 7π θ= + 2 24

6. tan(2θ −

where n is any integer. 7.

3 + 3 tan 2 θ = 4 tan θ 3 tan 2 θ − 4 tan + 3 = 0 (tan θ − 3 )( 3 tan θ − 1) = 0 1 3 π π or θ = nπ + θ = nπ + 3 6 where n is any integer.

tan θ = 3

where n is any integer. 5. sin 3θ =

3 sec 2 θ = 4 tan θ 3 (1 + tan 2 θ) = 4 tan θ

3. sin θ = 0.28

4. 3 tan θ = − 3 − 3 tan θ = 3

9.

2 cos 2 θ + 3 cos θ + 1 = 0 (2 cos θ + 1)(cos θ + 1) = 0 1 cos θ = − or cos θ = −1 2 2π θ = 2 nπ ± or θ = 2nπ ± π 3 where n is any integer.

or

tan θ =

10. 6 tan θ = 5 csc θ sin θ 5 = 6 cos θ sin θ 6 sin 2 θ = 5 cos θ 6 − 6 cos 2 θ = 5 cos θ 6 cos 2 θ + 5 cos θ − 6 = 0 (3 cos θ − 2)(2 cos θ + 3) = 0 2 3 cos θ = or cos θ = − (rejected) 3 2 θ = 2 nπ ± 0.84 (corr. to 2 d.p.) where n is any integer. 11. sin 5θ = cos 4θ π cos 4θ = cos( − 5θ) 2 π 4θ = 2 nπ ± ( − 5θ) 2 π 4θ = 2 nπ + ( − 5θ) 2 π 9θ = 2 nπ + 2 2 π θ = nπ + where n is any integer. 9 18 or π 4θ = 2 nπ − ( − 5θ) 2 π −θ = 2 nπ − 2 π θ = −2 nπ + 2

Chapter 8 General Solutions of Trigonometric Equations

Since the values of θ =

2 π nπ + include those 9 18

π , the general solution of the equation 2 2 π is θ = nπ + , where n is any integer. 9 18

θ = 2 nπ +

of −2 nπ +

12. tan 4θ = cot 3θ π tan 4θ = tan( − 3θ) 2 π 4θ = nπ + − 3θ 2 π 7θ = nπ + 2 1 π θ = nπ + 7 14

16.

1 (2 cos α ) cos θ − (2 sin α )sin θ = 1 2(cos θ cos α − sin θ sin α ) = 1 1 cos(θ + α ) = 2 π π θ + = 2 nπ ± 3 3 2π θ = 2nπ or θ = 2 nπ − 3

or

θ = 2 nπ ±

π 2

nπ π or θ = 2 nπ ± , where n is any integer. 3 2 tan θ + 3 cot θ = 5 sec θ 5 sin θ 3 cos θ + = cos θ sin θ cos θ sin 2 θ + 3 cos 2 θ = 5 sin θ

sin 2 θ + 3 − 3 sin 2 θ = 5 sin θ 2 sin 2 θ + 5 sin θ − 3 = 0 (2 sin θ − 1)(sin θ + 3) = 0 1 sin θ = or sin θ = −3 (rejected) 2 π θ = nπ + ( −1) n 6

17. sin 2 θ + 1 = 3 cos θ(sin θ + cos θ) 2 sin 2 θ + cos 2 θ = 3 sin θ cos θ + 3 cos 2 θ 2 tan 2 θ + 1 = 3 tan θ + 3

14. Let α be an acute angle such that tan α = 1 . Then 2

5π 12

where n is any integer.

where n is any integer.

2 cos α = 2 2 sin α = 2 π α= 4 The given equation becomes 2(sin θ + cos θ) = 2 sin θ + 2 cos θ = (2 sin α )sin θ + (2 cos α ) cos θ = 2(cos θ cos α + sin θ sin α ) =

15. sin 4θ + sin 2θ = 0 2 sin 3θ cos θ = 0 sin 3θ = 0 or cos θ = 0

θ=

13. Let α be an acute angle such that tan α = 3 . Then 2 cos α = 1 2 sin α = 3 2 π 3 α= 3 α The given equation becomes

or θ = 2 nπ +

where n is any integer.

