All In Vain

  • Uploaded by: Nathan Shirley
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View All In Vain as PDF for free.

More details

  • Words: 9,578
  • Pages: 45
All in Vain

q = 100 (più o meno)

Flute

  



 



Oboe

Bassoon







 







 

 





  





mf



mf





 



 

 

  

   

mf





mp

mf

   

 



  

 

  

2006, by Nathan Shirley - www.NathanShirley.org

 





  pizz.





mf

    



mf

 



 





q = 100 (più o meno)

Violoncello

 

  Violin I  

Viola

 



  

Violin II



 







mf

   

Congas





 

mf

mf

Piano



Nathan Shirley

 

  pizz.  pizz.   pizz.

 

mp



2 5

 Fl. 



     Cg.  

Bn.

mp

  

        

   



 

     



                       

    Pno.                Vc.      

 

mp

  

  





         

               

        

     

 

 8

 Fl.  Ob.

Bn.

Cg.





 









          f





 

  Vc.  



3







 f

    





             mf      arco

     

   

 

 



 

  

 



  

 mf                

 Pno.   Vla.

     



  

    

mf

arco mf

mf

 

11

 Fl. 







 



mf 3

        3

Ob.

 

 

Bn.





mp

 



Pno.



 

















mp

 

Vla.

mp

Vc.







mp







pizz. mp









 

  



 

  



mf 3

  

 mf

            mp

mp



 

f



3

        

f

 

Vln. II





mp

Vln. I



 

mp

f

f

mp







           

Cg.

3

3



     

3

   

mf



  



  









mp

  arco



  arco



f



f



  arco

 mp





 

 







 

f



f

mp

3

4

  Fl. 



14



Ob.

Bn.





     

 





           

       

 

   

      

 

   

mp

     

 

            mp

                                  

Cg.

p

Pno.

Vln. I











 









             pizz.

 

   

 

 



p





Vln. II

pizz. p

Vla.

Vc.



  









 

  

  















17

 Fl.  

Ob.

Bn.







 

    

 

mf



 

  

        

f

     

 

mf

 

 

   

       

  

  



   

f

     

mf

 

   



f

                                     

Cg.

mp

 Vln. I                

Vln. II



Vla.



     

mf

       mp

       

  

mp



 







      pizz. mf

Vc.











    pizz. mf

5

6

  Fl.  20

 

Ob.

Bn.







  mp

 

 

          

  





   

        



p

 Vln. I    

Vln. II



Vla.

Vc.





  

        



p

Pno.



f

            

Cg.









   



mf









































  



  

 

mf



    p

   





mf

7

 

Ob.

Bn.









 

  

  



f

   









  

   

  

 

  



3

 



Vc.













mf











mf



 

  mf

      



 

 

    

 



 

           

  

Vla.



 

mf



Vln. II

3

f

Pno.

Vln. I

       



 Fl. 



24

 





    

    





  



 

        3

arco f

3

 

    

         Vc.  3



3

  





 



 

 

Vc.













mf





    mf  

 

 

            3

3

3

3



 

 



              

arco f 3

      arco 3

3

f



 

3

















        3      3 3 3

31

Vla.





3              Ob.        f                 Bn.  3 3 3 f 3   Cg.                       Pno.             Vln. I 



  





 

  







       



Pno.





Cg.



 





 



Bn.



  



 Fl. 

 

 



28



8



3





9 34

 Ob. 

Cg.

Pno.

Vln. I



 

















   



3

     

 

Vla.

Vc.



        









Bn.

   



     

  

 



           p mf                  p

 

3



 



     





















   





p

 







 38

            mp                                                   

 Fl.   Cg.

  Vla.   

Pno.













  

 



            



10 42

Fl.



Cg.

Pno.

Vln. II

Vla.

                                 mp                         

           





 

mp

  



 

arco 







mf



mp





 





    



   



      







            Fl.             mf          Cg.  mf                      Pno.  46

Vln. II

 

Vc.



   







   

        

mf

  

 

Vla.



 

 f









 

mf























     Fl.  49







  

    



     

 

       

 





 

    

f

      f







                f

Pno.







 







Vln. II

Vla.

Vc.

