Copy of Abutment_well
Design of Abutment Well Stability of Well Foundation and steining stresses have been checked for the following four cases:(1) (2) (3) (4)
Normal LWL case with Maximum CWLL Normal HFL case with Minimum CWLL Seismic LWL case with Maximum CWLL Seismic HFL case with Minimum CWLL
45.1 x 2 + 32.1 Design Levels Road Formation Level Soffit Level Abutment Cap Top Level High Flood Level (HFL) LBL Low Water Level (LWL) Foundation Level RL of sand fill in abutment well
= = = = = = = =
81.190 78.513 78.21 75.580 69.582 70.000 52.000 67.01
m m m m m m m m
Total Length of Bridge Abutment Cap Bottom Level Well Cap Top Level Well Cap Bottom Level Maximum Scour Level Raised Scour Level Well Kerb Top Level
= = = = = = =
122.350 77.313 75.990 73.990 67.013 67.870 53.700
m m m m m m m
= = = = = = = = =
10.25 10.25 0.300 3.500 3.500 6.500 0.500 0.075 0.300
m m m m m m m m m
Width of Abutment cap(Uniform portion) Width of Abutment Thickness of Cantilever Return Cantilever at tip of Return wall Expansion Gap at Either end Inner Diameter of Well Foundation Height of Bottom Sump Inner projection at Foundation Level Thickness of uniform dia. below well kerb top
= = = = = = = =
1.350 1.000 0.300 0.300 0.050 4.500 1.000 0.150 0.300
m m m m m m m m m
Height of crash barrier Projection from C/Lof bearing on abutment side Projection from C/L of bearing on Pier side for friction(POT/PTFE) Thickness of wearing coat
= = = = =
0.850 0.600 1.025 0.050 0.065
m m m
Dimensions of Different Component Length of Abutment cap Length of Abutment Thickness of Dirt Wall Length of Cantilever Return Length of Approach Slab Outer Diameter of Well Thickness of Intermediate Plug Outer projection at well kerb top in either direction Thickness of plug above well kerb top level Projection of well on Earth side(From abut shaft face) Projection of well on River side(From abut shaft face) Width of corbel in abutment cap Uniform height of corbel in abutment cap Varying height of corbel in abutment cap
= =
3.500 m 2.000 m
= = =
0.350 m 0.600 m 0.350 m
Loads and Forces from Superstructure C/C of end span Dead Load Reaction SIDL Reaction FPLL Reaction Max Depth of Superstructure
= = = = =
43.425 3816.7 932.1 61.6 2.500
m kN kN kN m
Base width of Superstructure Min. thickening at bottom at support Thickening at mid section of superstructure Width of cross girder
= = = =
5.000 0.050 0.113 1.200
m m m m
m
CWLL Reaction (Without Impact) Max. Reaction at abutment
Max. Reaction at other end
Due to 70 R Wheeled
=
895.82 kN
Due to 70 R Wheeled
=
0.00 kN
Due to class A 1 Lane
=
166.98 kN
Due to 70 R Wheeled
Due to class A 1 Lane
=
0.00 kN
Due to class A 1 Lane
Impact Factor
=
1.09
+
=
104.18 kN
=
0.00 kN
=
833.02 kN
=
0.00 kN
+
Due to class A 1 Lane
Min. Reaction at abutment
Min. Reaction at other end
Due to 70 R Wheeled
+
+
CWLL Reaction (Used at Abutment Shaft Bottom) Impacr Factor used for moment at abutment shaft bottom =
1.03
Max. Reaction at abutment
Min. Reaction at abutment
Due to 70 R Wheeled
=
918.628 kN
Due to 70 R Wheeled
=
171.233 kN
=
0.000 kN
Due to class A 1 Lane
=
0.000 kN
1.2800 m + 0.000 m
Due to SIDL Due to FPLL(one side only ,if loaded)
= =
= M 40.000 = M 35.000 18.000 kN/m^3 10.000 kN/m^3
Dry wt. of conc. Grade of steel R value for M35 conc. j value for M35 conc.
= = = =
+
+
Due to class A 1 Lane
Transverse eccy. in transverse direction( safety kerb side) Due to 70 R wheeled
=
Due to class A 1 Lane
=
0.4500 m 4.2500 m
Unit wts. of Different Component Grade of conc. of superstructure Grade of conc. of Substructure Dry unit weight of soil = Submerged unit weight of soil =
24.000 kN/m^3 200.000 MPa 1.844 MPa 0.878
Seismic Coefficient : Zone-III Horizontal seismic coefficient
=
0.048
Vertical seismic coefficient
=
0.024
Copy of Abutment_well
0.050 m (At Either End) 3.500 m
0.300 Deck Level
81.190 m
80.890 m Level
Soffit Level
78.513 m
Abutment Cap Top
78.213 m
Abutment Cap Bottom Level
77.31 m
1.350 m HFL
0.950
76.0 m
74.0 m
76.492
Well Cap Top Level 3.500 m
1.000 m
Well Cap Bottom Level
6.500 m
Water Fill cL of well
cL of brg.
1.200 m
67.0 m
MSL
1.000
Intermediate Plug in M 25 Concrete
Sand Fill
Well Kerb Top Level
53.700
m
Foundation Level
52.000
m
75.580 m
Height of Bottom sump
2.000 m
Copy of Abutment_well
1.000 m
3.250 m
3.250 m
10.250 m
6.500 m dia of well
Plan at well cap top Level Dimensions of Substructure Components (i) Dirt Wall Length
=
10.250 m
Thickness
=
0.300 m
Height
=
2.977 m
(ii) Cantilever Returns Depth at Free End = Length
0.300 m =
Depth at Root 3.500 m
=
2.633 m
Thickness =
0.300 m
(iii) Abutment Cap Length
=
10.250 m
Width
=
1.350 m
Thickness
=
0.900 m
=
10.250 m
Width
=
1.000 m
Height
=
1.323 m
= =
3.250 m 5.125 m
Thickness = Minor axis =
2.000 m 2.000 m
(vi) Intermediate Plug Diameter
=
4.500 m
Thickness
0.500 m
Bottom Level
=
67.013 m
(vii) Well Outer Dia.
=
6.500 m
Steining Thickness
=
4.500 m
= = =
0.300 m 0.300 m 1.400 m
(iv) Abutment Shaft Length (v) Well Cap Radius Major axis
(viii) Bottom Plug Dia. at top Dia. at bottom Depth of sump
= = =
4.500 m 6.350 m 1.000 m
=
=
1.000 m
Inner Dia.