3θ = nπ

where n is any integer.

π 12

121

2

2 tan 2 θ − 3 tan θ − 2 = 0 (2 tan θ + 1)(tan θ − 2) = 0 1 tan θ = − or tan θ = 2 2 θ = nπ − 0.46 (corr. to 2 d.p.) or θ = nπ + 1.11 (corr. to 2 d.p.) where n is any integer.

α 2

6 3 3 3 3 cos(θ − α ) = 2 π π θ − = 2 nπ ± 4 6

18. cos 2θ = 3 cos θ + 4 2 cos 2 θ − 1 = 3 cos θ + 4 2 cos 2 θ − 3 cos θ − 5 = 0 (2 cos θ − 5)(cos θ + 1) = 0 5 cos θ = (rejected) or cos θ = −1 2 θ = 2nπ ± π where n is any integer.

122

Chapter 8 General Solutions of Trigonometric Equations

19. tan 3θ + sec 3θ = 1 sin 3θ 1 + =1 cos 3θ cos 3θ sin 3θ + 1 = cos 3θ and cos 3θ ≠ 0 cos 3θ − sin 3θ = 1 π 2 cos(3θ + ) = 1 4 1 π cos(3θ + ) = 4 2 π π 3θ + = 2 nπ ± 4 4 π 3θ = 2 nπ or 3θ = 2 nπ − 2 π 2 2 θ = nπ − θ = nπ 3 6 3 The condition cos 3θ ≠ 0 means π 3θ ≠ 2 nπ ± 2 π 2 θ ≠ nπ ± 3 6 2 ∴ θ = nπ , where n is any integer. 3 20. sin 2θ = cos 2θ − sin 2 θ + 1 2 sin θ cos θ = 2 cos 2 θ − sin 2 θ 2 tan θ = 2 − tan 2 θ

When k = 2 n + 1 , π π + 2θ = (2 n + 1)π − − θ 6 4 2n + 1 5π θ= π− 3 36 π 2n + 1 5π π− ∴ θ = 2 nπ + or 12 3 36 where n is any integer.

π π ) + 3 sin(θ + ) = 2 4 4 π π π sin(θ − ) + 3 sin( − + θ) = 2 4 2 4

22. sin(θ −

1 π 3 π sin(θ − ) + cos(θ − ) = 1 2 4 2 4 1 2 3 2 Let r = ( ) + ( ) = 1 , 2 2 3 1 π r cos α = , r sin α = ,∴ α= 2 2 3 π π π π ∴ sin(θ − ) cos + cos(θ − )sin = 1 4 3 4 3 π π sin(θ − + ) = 1 4 3 5π ∴ θ = 2 nπ + where n is any integer. 12 ∴

tan 2 θ + 2 tan θ − 2 = 0 (tan θ + 1)2 = 3 tan θ + 1 = ± 3

tan θ = −1 + 3 or tan θ = −1 − 3 θ = nπ + 0.63 (corr. to 2 d.p.) or θ = nπ − 1.22 (corr. to 2 d.p.) where n is any integer. 21.

2 (cos θ + sin θ) = cos 2θ + 3 sin 2θ π π 2 [ 2 (sin cos θ + cos sin θ)] 4 4 π π = 2 sin cos 2θ + 2 cos sin 2θ)] 6 6 π π ∴ sin( + θ) = sin( + 2θ) 4 6 π π ∴ + 2θ = kπ + ( −1) k ( + θ) 6 4 where k is any integer.

When k = 2 n , π π + 2θ = 2 nπ + + θ 6 4 π θ = 2 nπ + 12 where n is any integer.