 

f

         

Vln. I

     



 

Cg.

 

f



Ob.

Bn.









 







 





11

  

                       

arco f













f

f









12

      Fl.  52

Ob.

   

 

            Bn.     Cg.



 







 



mf

             

     

    

     

      



 



 







mp

                      

                  

       



Pno.

                       Vln. I  Vln. II

 

Vla.

 

Vc.

  

   

       

           

                   mp                 pizz.













 



  



  





  pizz. 



pizz.







  pizz.

56

 Fl. 



     Cg.  

Bn.

mp

  

        

   



 

     



                        

       Pno.               Vc.      

 

mp

  

13

  





         

                  

        

     

  

 59

 Fl. 



 

 



 

           f





Ob.

Bn.







        Cg.              Pno.     Vla.    Vc.  

 







 f

  

 mf       mf   arco

    



    

                  

 

  

  

  

mf

arco mf

3

   

14

62

 Fl. 







           



mf 3

        3

Ob.

 

 

   

Bn.





mp

 







Pno.



 















mp

 

Vla.

mp

Vc.







mp







pizz. mp







 

  



 

  



mf 3

  

 mf

mp

mp



Vln. II



f



3

         f

 



           

mp

Vln. I





mp







mp

f

f

             

Cg.



3

mf



3

3



 



  









mp

  arco



  arco



f



f



  arco

 mp

 

 mp

f



f





 





 

  Fl. 



65



Ob.

Bn.





    

 

15





     



 

  

       

 

   

 

  

       

 

   

mp

      

 

      mp

                                  

Cg.

p

Pno.

Vln. I











 









               pizz.

   

 



p





Vln. II

pizz. p

Vla.

Vc.



  









 

  

  

 















16

68

Fl.

 



 



    



Ob.

Bn.



 

  

       

     

 

     

 

mf

 

 

   

       

mf



   

f

   



f

                                     

Cg.

mp

Vln. I

  

f

mf



  

 

                   

Vln. II



Vla.



     

mf

       mp

       

    mp 

 







      pizz. mf

Vc.











    pizz. mf

  Fl.  71

Ob.

Bn.



  mp

 

         

 





















p

 Pno.

Vln. I

       

p

   

    

















   

  





   

  





Vla.





 

 

    mf





      mf

             mf

  





17





   

Vln. II

Vc.



 

 f

             

Cg.



      



                              

mf

p

p

 







 



mf

 



 



 

mf

mf

18 75

 Fl.  

 

 

 

Ob.

Bn.





  

Cg.

 Pno.

Vln. I



  

  

 





 

 



f

   



  

             

 

Vla.

 

  

     3

        

    

Vln. II

Vc.





 



       













 

 





   



3

  



               



           

 



  

 

                                

   

  









  

















   

 



3

3

3

   f 3

3

3





f

3



f













3

 

 

 

mf

 

 





 

     





     Vln. I 







           arco









arco 3 f

3 3

3

3

 

 

 

Vln. II



3

         Pno.



mf

 3 3      

Cg.





Bn.

 

                



Fl.

 

   



78

f

3

          3

Vla.

3

f

Vc.





        3

f

3



    arco 3

 3

3

3

19

20

81

 Fl. 

 

       



      3





Ob.

 









ff  

3          

ff



  

 

 





  

f





 

f

Pno.



  





Vla.





 

 

 Vln. II 

Vc.



mf





f

3

   

 













Cg.





  















Bn.

  

  

 

   



mf

3

3

3

3





f



   



   3

3



 

   

arco 3 ff

   3

 f





3





  

   



 

 Vln. I 

Vc.











3

3

3



 

   

                   



3













        

  







3

3

3



3

 

      



     

3

ff

      



Vla.

 



 

Vln. II



3



    





   



3

21

    











Cg.

Pno.



       

           









Bn.



      



 

84

 Ob. 

   



    

   



 





   





3



                            mp f                                  

87

Cg.



 mp   Vla.  

Pno.

mp

















22 91

Fl.

    

    

mf



Cg.



  



         

Pno.



Vla.

   

     

     



  







                  



  











94

Fl.

          

Cg.

Pno.