Thickness of plug above well kerb top level Thickness of uniform dia. below well kerb top Height of bottom plug of tapering portion
(ix) Well Kerb Outer dia offset at Top
= =
6.650 m 0.075 m
Thickness at Bottom Height
= =
0.150 m 1.700 m
(x) Back fill Parameters c
Angle of Internal Friction Cohesion
= =
d sub
30.000 degree 0.000 kN/m^2
= =
18.000 kN/m^3 10.000 kN/m^3
Computation of Volumes of Substructure Components Thickening of slab at bottom Volume
=
5.000
x
1.200
x
0.113
10.250
x
0.300
x
2.977
2.000
x
0.300
x
3.500
x
0.300
x
0.500
x
2.333
x
3.500
=
0.675 m^3
=
9.156 m^3
=
0.630 m^3
=
2.450 m^3
(i) Volume of Dirt Wall = (ii) Volume of Return Walls Uniform Portion
=
(Nos)
Tapered Portion
=
2.000
x
0.300
(Nos)
(iii) Volume of Abutment Cap Rectangular portion =
x
1.350
x
0.550
=
7.611 m^3
Uniform portion of corbel =
10.250
10.250
x
0.350
x
1.000
=
3.588 m^3
Triangular portion of corbel=
10.250
x
0.500
x
0.350
=
0.628 m^3
x
0.350
Copy of Abutment_well
(iv) Volume of Abutment Shaft Above HFL =
10.250
x
1.000
x
1.733
=
17.758 m^3
=
10.250
x
1.000
x
-0.410
=
-4.202 m^3
10.250
x
3.500
=
71.750 m^3
Below HFL
(v) Volume of Well Cap Left rectangular portion =
C.G. of back Fill From Abutment Face
Rectangular portion =
=
10.250 2.000
Right elliptical portion =
3.500
/
x
1.000
x
2.000
x
5.125
x
2.000
C.G. of Front Fill From Abutment Face
=
4R
=
x
2.000
2.000
x
4.000 3.000
=
= 1.750 m 3.500 2.000 from the face of abutment on left side = 20.500 m^3
2.000
x x
=
2.000 3.142
=
32.201 m^3
= 0.849 m 8.000 9.425 from the face of abutment on right side
(vi) Volume of Intermediate Plug =
4.000
(vii) Volume of Well Steining upto RL Area = 4.000 Volume
=
17.279
=
4.500 ^2
x
0.500
x (
53.700 m 6.500 ^2
-
4.500 ^2 )
x
(vii) Volume of Well Steining upto RL Area = 4.000 Volume
x
62.901 m 6.500 ^2
x
=
=
17.279
x
=
350.59 m^3
=
191.596 m^3
=
270.83 m^3
=
207.22 m^3
=
261.76 m^3
=
9.543 m^3
=
32.674 m^3
=
42.217 m^3
=
21.599 m^3
17.279 m^2
15.674 61.997 m
17.279
x
11.993
(vii) Volume of Well Steining upto RL Volume
=
=
58.316 m
(vii) Volume of Well Steining upto RL Volume
4.500 ^2 )
11.089
(vii) Volume of Well Steining upto RL Volume
-
7.952 m^3
17.279 m^2
20.290
x (
17.279
=
=
58.84 m
17.279
x
15.149
(viii) Volume of Bottom Plug (a) Uniform dia. Portion = 4.000
x
4.500 ^2
x
(
0.300
+
0.300 )
(b) Flared Portion Plan area at Top,
A1
Plan area at Bottom, A2
=
Height Volume
h =
4.000 4.000
=
h 3.000
x
4.500 ^2
=
15.90
m^2
x
6.350 ^2
=
31.67
m^2
= x
= (
A1 + A2 +
1.400 m
A1.A2 )
Total Volume of Bottom Plug (ix) Well Curb =
4.000
x (
6.650 ^2
x
1.700
-4.500 ^2
x
0.300 )
-32.674
(x) Volume of Backfill
Above HFL Volume
=
10.250
x
3.500
x
5.610
=
201.259 m^3
=
10.250
x
3.500
x
-0.410
=
-14.709 m^3
=
206.96 m^3
Below HFL Volume
(xi) Volume of Sandfill =
4.000
(xii) Volume of Earth on Well Curb Area = 4.000
x
4.500 ^2
x
x (
6.650 ^2
-
13.013
6.500 ^2 )
=
1.549 m^2
Volume in Normal Case
=
1.549
x
13.313
=
20.624 m^3
Volume in Seismic Case
=
1.549
x
14.170
=
21.952 m^3
Copy of Abutment_well
(xiii) Volume of Sump in Bottom Plug C
A
3.175 1.000
3.175 B D
Let the sump be a part of sphere of radius = R then by the intersecting arcs AB and CD (2R
-1.000 )
Volume of sump
x
1.000 R
= =
3.175 5.540 m
x
3.175
x h^2 (R-h/3)
=
=
16.358 m^3
(XIV) Volume of Front Fill Total Hori. Distance between free end (Cantilever Return) from Abutment Shaft edge(River Side) Height from Deck Level to the RL of starting of front pitching slope
=
1.000 =
+
3.500
4.500 1.500
=
4.500 m
=
3.000 m
RL of point from which front slope pitching starts
=
81.125
-3.000
=
77.825 m
RL of point for front pitching above the well cap edge (River side)
=
77.825
-2.000 1.500
=
76.492 m
=
77.825
-1.888 1.500
=
76.567 m
Average height of Front fill pitching
=
77.825
Average height of Front fill pitching
=
1.888 m from face
RL of point for frontpitching above the well cap edge (River side)
=
Major Semi Axis
=
Minor Semi Axis
=
Area in Plan of Front Fill
=
Volume of Front Fill on Well cap C.G. of Front Fill From Abutment Face
(
6.500
-2.000 ) x
-0.300
-75.990
+ 2.000
76.492
-75.990
-75.990
+ 2.000
76.567
-75.990
1.168 m 77.825
=
1.206 m
2.000
=
3.000 m
0.500
=
2.000 m
x
= =
5.125
x
2.000
16.101
x
1.168
=
4.000 3.000
4R
x
x x
2.000 3.142
16.101 m ^2
18.8 m ^3 =
8.000 9.425
=
0.849 m
from the face of abutment
Seismic coefficient analysis Horizontal Seismic Force Feq Feq Ah
= = =
Seismic forces to be resisted Ah x (Dead load + Appropriate Live load) horizontal seismic coefficient
=
Z 2
Sa g R I
Z
=
Zone factor
I
=
Importance factor
Zone No. V IV III II
Important bridges Other bridges
= =
T
Fundamental period of the bridge member (in sec.) or horizontal vibrations.
=
=
Zone factor 0.36 0.24 0.16 0.1
1.5 1.0
2.0
D 1000F
1/2
D
=
appropriate dead load of the superstructure , and live load in KN
F
=
Horizontal force in KN required to be applied at the center of mass of the superstructure for one mm horizontal deflection at the top of the pier/abutment along the considered direction of horizontal force.