23. sin θ + sin 2θ + sin 3θ = 0 (sin 3θ + sin θ) + sin 2θ = 0 2 sin 2θ cos θ + sin 2θ = 0 sin 2θ(2 cos θ + 1) = 0 2 cos θ + 1 = 0 or sin 2θ = 0 1 cos θ = − or 2θ = nπ 2 2π nπ θ = 2 nπ ± or θ = , where n is any integer. 3 2 24. sin 11θ sin 4θ + sin 5θ sin 2θ = 0 1 1 (cos 7θ − cos 15θ) + (cos 3θ − cos 7θ) = 0 2 2 1 (cos 3θ − cos 15θ) = 0 2 sin 9θ sin 6θ = 0

sin 9θ = 0 or sin 6θ = 0 9θ = nπ or 6θ = nπ 1 1 θ = nπ or θ = nπ , where n is any integer. 9 6

Chapter 8 General Solutions of Trigonometric Equations

θ 3θ 25. 4 cos cos =1 2 2 1 4 ⋅ (cos 2θ + cos θ) = 1 2 1 cos 2θ + cos θ = 2 1 2 2 cos θ − 1 + cos θ − = 0 2 4 cos 2 θ + 2 cos θ − 3 = 0 cos θ = 0.651 39 or −1.151 (rejected) ∴

θ = 2 nπ ± 0.86 (corr. to 2 d.p.)

where n is any integer. 26. sin θ sin 7θ = sin 3θ sin 5θ cos 6θ − cos 8θ cos 2θ − cos 8θ = 2 2 ∴ cos 6θ = cos 2θ 6θ = 2 nπ ± 2θ for any integer n. nπ nπ θ= or θ = 2 4 nπ nπ Since the values of θ = include those of , 4 2 nπ the general solution of the equation is θ = , 4 where n is any integer.

29. (a) sin 4 x + cos 4 x = sin 4 x + 2 sin 2 x cos 2 x + cos 4 x − 2 sin 2 x cos 2 x 1 = (sin 2 x + cos 2 x )2 − sin 2 2 x 2 1 2 = 1 − sin 2 x 2 (b) 4(sin 4 x + cos 4 x ) − sin 2 x − 3 = 0 1 4(1 − sin 2 2 x ) − sin 2 x − 3 = 0 (by (a)) 2 2 sin 2 2 x + sin 2 x − 1 = 0 (sin 2 x + 1)(2 sin 2 x − 1) = 0 1 ∴ sin 2 x = −1 or sin 2 x = 2 π n π 2 x = nπ − ( −1) or 2 x = nπ + ( −1) n 2 6 nπ nπ n π n π ∴ x= − ( −1) or + ( −1) 2 4 2 12 where n is any integer. nπ π − ( −1) n , 2 4 let n = 2 m For x =

2 mπ π − ( −1)2 m 2 4 π = mπ − 4 let n = 2 m + 1 x=

π )=3 4 1 1 − tan θ + =3 tan θ 1 + tan θ 1 + tan θ + tan θ(1 − tan θ) = 3 tan θ(1 + tan θ)

27. cot θ + cot(θ +

(2 m + 1)π π − ( −1)2 m +1 2 4 (2 m + 1)π π = + 2 4 (2 m + 1)π π π = − + 2 4 2 π = ( m + 1)π − 4

x=

4 tan 2 θ + tan θ − 1 = 0 tan θ = 0.390 4 or tan θ = −0.640 4 θ = nπ + 0.37

or θ = nπ − 0.57

(corr. to 2 d.p.) (corr to 2 d.p.) where n is any integer.

π 4 π nπ π + ( −1) n ∴ x = nπ − or x = 4 2 12 where n is any integer.

28. sin 3 θ − cos3 θ = sin θ − cos θ



(sin θ − cos θ)(sin θ + sin cos θ + cos θ) = sin θ − cos θ (sin θ − cos θ)(1 + sin θ cos θ) = sin θ − cos θ (sin θ − cos θ)(1 + sin θ cos θ) − (sin θ − cos θ) = 0 (sin θ − cos θ)sin θ cos θ = 0 2

sin θ − cos θ = 0 tan θ = 1 π θ = nπ + 4

2

or or

sin θ cos θ = 0 sin 2θ = 0

or

2θ = nπ n θ= π 2 where n is any integer.