  



      mf

            



  

  

     

   



















                                 mf

 Vln. II  Vla.

  

 











f



mf





23 98

    Fl.       



Cg.

Pno.





Vc.



    



   



f

      f



  

                   



   

        

f

 Vln. II  

Vla.



 

  

 

 

  









 f

 ff

























24 101

 Fl. 







 



  





 

ff

         



          

    

      





          Pno.

      



 

Cg.

  

ff



Ob.

Bn.

  

 

ff

     ff







                    ff





 Vln. I 

                







         

ff

Vln. II

Vla.

Vc.



 



  







 













 

 

ff

ff









104

 Fl. 



   



  



  

   



        

         

  

          Bn. 

         

 

Ob.

      

Cg.

       

 



 



 















25

                

                  

          

Pno.

                                Vln. I 

Vln. II

Vla.

Vc.



 



   

                 

                           





  

























 

26

            Fl.  107

Bn.











 

    



 

Ob.



Cg.

  

Pno.



                                    Vln. I 

Vc.

  

 

Vla.





 











 







  









mf pizz.

3





3



   

   

3

  

3

   

   





mf pizz.



  

  

3

pizz. mf



 

f





mf



Vln. II





mf

        



3

   

 3

 3



   

110





Cg.







   



mp



Vln. II

Vla.



 

 



 

 

   



Vc.



arco f

3

3

   

3





mf





3

    



 3

       mp 3

3





     3

 

27

3

3              3



         Vln. I    Pno.

3

mf













3

3

     



mp arco





  

113

 Fl.   

      

     





Cg.

Vln. I

Vln. II

Vla.

Vc.















3

   

  

 3

3

    

3

  

 

 f

3

        3 

3

    







3



3

     

  

     3

3

28

115   

 Fl.  Bn.



Cg.

Pno.



Vc.

 Fl.

Bn.







Pno.

 



Vla.



3



mf





  





 









3



3



    





























 

 

3









3



  f

 

 



 

3

    

f







   





mf

3

                           



     

  

3

 3





3







 





         

   



 3

  

3

3

arco













  

3



mf



   

mf







 

3



 Vln. II 

Vc.

mf



Cg.







 







 117    



 



 Vln. II  Vla.





29 120

 Ob.    Bn.





f

   



f

 Vln. II   





Vla.

f

 

    

 



    





Cg.

Vc.

 

   



mf

           

             mf

   

    



 





  

 

f

           



   

     

  

 

    

gliss.

f

  

           

                                          

123

 Ob.  Bn.



 



            



Vla.







f



f



Vln. II

Vc.

 

Cg.

Vln. I

 

  





mf

 

                                  

      









  



  



                                

30 126

Fl.

 



Ob.

Bn.











 

 

  



 

    

          



    

Vln. II

 

Vla.



 

     f

Vc.





gliss.

  







f

Vln. I

 





f

      

Cg.

  



 



         

   

    

 

   



     

f



mf

  

  

  



            



  

        

 

  

   

 f

gliss.

  

       

31

129               Ob. 







ff

  Bn. 

Cg.

Pno.





  









    





  

mf

  

 

 

f



  f

   Vln. I    





                 

Vln. II

 



  

ff

   

 

 

 



 

            



         

       









ff



Vla.

Vc.



  





ff

 

   

 

                  f



  

    

       

32 132

 Fl. 







Ob.

 



 



ff

   

ff

Bn.







 



 

   

       



mf

mf







mp

ff

         

ff

Vln. I





                             

 

Cg.

Pno.

      

 

         

 

 





  









   ff



    



   

    















   

  

   

  

mp

pizz.

   

Vla.

Vc.











Vln. II

       ff   



 

 







 

  ff pizz.

  pizz. ff

 

pizz.



mp

mp

136

 Fl.  Ob.

Bn.



      

 ff







  











 











Vc.



 



 





   



ff

ff

                      

 



 

        

       

ff

Vla.



  

   

                                



   

Vln. II



 

ff



f

Vln. I

33

ff

       

Cg.

Pno.



 







 



f





 



ff

f

 

    





ff



           

 ff







       

 



34

139 

 Fl.  

Ob.

Bn.



Cg.

Vla.

Vc.