D
=
DL
=
SIDL
7633.4
+
9620.8
+
Shear Rating
=
3.8218
x
6
T
=
2.0
x
10620.8 22930.8
=
1.361
=
Response reduction factor =
For medium soil sites = Sa g
Ah
2.5 1.36 /T
=
10620.8
=
22.9308
1/2
0.0 < T < 0.55 0.55 < T < 4.0
=
1.36 1.361
=
0.999
=
0.16 2
x
0.999
=
123.2
sec
2.5 1.5 Ah
+
0.048
KN
No of bearings
F
R
FPLL
1864.2 LL 1000
2.5
KN
Copy of Abutment_well
Live Load Analysis Class A 2 Lane Max CWLL Reaction at Abutment 68.000
68.000 3.000
68.000 3.000
68.000 3.000
0.600 RA
114.000 4.300
114.000 1.100
27.000 3.200
27.000 1.200
43.425 m
1.025 RB Free end
Fixed end RA
+
RB
=
68.000
x
2.400
+
68.000
x
5.400
+
68.000
x
8.400
+
114.000
x
12.700
+
114.000
x
13.800
+
27.000
x
17.000
+
27.000
x
18.200
+
-68.000
x
0.600
=
163.200
+
367.200
+
571.200
+
1447.80
+
1573.20
+
459.000
Max. reaction at Abutment for class A 1 Lane Min. reaction at Abutment for class A 1 Lane
= =
438.117 kN 115.883 kN
Max. reaction at Abutment for class A 2 Lane Min. reaction at Abutment for class A 2 Lane
= =
876.23 kN 231.765 kN
43.425 RB
=
RB
=
115.883 kN
RA
=
438.117 kN
554.000 kN
Without impact
+
491.400
-40.800
Copy of Abutment_well
70 R wheeled Max CWLL Reaction at Abutment 170.000
170.000
170.000
170.000
120.000
120.000
1.370
3.050
1.370
2.130
1.520
80.000 3.960
0.600
1.025 RA
43.425 m
RA
+
43.425 RB
RB =
+
=
=
RB
1000.00 kN
170.000
x
0.770
+
170.000
x
3.820
+
170.000
x
5.190
120.000
x
7.320
+
120.000
x
8.840
+
80.000
x
12.800
-170.000
x
0.600
130.900
+
649.400
+
882.300
+
878.400
+
1060.80
+
1024.00
RB
=
104.175 kN
RA
=
895.825 kN
Without impact Max. reaction (70 R wheeled) Min. reaction (70 R wheeled)
= =
895.825 kN 104.175 kN
-102.000
Copy of Abutment_well
Class A 2 Lane Min CWLL Reaction at Abutment 68.000
68.000 3.000
68.000 3.000
68.000 3.000
0.600 RA Fixed end
114.000
114.000
4.300
1.200
27.000 3.200
43.425 m
RA
+
43.425 RB
RB =
=
554.000 kN
x (
25.650
+
28.650
+
+
114.000
x (
38.950
+
40.150
)
+
27.000
x (
43.350
+
44.450
)
=
8200.80
+
9017.40
+
2370.60
Reaction at Abutment end for class A 1 Lane Reaction at other end for class A 1 Lane
= =
102.905 kN 451.095 kN
Reaction at Abutment end for class A 2 Lane Reaction at other end for class A 2 Lane
= =
205.810 kN 902.19 kN
=
451.095 kN
RA
=
102.905 kN
1.100 1.025 RB Free end
68.000
RB
27.000
Without impact
31.650
+
34.650
)
Copy of Abutment_well
70 R wheeled Min CWLL Reaction at Abutment 170.000
170.000 1.370
170.000
170.000
120.000
120.000
3.050
1.370
2.130
1.520
0.600
80.000 3.960
43.425 m
RB 1.025
RA
+
43.425 RB
=
RB
=
1000.00 kN
170.000
x (
31.050
+
32.420
+
35.470
+
36.840
+
120.000
x (
38.970
+
40.490
) +
80.000
x
44.450
=
23082.60
+
9535.20
+
3556.00
=
36173.80
RB
=
833.018 kN
RA
=
166.982 kN
Without impact Reaction at Abutment end for (70 R Wheeled) Reaction at other end for (70 R wheeled)
= =
166.982 kN 833.018 kN
)
Copy of Abutment_well
Normal ..... Max. CWLL at abutment
Longitudinal Horizontal Breaking Force (HL) = Braking force is considered 20 % of live load coming on the span for two lane as per cl. 214.2 of IRC :6. For third lane , 5% braking force will be considered. Max. CWLL at abutment end
Fh due to 70 R Wheeled
=
0.2
x
(
Fh due to class A
=
0.05
x
(
=
200
895.82
Min. CWLL at other end
+
Max. CWLL at abutment end
104.18 )
=
200 kN
=
0 kN
Min. CWLL at other end
0.00
+
0.00 )
0
=
200 kN
(For 3rd Lane)
Total Fh
+
Longitudinal Horizontal Force At Bearing Level For a simply supported span sitting on identical Elastomeric Bearings at each end and resting on unyielding supports. Force At Each End
=
Fh / 2
+
Vr . ltc
= 3821.800 N/mm Vr = Shear Rating of the Elastomeric Bearing ltc = Movement of deck above Bearing, other than that due to applied forces. Movement due to temprreture will be considered for contraction and as well as for expansion both. Movement of superstructure Due to Temperatur
=
Co-efficient of Expansion
=
Variation in the temperature
=
. L . t 0 0.000012 / C
(Refer IRC -6) o C
(for moderate conditions)
Movement of superstructure due to temperature
=
12.70 mm
Movement of superstructure Due to Creep
=
8.79 mm
Movement of superstructure Due to Shrinkage
= = =
x
Strain due to Residual Shrinkage at 28 days
0.00019 x 4.13 mm
Span/2
21712.500
( Refer IRC: 18)
Net expansion due to temp.,shrinkage & creep
=
-12.70
+
8.79
+
4.1
=
0.2 mm
Net contraction due to temp.,shrinkage & creep
=
12.70
+
8.787
+
4.1
=
25.6 mm
Force due to temp., shrinkage & creep in expansion case
=
x
3821.8 1000
x
0.2
=
2.4 kN
Force due to temp.,shrinkage & creep in contraction case
=
3
x
3821.8 1000
x
25.6
=
293.7 kN
Fh/2 + Vr ltc in expansion case
=
100
+
2.41
=
102.4 kN
Fh/2 + Vr ltc in contraction case
=
100
+
293.68
=
393.7 kN
No. of bearings
3 No. of bearings
Governing Longitudnal Force at bearing level
=
393.677 kN
Seismic ..... Max. CWLL at abutment
Seismic case Longitudnal Horizontal Force (HL) = Fh due to 70 R Wheeled
=
0.200
x
(
447.91
+
52.09
)
=
100.000 kN
0.100
x
(
0.00
+
0.00
)
=
0.000 kN
x (
7633.400
+
+
461.416
=
(For first two lane)
Fh in seismic case
= =
0.0480 461.416 kN
Total Fh in seismic case
=
100.000
1864.20
+
123.2
)
561.416 kN
Longitudinal Horizontal Force At Bearing Level For a simply supported span sitting on identical Elastomeric Bearings at each end and resting on unyielding supports. Force At Each End
=
Fh / 2
+
Vr . ltc
Vr = Shear Rating of the Elastomeric Bearing = 3821.800 N/mm ltc = Movement of deck above Bearing, other than that due to applied forces. Movement due to temprreture will be considered for contraction and as well as for expansion both. Net expansion due to temp., shrinkage and creep
=
12.70
+
8.79
+
4.1
=
Net contraction due to temp, shrinkage and creep
=
-12.70
Force in expansion case
=
3.000
+
8.79
x
3821.80 1000.00
Force in contraction case
=
3.000
x
Fh/2 + Vr. ltc in expansion case
=
280.71
Fh/2 + Vr. ltc in contraction case
=
280.71
Governing Longitudnal force (Temp. rise case)
=
574.38 kN
Governing Longitudnal force (Temp. fall case)
=
283.12 kN
25.6 mm
+
4.1
=
x
25.6
=
293.7 kN
3821.80 1000.00
x
0.2
=
2.4 kN
+
293.677
=
574.4 kN
+
2.41
=
283.1 kN
0.2 mm
Copy of Abutment_well
Governing Longitudnal force
=
574.38 kN
Copy of Abutment_well
Case 1 (Normal case........... LWL Case With Max. CWLL) Case 1 (a) Calculation for Loads and Moments at Abutment Shaft Bottom Moment at abutment base = (Due to long. Force)
393.677
x
(
78.513
-75.990
)
= =
393.677 993.05 kN
x
2.523
Moment " MT" due to Transverse Live Load Eccentricity = Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =
918.628 0.000 61.600 932.100
x x x x
1.280 0.000 4.250 0.450
= = = =
Volume (m^3)
Unit Wt. (kN/m^3)
1175.844 0.000 261.800 419.445
kN.m kN.m kN.m kN.m
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 75.990 m and @ cg of Abutment Shaft S.No.