123

30. (a)

x = nπ −

1 [(sin x + cos x )2 − 1] 2 1 = (sin 2 x + 2 sin x cos x + cos 2 x − 1) 2 1 = (2 sin x cos x ) 2 = sin x cos x

124

Chapter 8 General Solutions of Trigonometric Equations

(b) Let t = sin x + cos x , ∴ The given equation becomes 1 t + (t 2 − 1) = 1 2 2 t + 2t − 3 = 0 t = 1 or t = −3 As sin x ≤ 1 and cos x ≤ 1, ∴

t = sin x + cos x = −3 is rejected.



sin x + cos x = 1 π π 1 sin x cos + cos x sin = 4 4 2 π 1 ∴ sin( x + ) = 4 2 π π x + = nπ + ( −1) n 4 4 π n ∴ x = nπ + [( −1) − 1] , where n is any 4 integer.

31. (a) tan θ tan(θ + α ) = k sin θ sin(θ + α ) ⋅ =k cos θ cos(θ + α ) sin θ(sin θ cos α + cos θ sin α ) = k cos θ(cos θ cos α − sin θ sin α ) sin θ cos α + sin θ cos θ sin α 2

= k cos 2 θ cos α − k sin θ cos θ sin α ( k + 1)sin θ cos θ sin α = ( k cos 2 θ − sin 2 θ) cos α k +1 sin 2θ sin α 2 cos 2θ + 1 1 − cos 2θ = [k ( )− ]cos α 2 2 ( k + 1)sin 2θ sin α = ( k cos 2θ + k − 1 + cos 2θ) cos α = [( k + 1) cos 2θ + ( k − 1)]cos α ∴ (1 − k ) cos α = ( k + 1)(cos 2θ cos α − sin 2θ sin α ) = ( k + 1) cos(2θ + α )

π , k = 2 into the result of (a), 3 π π ∴ 3 cos(2θ + ) = − cos 3 3 π 1 cos(2θ + ) = − 3 6 π 2θ + = 2 nπ ± 1.738 3 6n − 1 θ= π ± 0.87 (corr. to 2 d.p.) 6 where n is any integer.

(b) Substitute α =

Revision Exercise 8 (p.188) 1. sec 5θ + csc 2θ = 0 1 1 + =0 cos 5θ sin 2θ ∴ − sin 2θ = cos 5θ ∴

cos 5θ = sin( −2θ) = cos(

π + 2θ) 2

π + 2θ = 2 nπ ± 5θ , where n is any integer. 2 −2 nπ π 2 nπ π θ= + or θ = − 3 6 7 14 2 nπ π 2 nπ π + − ∴ θ= or θ = 3 6 7 14 2. 3 + sin 2 x − sin x = 6 cos x 3 + 2 sin x cos x − sin x = 6 cos x sin x (2 cos x − 1) + 3(1 − 2 cos x ) = 0 (2 cos x − 1)(sin x − 3) = 0 1 cos x = or sin x = 3 (rejected) 2 π x = 2 nπ ± , where n is any integer. 3 π π ) = tan( x + ) 12 12 π) π) sin( x − 12 sin( x + 12 3⋅ = π) π) cos( x − 12 cos( x + 12 π π π π 3 sin( x − ) cos( x + ) = sin( x + ) cos( x − ) 12 12 12 12 3 π 1 π (sin 2 x − sin ) = (sin 2 x + sin ) 2 6 2 6 sin 2 x = 1 π 2 x = 2 nπ + 2 π x = nπ + , where n is any integer. 4

3. 3 tan( x −

1 4. (a) 2 sin x cos( p − x ) = 2 ⋅ [sin p + sin(2 x − p)] 2 = sin(2 x − p) + sin p (b) sin x + 2 sin x cos( p − x ) − sin p = 0 ∴

sin x + sin(2 x − p) + sin p − sin p = 0



sin x + sin(2 x − p) = 0 sin(2 x − p) = sin( − x )

∴ ∴

2 x − p = nπ + ( −1) n ( − x ) [2 + ( −1) n ]x = p + nπ p + nπ x= 2 + ( −1) n

where n is any integer.