 





 

 Vln. I 









 

 





 3





Vln. II





 Pno.



























  



      





3









   

    

                                       



 

 

 

 

 

 

 

  

 

   



 

 



 



  

 



 



  



















  







 

     

 

    

 

  Fl. 



  



 



 



 

141



fff

Bn.





Ob.



 













fff

  

Cg.





  

  

35

fff

 











  

fff



                                        fff

Pno.

Vln. I

  

  

fff Vln. II





 

     

 

  



 















fff

Vc.



   

 

fff

Vla.



 



fff

     

    

     

   





 











36

143 

 Fl.  

Ob.

Bn.



Cg.

Pno.

Vc.



 











  



    3





 







  







 

   



3

   









 



   





                                    



 

 

 Vln. I 

Vla.

  







Vln. II

 





   

  

    

   



   



  

  



 

 



 





 







 











  







 



 

 

 















 



145

 Fl. 



        3

 

        

3



    

37

 

3

f

        3

Ob.

  





3

Bn.



       3

3



3

   

 

mf

 3 3           

Cg.



 



3

3

Pno.

Vln. I



 



        

 







    

          









3

3

3

3

3

           

 

arco

Vla.

 

   



3

Vln. II

 

mf

 

 





3

arco3

Vc.





        



         3

3

3



        f 3 arco

3

        3

3

38

            Fl. 



3





Ob.



     

   

148 



  





         3

ff





Cg.

  

Vla.

Vc.



   

   

f









           3





   



3

mf

f 3

3

3

    



 











        arco 3 ff

       3





     

 

  





3

    



f

  

 

        



Vln. II



 





mf

f



 Vln. I 

f 3

   

   



Pno.













 















Bn.

3



3





   

 

 Vln. I  

Vln. II

Vc.











3

3

3



3

  

                   ff



     



Vla.

 

   

3

3



 





 3

3

         3





 3





  



        

   3



       



         





ff







           







Cg.

Pno.









Bn.



       

39

 



       

151

 Ob. 

  



     

   



 











3



              f mp                   

154

Cg.





 mp  Vln. II      mp Pno.











    





                   







40

                                   

158

Cg.

Pno.

Vln. II



     





  Fl.  



Vla.



pizz. mf



 

                  

    

 



                 



 

   

 



162

mf

Cg.

Pno.

Vln. II

Vla.



             

    





mp

 

 





 

      



 









   

                 

 

 

    

  

 



   

 

           













41 166

            Cg.      mf           Pno.  mf  Vln. II     mf Fl.



Vla.

Vc.











 pizz.

 



mf

f

 



 



                                  









 







 





 

  



 169

 Fl.  Ob.

 

Cg.



  Vln. II  Pno.



Vla.

Vc.





 





 







f



   

           





ff

f





 

   

       

 

 

 

  





 

   

      

f







 







f



 f

   

  

 

  













   

42 172

 Fl. 

Ob.

Bn.



 

  







  





 





     

   



 



  



     

ff



 

Vla.













  



 



   

Vln. II

 







 



                       



 Vln. I 





ff

Pno.



 ff



        

Vc.

 

ff

  

Cg.





ff

  

  









ff

  













   

  



 

ff

ff



    Fl.  175 



Ob.

Bn.



Cg.

Pno.



  











 

 

 

 













 

  



                                  



Vla.





 



Vln. II









 Vln. I 

Vc.







43



   

 

 

 









 

 

 

 

 

 





































 

  

 

 

 







 





 

44

177   

 Fl.  

Ob.

Bn.







 Vln. I  

Vln. II



Vla.

Vc.

































 



 















 





                            

 Pno.

 



 



Cg.





 

   





  



 

  











 

 







  

















  





 

179

 Fl. 







Ob.

Bn.



Cg.



 

  

  

Vc.



  













  







 





 



    

 





     



arco

    







    

 



 













  

 









 

  

 











    

          

 Vln. I 

Vla.

  





Vln. II

   



 Pno.



 



arco



45

Related Documents

All In Vain
April 2020 7
We Hope In Vain
October 2019 30
All In All
November 2019 31
All In All
October 2019 35
All In
May 2020 14

More Documents from ""