1 2 3 4
Item
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane
5 6 7 8 9 10 11 12 13 14
Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
15
Total Load and moments at Abutment Shaft Bottom
2.000 Nos.
0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800
24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 3.000
P (kN)
eL (m)
ML (kNm)
3816.700 932.100 61.600
0.450 0.450 0.450
1717.515 419.445 27.720
918.628 0.000
0.450 0.450
413.383 0.000
16.200 219.739 182.655 86.100 15.068 426.195 -100.860 15.120 58.800 22.800
0.450 -0.350 0.175 0.000 0.617 0.000 0.000 -2.250 -1.667 -2.100
7.290 -76.909 31.965 0.000 9.292 0.000 0.000 -34.020 -98.000 -47.880
6670.845
2369.800
Loads and moments at Abutment Shaft Bottom Vertical Load
=
6670.845 kN
Moment, ML
=
2369.800
+
993.050
+
2044.377
=
Moment, MT
= =
1175.844 + 1857.089 kN.m
0.000
+
261.800
+
Due to Horz. force
Due o Back Fill
5407.227 kN.m 419.445
Case 1 (b) Calculation for Loads and Moments at Foundation Level Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment at abutment base = (Due to long. Force)
= 393.677
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = 895.825 Due to Class A = 0.000 Due to FPLL = 61.600 Due to SIDL = 932.100
x
393.677 kN (
x x x x
78.513
1.280 0.000 4.250 0.450
+
-52.000
)
= = = =
1146.656 0.000 261.800 419.445
kN.m kN.m kN.m kN.m
= =
393.677 10437.4 kN
x
26.513
Copy of Abutment_well
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 52.000 m and @ cg of Foundation Level S.No.
1 2 3 4
Item
Volume (m^3)
Unit Wt. (kN/m^3)
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane
5 6 7 8 9 10 11 12 13 14
Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800
2.000 Nos. Total Load and moments at Abutment Shaft Bottom
24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 3.000
P (kN)
eL (m)
ML (kNm)
3816.700 932.100 61.600
1.200 1.200 1.200
4580.040 1118.520 73.920
895.825 0.000
1.200 1.200
1074.990 0.000
16.200 219.739 182.655 86.100 15.068 426.195 -100.860 15.120 58.800 22.800
1.200 0.400 0.175 1.425 1.367 0.750 0.750 -1.500 -0.917 -1.350
19.440 87.896 31.965 122.693 20.592 319.646 -75.645 -22.680 -53.900 -30.780
6648.042
7266.70
15
Backfill behind Abutment
16
On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL) Front Fill on Well cap Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill )
201.259 -14.709 18.811
18.000 18.000 18.000
3622.658 -264.757 338.597 10344.54
-1.500 -1.500 2.099
-5433.986 397.136 710.656 2940.50
Well Cap (Left rectangular portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb Total Loads and Moment at Well Foundation
71.750 20.500 32.201 7.952 350.586 42.217 21.599 16.358 206.963 20.624
14.000 14.000 14.000 12.000 14.000 12.000 14.000 12.000 10.000 10.000
1004.500 287.000 450.819 95.426 4908.204 506.602 302.390 196.298 2069.628 206.245 20371.65
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2940.50
17 18 19 20 21 22 23 24 25 26
Loads and moments at Well Foundation Level Vertical Load
=
Moment, ML
=
20371.65 kN 2940.50
+
121925.045
+
10437.359
=
135302.906
Moment, MT
=
1146.656
+
0.000
+
261.800
+
419.445
Total Active Earth Press. Moment.
Resultant Moment
MR
=
135302.9 ^2
+
Due to Horiz. Force at bearing Level
1827.901 ^2
=
kN.m =
135315.3
Moment due to Tilt & Shift Total Loads upto Well Cap Top Level
Mts .=
10344.539
SHIFT
TILT
Total Loads below Well Cap Top Level
x ( 0.150 +
23.990 ) + 80.000
10027.113
MR
Total Resultant Moment
=
135315.253
x
TILT
23.990 160.000
Mts
+
6157.190
=
141472.443 kNm
=
6157.190 kNm
1827.90 kN.m
Copy of Abutment_well
7.1.3 Computation of Base Pressure Total Moment at Foundation Soil Resistance
P max.
P min.
=
=
=
MR + Mts
=
= 201322.29 Hence, No Moment will Transfer to the Base
A
=
Z
=
P A
+
141472.443 = =
141472.443 0.000 kN
+
-201322.293
4.000 32.000
x
6.650 ^2
=
34.732 m^2
x
6.650 ^3
=
28.871 m^3
M Z
=
20371.652 34.732
+
=
586.534
+
0.000
-
< 0.000 28.871
-
P A
141472.4 kNm >
= =
M Z
586.534 kPa 20371.652 34.732
=
586.534
=
586.534 kPa
0.000 28.871
-
801.434 Hence OK
0.000 >
0.000 No Uplift , Hence OK
Case 2 (Normal case........... HFL Case With Min. CWLL) Case 2 (a) Calculation for Loads and Moments at Abutment Shaft Bottom Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)
393.677
= x
(
393.677 kN
78.513
-75.990
)
= =
393.677 993.050 kN
x
Moment " MT" due to Transverse Live Load Eccentricity = Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =
171.233 0.000 61.600 932.100
x x x x
1.280 0.000 4.250 0.450
= = = =
219.178 0.000 261.800 419.445
kN.m kN.m kN.m kN.m
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 75.990@ cg of Abutment Shaft S.No.