Chapter 8 General Solutions of Trigonometric Equations

5. sin x + sin 2 x + sin 3 x + sin 4 x + sin 5 x = 0 sin x + sin 5 x + sin 2 x + sin 4 x + sin 3 x = 0 2 sin 3 x cos 2 x + 2 sin 3 x cos x + sin 3 x = 0 sin 3 x (2 cos 2 x + 2 cos x + 1) = 0 or 4 cos 2 x − 2 + 2 cos x + 1 = 0 or 4 cos 2 x + 2 cos x − 1 = 0

9. (a) Let c = cos 2 x ,

cos x = 0.309 or cos x = −0.809 2π 4π or x = 2 nπ ± x = 2 nπ ± 5 5 where n is any integer. 6. No solution is provided for the H.K.C.E.E. question because of the copyright reasons. 7. (a) sin 2 x + sin 2 2 x + sin 2 3 x 1 − cos 2 x 1 − cos 4 x 1 − cos 6 x = + + 2 2 2 3 1 = − (cos 2 x + cos 4 x + cos 6 x ) 2 2 3 1 = − (2 cos 2 x cos 4 x + cos 4 x ) 2 2 3 1 = − cos 4 x (2 cos 2 x + 1) 2 2 3 (b) sin 2 x + sin 2 2 x + sin 2 3 x = 2 3 sin 2 x + sin 2 2 x + sin 2 3 x − = 0 2 1 − cos 4 x (2 cos 2 x + 1) = 0 2 cos 4 x (2 cos 2 x + 1) = 0 ∴

cos 4 x = 0

or cos 2 x = −

π or 2 nπ π or x= ± 2 8 for any integer n. 4 x = 2 nπ ±

sin θ(cos α − k sin α ) = cos θ( k cos α − sin α )

sin θ(1 − k tan α ) = cos θ( k − tan α ) k − tan α tan θ = 1 − k tan α

sin 2 x =

1 − c 4 1 + c 4 17 2 ) +( ) = c 2 2 16 1 − c 4 1 + c 4 17 2 (b) ( ) +( ) = c 2 2 16 (1 − c) 4 + (1 + c) 4 = 17c 2 (

(c 2 − 2)(2c 2 − 1) = 0 1 ∴ c 2 = 2 or c 2 = 2 2 As c = cos 2 x , ∴ c = 2 is rejected.

2 2 π π or 2 x = (2 n + 1)π ± 2 x = 2 nπ ± 4 4 π 2n + 1 π x = nπ ± ∴ or x = ( 2 )π ± 8 8 where n is any integer. ∴

1 2

2π 3 π x = nπ ± 3

sin θ cos α + cos θ sin α = k (cos θ cos α + sin θ sin α )

1 − cos 2 x 1 − c = 2 2 1 + cos 2 x 1 + c 2 cos x = = 2 2 ∴ (*) becomes



2c 4 − 5c 2 + 2 = 0

2 x = 2 nπ ±

8. (a) sin(θ + α ) = k cos(θ − α )

2 π 3 , α = , ∴ tan α = 3 3 3 2 3− 3 −1 3 1 tan θ = 3 2 = 3 = −1 1− 3 3 ⋅ 3 3 π θ = nπ + , where n is any integer. 6

(b) k =

sin 3 x = 0 or 2 cos 2 x + 2 cos x + 1 = 0 3x = nπ nπ x= 3

125

cos 2 x = ±

10. (a) Let P(n) be the proposition °ßsin θ − sin 3θ + sin 5θ + L + ( −1) n +1 sin(2 n − 1)θ =

( −1) n +1 sin 2 nθ °®. 2 cos θ

When n = 1 , L.H.S. = sin θ ( −1)2 sin 2θ 2 sin θ cos θ = = sin θ 2 cos θ 2 cos θ ∴ P(1) is true. Assume P(k) is true for any positive integer k. R.H.S. =

i.e. sin θ − sin 3θ + sin 5θ + L +( −1) k +1 sin(2 k − 1)θ =

( −1) k +1 sin 2 kθ 2 cos θ

126

Chapter 8 General Solutions of Trigonometric Equations

Then sin θ − sin 3θ + sin 5θ + L + ( −1) k +1sin(2 k − 1)θ + ( −1) k +1+1 sin[2( k + 1) − 1]θ

( −1)

k +1

sin 2 kθ + ( −1) k + 2 sin(2 k + 1)θ 2 cos θ = [( −1) k +1 sin 2 kθ =

(c) sin 2θ =

3 2

π 3 nπ n π θ= + ( −1) 2 6 where n is any integer. 2θ = nπ + ( −1) n

+ 2( −1) k + 2 sin(2 k + 1)θ cos θ] ÷ 2 cos θ 1 = {( −1) k +1 sin 2 kθ + 2( −1) k + 2 [sin 2 kθ 2 + sin 2( k + 1)θ]} ÷ 2 cos θ

12 − 13. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

= [ −( −1) k sin 2 kθ + ( −1) k sin 2 kθ

Enrichment 8 (p.190)

+ ( −1) k + 2 sin 2( k + 1)θ] ÷ 2 cos θ

( −1)( k +1) +1 sin 2( k + 1)θ = 2 cos θ

Thus assuming P(k) is true for any positive integer k, P( k + 1) is also true. By the principle of mathematical induction, P(n) is true for all positive integers n. (b) sin θ cos θ − sin 3θ cos θ + sin 5θ cos θ + L + sin 9θ cos θ = 0 cos θ(sin θ − sin 3θ + sin 5θ + L + sin 9θ) = 0 cos θ = 0 (rejected) or sin θ − sin 3θ + sin 5θ + L + sin 9θ = 0

( −1)5 +1 sin 2(5)θ =0 2 cos θ sin 10θ = 0 for cos θ ≠ 0 10θ = nπ nπ θ= 10

where n is any integer. 11. (a) Sum of the roots = tan θ + cot θ 4 3 = 3 (b) By (a),

4 3 3 sin θ cos θ 4 3 + = 3 cos θ sin θ sin 2 θ + cos 2 θ 4 3 = 3 sin θ cos θ 3 = 4 3 sin θ cos θ 3 = 2 3 sin 2θ 3 sin 2θ = 2 3 3 = 2 tan θ + cot θ =

1. (a) cos 4θ = 2 cos 2 2θ − 1

= 2(2 cos 2 θ − 1)2 − 1 = 2( 4 cos 4 θ − 4 cos 2 θ + 1) − 1 = 8 cos 4 θ − 8 cos 2 θ + 1 (b) 16 x 4 − 16 x 2 + 1 = 0 1 8x 4 − 8x 2 + = 0 2 Let x = cos θ 1 cos 4θ − 1 + = 0 2 1 cos 4θ = 2

π 3 nπ π θ= ± 2 12 where n is any integer.

4θ = 2 nπ ±

nπ π ± ) 2 12 x = ±0.966, ± 0.259 (corr. to 3 sig.fig.) x = cos(

cos β cos(2α + β) + cos β = cos(2α + β) cos(2α + β) 2 cos(α + β) cos α = cos(2α + β)

2. (a) 1 + m = 1 +

(b) (1 + m) tan α tan(α + β) 2 cos(α + β) cos α sin α sin(α + β) = ⋅ ⋅ cos(2α + β) cos α cos(α + β) 2 sin α sin(α + β) = cos(2α + β) 2( − 12 )[cos(2α + β) − cos β] = cos(2α + β) cos β − cos(2α + β) = cos(2α + β) cos β = −1 cos(2α + β) = m −1