1 2 3 4
5 6 7 8 9 10 11 12 13 14 15
Item
Volume (m^3)
Unit Wt. (kN/m^3)
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap (Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
2.000 Nos. Total Load and moments at Abutment Shaft Bottom
0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800
24.000 24.000 24.000 24.000 24.000 24.000 14.000 24.000 24.000 3.000
P (kN)
eL (m)
ML (kNm)
3816.700 932.100 61.600
0.450 0.450 0.450
1717.515 419.445 27.720
171.233 0.000
0.450 0.450
77.055 0.000
16.200 219.739 182.655 86.100 15.068 426.195 -58.835 15.120 58.800 22.800
0.450 -0.350 0.175 0.000 0.617 0.000 0.000 -2.250 -1.667 -2.100
7.290 -76.909 31.965 0.000 9.292 0.000 0.000 -34.020 -98.000 -47.880
5965.475
2033.472
2.523
Copy of Abutment_well
Loads and moments at Abutment Shaft Bottom Vertical Load
=
5965.475 kN
Moment, ML
=
2033.472
+
993.050
+
2044.640
=
5071.162 kN.m
Moment, MT
=
219.178
+
0.000
+
261.800
+ =
419.445 900.423 kN.m
Due to Horz. force
Due o Back Fill
Case 2 (b) Calculation for Loads and Moments at Foundation Level Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)
393.677
= x
(
393.677 kN
78.513
+
-52.000
)
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =
= =
166.982 0.000 61.600 932.100
x x x x
1.280 0.000 4.250 0.450
= = = =
213.737 0.000 261.800 419.445
kN.m kN.m kN.m kN.m
393.677 10437.359 kN
x
26.513
Copy of Abutment_well
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 52.000 g of Well Foundation Level S.No.
1.000 2.000 3.000 4.000
5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000
Item
Volume (m^3)
Unit Wt. (kN/m^3)
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap (Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
2.000
0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800
24.000 24.000 24.000 24.000 24.000 24.000 14.000 24.000 24.000 3.000
16.000
ML (kNm)
3816.700 932.100 61.600
1.200 1.200 1.200
4580.040 1118.520 73.920
166.982 0.000
1.200 1.200
200.379 0.000
16.200 219.739 182.655 86.100 15.068 426.195 -58.835 15.120 58.800 22.800
1.200 0.400 0.175 1.425 1.367 0.750 0.750 -1.500 -0.917 -1.350
19.440 87.896 31.965 122.693 20.592 319.646 -44.126 -22.680 -53.900 -30.780 6423.60
Backfill behind Abutment On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL)
201.259 -14.709
18.000 10.000
Front Fill on Well cap
18.811
10.000
Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill + Return Wall) 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000
eL (m)
5961.224
Total Load and moments at Abutment Shaft Bottom 15.000
P (kN)
Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb Total Loads and Moment at Well Foundation
3622.658 -147.087
-1.500 -1.500
-5433.986 220.631
188.109
2.099
394.809
9624.904
71.750 20.500 32.201 7.952 350.586 42.217 21.599 16.358 206.963 20.624
14.000 14.000 14.000 12.000 14.000 12.000 14.000 12.000 10.000 10.000
1004.500 287.000 450.819 95.426 4908.204 506.602 302.390 196.298 2069.628 206.245 19652.02
1605.06
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1605.06
Copy of Abutment_well
Loads and moments at Well Foundation Level Vertical Load
=
Moment, ML
=
19652.016 kN 1605.058
+
109339.446
+
10437.359
=
Moment, MT
=
213.737
+
0.000
+
261.800
+
Total Active Earth Press. Moment.
Resultant Moment
MR
=
121381.863 ^2
+
Due to Horiz. Force at bearing Level
894.982 ^2
121381.863 kN.m 419.445 =
894.982 kN.m
= 121385.162
Moment due to Tilt & Shift Total Loads upto Well Cap Top Level
Mts .=
9624.904
SHIFT
x ( 0.150 +
Total Loads below Well Cap Top Level
TILT
23.990 ) + 80.000
10027.113
MR
Total Resultant Moment
=
121385.162
TILT
x
23.990 160.000
=
5833.444 kNm
Mts
+
5833.444
=
<
127218.61
127218.606 kNm
Computation of Base Pressure Total Moment at Foundation Level
=
Soil Resistance
=
MR + Mts
=
127218.6 kNm
97911.60
Hence, Moment will Transfer to the Base P max.
P min.
=
=
P A
P A
+
-
M Z
M Z
=
127218.606
=
19652.016 34.732
+
0.000 28.871
=
565.814
+
=
565.814 kPa 19652.016 34.732
-
=
565.814
-
=
565.814 kPa
Case 3 (Seismic case........... LWL Case With Max. CWLL) Loads and forces due to seismic Horizontal Seismic Coefficient Vertical Seismic Coefficient
= =
0.048 0.024
-97911.603 0.000 kN
0.000 <
=
+ =
801.434 Hence OK
0.000 28.871 0.000 >
0.000 No Uplift , Hence OK
Copy of Abutment_well
Considering Seismic Force in Longitudnal direction S.No.
1 2 3 4
Item
Volume
Unit Wt.
P
Fh
Fv
(m^3)
(kN/m^3)
(kN)
(kN)
(kN)
Reaction from Superstructure DL SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane
5 6 7 8 9 10 11 12 13 14
Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
15
Total Load and moments at Abutment Shaft Bottom
16
Well Cap (RSL)
2.000 Nos.
0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800
0.000
24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 3.000
Total Load and moments at Well Foundation Level
eL at c.g. of abutment shaft
ML @ RL 75.990 (kN.m)
ML at abut. shaft bottom
91.525 22.352 1.477
0.450 0.450 0.450
41.186 10.058 0.665
41.186 10.058 0.665
459.314 0.000
11.014 0.000
0.450 0.450
4.956 0.000
4.956 0.000
0.777 10.539 8.760 4.129 0.723 20.440 -4.837 0.725 2.820 1.093
0.388 5.269 4.380 2.065 0.361 10.220 -2.419 0.363 1.410 0.547
6211.531
45.170
148.953
0.000
0.000
6211.531
45.170
148.953
574.385
x
0.000
78.569 79.701 77.763 77.913 77.496 76.446 75.785 81.040 80.112 81.615
0.450 -0.350 0.175 0.000 0.617 0.000 0.000 -2.250 -1.667 -2.100
71.502
= 574.385
x
2.004 39.112 15.527 7.939 1.088 9.326 0.992 3.662 11.625 6.151
0.175 -1.844 0.767 0.000 0.223 0.000 0.000 -0.816 -2.350 -1.148
20.643 291.937 225.684 107.002 18.424 499.691 -115.054 21.059 79.278 32.384
12.875 186.579 138.107 65.720 11.200 295.345 -66.695 13.809 51.086 21.452
97.425
51.872
97.43
51.87
1181.0
729.5
0.00
0.00
0.0
0.0
97.43
51.87
1181.0
729.5
0.000
574.385 kN (
78.513
-75.990
)
=
2.523
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =
459.314 0.000 61.600 932.100
x x x x
1.280 0.000 4.250 0.450
= = = =
587.922 0.000 261.800 419.445
kN.m kN.m kN.m kN.m
Loads and moments at Abutment Shaft Bottom Vertical Load
=
6670.845 kN
Moment, ML
=
2369.800
Due to Horz. force
Due to Trans. eccy. of CWLL
Moment, MT
=
1857.089 kN.m
+
1448.885
Moment Due o Back Fil in normal case
+
2591.145
Due to Seismic Force
+
97.425 =
6507.256 kN.m
=
ML at 61.997 (kN.m)
0.175 -1.844 0.767 0.000 0.223 0.000 0.000 -0.816 -2.350 -1.148
Longitudnal Horizontal Force (HL) =
Moment at abutment base = (Due to long. Force)
ML at 52.000 (kN.m)
2.004 39.112 15.527 7.939 1.088 9.326 0.992 3.662 11.625 6.151
Case 3 (a) Calculation for Loads and Moments at Abutment Shaft Bottom
Governing Longitudnal Force at Bearing Level
ML at @ ML @ RL 75.990 c.g. of (kN.m) Well Fnd.
3816.700 932.100 61.600
16.200 219.739 182.655 86.100 15.068 426.195 -100.860 15.120 58.800 22.800
24.000
c.g. of Force RL in m
1448.885 kN
Copy of Abutment_well
Case 3 (b) Calculation for Loads and Moments at Foundation Level Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)
574.385
= x
(
78.513
574.385 kN +
-52.000
)
= =
574.385 15228.375 kN
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL = S.No.
1.000 2.000 3.000
(
447.912 0.000 61.600 932.100
( ( (
+ + + +
Item
Total Loads and Moment at Well Foundation in Normal Case Earth on Well Kerb in Normal case Earth on Well Kerb in Seismic case Total Loads and Moment at Well Foundation in Seismic Case
10.741 0.000 1.477 22.352 Volume (m^3)
-20.624 21.952
) ) ) )
x x x x
1.280 0.000 4.250 0.450
= = = =
587.076 0.000 268.078 429.503
Unit Wt. (kN/m^3)
P (kN)
eL (m)
ML (kNm)
10.000 10.000
20371.65 -206.24 219.52
0.00 0.00
2940.50 0.00 0.00
20384.92
2940.50
kN.m kN.m kN.m kN.m
x
26.513
Copy of Abutment_well
Loads and moments at Well Foundation Level Vertical Load
=
20384.924
+
Moment, ML
=
2940.503
+
Moment, MT
=
1284.658 kN.m
148.953
=
20533.877
Total Active Earth Press. Moment.
Resultant Moment
MR
=
178882.49
198284.288 ^2
+
kN
Due to Horiz. Force at bearing Level
+
15228.375
1284.658 ^2
+
51.872 =
+ 1181.048 198284.288 kN.m
= 198288.449 kNm
Moment due to Tilt & Shift
Mts .= (
Total Loads upto Well Cap Top
Increment in Load
Level in normal case
Due to Seismic
10344.539
+
Total Loads below Well SHIFT
148.953 ) x ( 0.150 +
Increment in Load
Cap top level in Normal Case
TILT
23.990 ) + 80.000
(
10027.113
Due to Seismic
+ =
MR
Total Resultant Moment
=
198288.449
TILT
0.000
)
x
23.990 160.000
6224.200 kNm
Mts
+
6224.200
=
>
204512.649
204512.649 kNm
Computation of Base Pressure Total Moment at Foundation Level
=
Soil Resistance
=
MR + Mts
=
251652.87
204512.6 kNm
Hence, No Moment will Transfer to the Bas
P max.
P min.
=
=
A
=
Z
=
P A
+
P A
-
=
204512.649
+ =
-251652.9 0.000 kN
4.000 32.000
x
6.650 ^2
=
34.732 m^2
x
6.650 ^3
=
28.871 m^3
M Z
=
20533.877 34.732
+
=
591.205
+
=
591.205 kPa
M Z
0.000 28.871 0.000 <
=
20533.877 34.732
-
0.000 28.871
=
591.205
-
0.000
=
591.205 kPa
>
1001.793 Hence OK
0.000 No Uplift , Hence OK
Copy of Abutment_well
Case 4 (Seismic case........... HFL Case With Min. CWLL) Loads and forces due to seismic Horizontal Seismic Coefficient Vertical Seismic Coefficient
= =
0.048 0.024
Considering Seismic Force in Longitudnal direction
S.No.
1.000 2.000 3.000 4.000
5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000
Item
Volume
Unit Wt.
P
Fh
Fv
(m^3)
(kN/m^3)
(kN)
(kN)
(kN)
Reaction from Superstructure DL SIDL FPLL Reaction from CWLL (min.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
2.000
0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800
24.000 24.000 24.000 24.000 24.000 24.000 14.000 24.000 24.000 3.000
Total Load and moments at Abutment Shaft Bottom 15.000
Well Cap
0.000
Total Load and moments at Well Foundation Level
24.000
c.g. of Force RL in m
eL at c.g. of abutment shaft
Well cap top RSL ML @ RL ML at eL at c.g. ML @ RL 75.990 of abutment 67.870 c.g. of (kN.m) shaft (kN.m) Well Fnd.