Chapter 8 General Solutions of Trigonometric Equations

(c) Let α = x , β = cos π4

m=

π 4

cos(2 x + π4 ) By (b),

3. tan θ = − 3

θ = tan −1 ( − 3 ) = −60°

=5

k

π ) = 5 −1 4 2 π tan x tan( x + ) = 4 3 1 + tan x 2 tan x ⋅ = 1 − tan x 3 3 tan x + 3 tan 2 x = 2 − 2 tan x

(1 + 5) tan x tan( x +

1

−180° −360° −270°

−90° O

90°

θ 270° 360°

Classwork 2 (p.181)

sin θ =

3 1. sin θ = 2

sin θ +

3 θ = sin ( ) = 60° 2 −1

1 2 3 2

cos θ = −

k

=0

1 2

1 1 tan θ + = 0 3 2

k = sin θ

Principal value

General solution

30°

n 180°n + (−1) 30°

−60°

180°n − (−1)n60°

120°

360°n ± 120°

−56.3°

180°n − 56.3°

θ

O

60° 90°

180°

270°

Classwork 3 (p.183)

360°

1. sin θ + cos θ = 0 sin θ = − cos θ tan θ = −1 π θ = nπ − 4

−1

2. cos θ = −

1 2

where n is any integer.

1 θ = cos −1 ( − ) = 120° 2

2. 1 + 2 3 sin x cos x + 2 cos 2 x = 0

k

sin 2 x + cos 2 x + 2 3 sin x cos x + 2 cos 2 x = 0 sin 2 x + 2 3 sin x cos x + 3 cos 2 x = 0

1 1 2

−1

180°

− 3

Classwork 1 (p.178)

O 1 − 2

−60°

−1

3 tan 2 x + 5 tan x − 2 = 0 (3 tan x − 1)(tan x + 2) = 0 1 tan x = or tan x = −2 3 x = nπ + 0.322 or x = nπ − 1.11 (corr. to 3 sig.fig.) where n is any integer.

1 3 2

127

k = cos θ 120° 90°

θ 180°

270°

360°

(sin x + 3 cos x )2 = 0 sin x + 3 cos x = 0 sin x = − 3 cos x tan x = − 3 π x = nπ − 3 where n is any integer.

128

Chapter 8 General Solutions of Trigonometric Equations

Classwork 4 (p.184)

Classwork 7 (p.186)

tan 4 x − cot 3 x = 0 tan 4 x = cot 3 x π tan 4 x = tan( − 3 x ) 2 π 4 x = nπ + − 3 x 2 nπ π x= + 7 14

1 1 cos 6θ − cos 2θ 2 2 1 1 1 (cos 6θ + cos 2θ) = cos 6θ − cos 2θ 2 2 2 1 1 cos 2θ = − cos 2θ 2 2 cos 2θ = 0 π 2θ = 2 nπ ± , where n is any integer. 2 π θ = nπ ± 4 cos 2θ cos 4θ =

where n is any integer.

Classwork 5 (p.184) π π 1 cos θ − sin sin θ = 5 5 2 π 1 cos( + θ) = 5 2 π π + θ = 2 nπ ± 5 3 π π π π ∴ θ = 2 nπ + − or θ = 2 nπ − − 3 5 3 5 2π 8π or θ = 2 nπ − θ = 2 nπ + 15 15 cos

Classwork 6 (p.185) Let α be an acute angle such that tan α =

1 . Then, 2

1 = 5 sin α 2 = 5 cos α α = 0.463 6 The given equation becomes 5 sin α sin θ − 5 cos α cos θ = 5 cos α cos θ − sin α sin θ = −1 cos(θ + α ) = −1 θ + 0.463 6 = 2 nπ ± π = (2 n + 1)π where n is any integer.



θ + 0.463 6 = 2 nπ + π θ = 2 nπ + 2.68 (corr. to 2 d.p.)