3816.700 932.100 61.600
91.525 22.352 1.477
0.450 0.450 0.450
41.186 10.058 0.665
41.186 10.058 0.665
85.616 0.000
2.053 0.000
0.450 0.450
0.924 0.000
0.924 0.000
16.200 219.739 182.655 86.100 15.068 426.195 -58.835 15.120 58.800 22.800
0.777 10.539 8.760 4.129 0.723 20.440 -2.822 0.725 2.820 1.093
0.388 5.269 4.380 2.065 0.361 10.220 -1.411 0.363 1.410 0.547
5879.858
47.185
141.000
0.000
0.000
0.000
5879.858
47.185
141.000
78.569 79.701 77.763 77.913 77.496 76.446 75.785 81.040 80.112 81.615
71.502
0.450 -0.350 0.175 0.000 0.617 0.000 0.000 -2.250 -1.667 -2.100
0.000
ML at 52.000 (kN.m)
ML at 58.841 (kN.m)
2.004 39.112 15.527 7.939 1.088 9.326 0.578 3.662 11.625 6.151
0.175 -1.844 0.767 0.000 0.223 0.000 0.000 -0.816 -2.350 -1.148
8.313 124.690 86.663 41.470 6.956 175.308 -22.335 9.551 34.525 15.030
0.175 -1.844 0.767 0.000 0.223 0.000 0.000 -0.816 -2.350 -1.148
20.643 291.937 225.684 107.002 18.424 499.691 -67.115 21.059 79.278 32.384
15.328 219.846 165.760 78.755 13.481 359.868 -47.813 16.098 59.988 24.904
97.012
47.839
480.17
47.84
1229.0
906.2
0.00
0.00
0.0
0.0
480.17
47.84
1229.0
906.2
Copy of Abutment_well
Case 4 (a) Calculation for Loads and Moments at Abutment Shaft Bottom Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)
=
574.385
x
(
574.385 kN
78.513
-75.990
)
=
574.385
x
2.523
=
1448.885 kN
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =
85.616 0.000 61.600 932.100
x x x x
1.280 0.000 4.250 0.450
= = = =
109.589 0.000 261.800 419.445
kN.m kN.m kN.m kN.m
Loads and moments at Abutment Shaft Bottom Vertical Load
=
5965.475 kN
Moment, ML
=
2033.472
Moment, MT
=
Due to Horz. force
+
Moment Due o Back Fil in normal case
1448.885
+
2044.640
Due to Seismic Force
+
97.012
=
574.385 15228.375 kN
x
5624.009 kN.m
Due to Trans. eccy. of CWLL
900.423 kN.m
Case 4 (b) Calculation for Loads and Moments at Foundation Level Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)
=
574.385
x
(
574.385 kN
78.513
+
-52.000
)
= =
26.513
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL = S.No.
1.000 2.000 3.000
(
83.491 0.000 61.600 932.100
( ( (
+ + + +
2.002 0.000 1.477 22.352
Item
Volume (m^3)
Total Loads and Moment at Well Foundation in Normal Case Earth on Well Kerb in Normal case Earth on Well Kerb in Seismic case
-20.624 21.952
) ) ) )
x x x x
1.280 0.000 4.250 0.450
= = = =
109.431 0.000 268.078 429.503
Unit Wt. (kN/m^3)
P (kN)
eL (m)
ML (kNm)
10.000 10.000
19652.02 -206.24 219.52
0.00 0.00
1605.1 0.0 0.0
ds and Moment at Well Foundation in Seismic Case
19665.29
kN.m kN.m kN.m kN.m
1605.1
Loads and moments at Well Foundation Level Vertical Load
=
19665.288
+
141.000
=
Total Active Earth Press. Moment.
Moment, ML
=
Moment, MT
=
Resultant Moment
MR
1605.058
+
114979.0
19806.288
kN
Due to Horiz. Force at bearing Level
+
15228.375
+
807.013 kN.m =
133089.296 ^2
+
807.013 ^2
= 133091.742 kNm
47.839 =
+ 1228.987 133089.296 kN.m
Copy of Abutment_well
Moment due to Tilt & Shift Total Loads upto Well Cap Top
Increment in Load
Level in normal case
Mts .= (
9624.904
Due to Seismic
+
Total Loads below Well SHIFT
141.000 ) x ( 0.150 +
Increment in Load
Cap top level
TILT
23.990 ) + 80.000
(
Due to Seismic
10027.113
+
= MR
Total Resultant Moment
=
133091.742
TILT
0.000
)
x
23.990 160.000
5896.876 kNm
Mts
+
5896.876
=
<
138988.618
138988.618 kNm
Computation of Base Pressure Total Moment at Foundation Level
=
Soil Resistance
=
MR + Mts
=
126583.83
138988.6 kNm
Hence, Moment will Transfer to the Base
P max.
=
A
=
Z
=
P A
+
=
P A
-
138988.618
+ =
-126583.830 12404.788 kN
4.000 32.000
x
6.650 ^2
=
34.732 m^2
x
6.650 ^3
=
28.871 m^3
M Z
=
19806.288 34.732
+
12404.788 28.871
=
570.256
+
429.660
19806.288 34.732
-
12404.788 28.871
=
570.256
-
429.660
=
140.596 kPa
= P min.
=
M Z
=
999.916 kPa
<
>
1001.793 Hence OK
0.000 No Uplift , Hence OK
Copy of Abutment_well
Case 1 Live Load Surcharge Layer Ka = 0.2794 thickness Pressure Length (m) (kN / m^2)
Reduced Level
Deck Level
81.2
Well cap top(Assumed MSL)
76.0
LWL
c.g. of force
Moment @ Moment @ 52.0 76.0 (kN. m) (kN. m)
5.2
6.0
10.3
321.7
78.6
8553
836.3
6.0
6.0
10.3
370.5
73.0
7779.4
0.0
-4.0
6.0
10.3
-246.8
72.0
-4935.1
1.0
6.0
6.5
39.2
73.5
843.0
6.0
6.0
6.5
234.5
70.0
4220.7
2.0
6.0
6.5
78.5
66.0
1099.4
2.0
6.0
6.5
78.5
64.0
942.5
9.3
6.0
6.5
365.3
58.4
2322.2
1.7
6.0
6.65
68.2
52.9
58.0
70.0
Well cap bottom
74.0
End of Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
Force
63.0
Well kerb top
53.7
Foundation Level
52.0 29.2
1309.5
20883
836.3
Case 1 Active Earth Pressure(Normal Case) (LWL Case)
In case of LWL , it is assumed that MSL is at Well cap level
Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
Deck Level
81.2
Well cap top(Assumed MSL)
76.0
LWL
70.0
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
52.0
N
-2c / N (kN / m^2)
5.2
0.0
25.0
3.6
18.0
0.0
6.0
0.0
25.0
3.6
18.0
0.0
-4.0
0.0
25.0
3.6
10.0
0.0
1.0
0.0
25.0
3.6
10.0
0.0
6.0
0.0
25.0
3.6
10.0
0.0
2.0
0.0
25.0
3.6
10.0
0.0
2.0
0.0
25.0
3.6
10.0
0.0
9.3
0.0
25.0
3.6
10.0
0.0
1.7
0.0
25.0
3.6
10.0
0.0
29.2
yz / N (kN / m^2) 0.0 26.2 26.2 56.3 56.3 45.1 45.1 47.9 47.9 64.6 64.6 70.2 70.2 75.8 75.8 101.8 101.8 106.6
3.579
Copy of Abutment_well
Reduced Level
Layer thickness
-2c / N
yz / N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
Force due to
(FOS=2)
(kN)
Deck Level
81.2
Well cap top(Assumed MSL)
76.0
LWL
0.0 0.0
-4.0
0.0
70.0
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
5.2 6.0
0.0 26.2 26.2 56.3 56.3 45.1 45.1 47.9 47.9 64.6 64.6 70.2 70.2 75.8 75.8 101.8 101.8 106.6
1.0
0.0
6.0
0.0
2.0
0.0
2.0
0.0
9.3
0.0
1.7
0.0
c.g. of force c (m)
c.g. of force (m)
Moment @ 52.0 c
Moment @ 52.0
Moment @ 76.0 c
Moment @ 76.0
(kN)
(m)
(m)
(kN.m)
(kN.m)
(kN.m)
(kN.m)
10.3
1.0
0.0
1.0
696.9
0.0
77.7
0.0
17927.8
0.0
1208.0
10.3
1.0
0.0
1.0
2530.5
0.0
72.6
0.0
52203.6
0.0
0.0
10.3
3.0
0.0
2.0
-1036.8
0.0
71.9
0.0
-20655.2
6.5
3.0
0.0
2.0
151.2
0.0
73.5
0.0
3248.7
6.5
3.0
0.0
2.0
1093.1
0.0
69.9
0.0
19516.0
6.5
3.0
0.0
2.0
438.2
0.0
66.0
0.0
6134.5
6.5
3.0
0.0
2.0
474.5
0.0
64.0
0.0
5694.5
6.5
2.0
0.0
2.0
2688.0
0.0
58.1
0.0
16475.0
6.7
2.0
0.0
2.0
589.0
0.0
52.8
0.0
496.8
52.0
29.2 Total
0.0
Total Active Force
7624.6
7624.6
0.0 Total Active Moment
Grand total
Passive Earth Pressure(Normal Case)(LWL Case) Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
LWL
70.0
Well cap bottom
74.0
End Layer 1 MSL End of Layer 2
2c * N (kN / m^2)
-4.0
0.0
25.0
5.7
10.0
0.0
1.0
0.0
25.0
5.7
10.0
0.0
6.0
0.0
25.0
5.7
10.0
0.0
2.0
0.0
25.0
5.7
10.0
0.0
2.0
0.0
25.0
5.7
10.0
0.0
73.0 67.0 65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
N
9.3
0.0
25.0
5.7
10.0
0.0
1.7
0.0
25.0
5.7
10.0
0.0
52.0 18.0
yz * N (kN / m^2) 0.0 -228.9 -228.9 -171.5 -171.5 171.3 171.3 286.1 286.1 400.8 400.8 935.0 935.0 1032.5
5.736 5.736 5.736 5.736 5.736 5.736 5.736
101041.8
101041.8
0.0
1208.0
20883.2
836.3
121925.0
2044.4
1208.0
Copy of Abutment_well
Reduced Level
Layer thickness
2c * N
yz * N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
Force due to
(kN) LWL
70.0
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
-4.0
0.0
1.0
0.0
6.0
0.0
2.0
0.0
2.0
0.0
9.3
0.0
1.7
0.0
0.0 -228.9 -228.9 -171.5 -171.5 171.3 171.3 286.1 286.1 400.8 400.8 935.0 935.0 1032.5
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 52.0 c
Moment @ 52.0
(kN.m)
(kN.m)
10.3
2.0
0.0
2.0
2340.0
0.0
72.7
0.0
48344.7
6.5
2.0
0.0
2.0
-650.6
0.0
73.5
0.0
-13997.1
6.5
3.0
0.0
2.0
-1.7
0.0
2054.7
0.0
-3347.2
6.5
3.0
0.0
2.0
1486.5
0.0
65.9
0.0
20706.2
6.5
3.0
0.0
2.0
2232.2
0.0
64.0
0.0
26691.1
6.5
2.0
0.0
2.0
20214.6
0.0
57.7
0.0
115946.1
6.7
2.0
0.0
2.0
5560.5
0.0
52.8
0.0
4648.3
52.0 18.0 Total Total Passive Force
Passive relief due to (-ve) surcharge
Surcharge height =
Layer thickness c (m) (kN /m^2) (degree)
Reduced Level
LWL
70.0
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
52.0
0.0
31181.6
31181.6
0.3 m
N
70.0 m
y z * N (kN / m^2)
74.0 m
-4.0
0.0
25.0
2.46
10.0
6.2
5.736
1.0
0.0
25.0
2.46
10.0
6.2
5.7
6.0
0.0
25.0
2.46
10.0
6.2
5.7
2.0
0.0
25.0
2.46
10.0
6.2
5.7
2.0
0.0
25.0
2.46
10.0
6.2
5.7
9.3
0.0
25.0
2.46
10.0
6.2
5.7
1.7
0.0
25.0
2.46
10.0
6.2
5.7
18.0
0.0
198992.2
Total Passive Moment
6.2
73.0 m
6.2
67.0 m
6.2
65.0 m
6.2
63.0
6.2
53.7
198992.2
Copy of Abutment_well
Reduced Level
Layer thickness
6.2
yz * N
Projected Length of we
(FOS)
Force
(kN)
c.g. of force (m)
52.0 m
Moment @ 52.0 c (kN.m)
Passive relief due to (-ve) surcharge 70.0
LWL
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
-4.0
6.2
10.3
2.0
-126.4
72.0
-2527.0
1.0
6.2
6.5
2.0
20.1
73.5
431.6
6.0
6.2
6.5
2.0
120.1
70.0
2161.2
2.0
6.2
6.5
2.0
40.2
66.0
562.9
2.0
6.2
6.5
2.0
40.2
64.0
482.6
9.3
6.2
6.5
2.0
187.1
58.4
1189.1
1.7
6.2
6.7
2.0
34.9
52.9
29.7
63.0
Well kerb top
53.7
Foundation Level
52.0 18.0 Total
316.1
2330.1
31498 Total Passive Moment
Grand Total Passive Force
201322.3
Check for steining : As per clause 710.2.3.1 ,the minimum thickness of steining shall not be less than 500mm and satisfy the following relationship. t required
=
Thickness provided
kd
l
=
=
0.03
1.00 m
x
6.5
x
Hence OK
Case 1 It is assumed that point of zero shear will be at a distance of Z m below from well cap bottom. Total Active force = Governing Longitudnal Force at Bearing Level
393.7
+
Active force upto Well cap bottom by surcharge
445.4
+
Active Force due to c soil upto Well cap bottom
0.0
+
Active Force due to upto Well cap bottom
2190.6
Active force below Well cap bottom for Z depth by surcharge
39.2 Z
+
Active Force due to c soil below Well cap bottom
0.0 3.0 (FOS) -c
Z
+
Active Force due Active Force due to phai soil below Well cto phai soil below Well cap bottom
+
293.3 Z 2.0 (FOS)
+
9.1 Z2 2.0
4.9
=
0.955 m
Copy of Abutment_well
Total Passive force = Passive Force due to c soil upto Well cap bottom
0.0
+
Passive Force due upto Well cap bottom
2340.0
Passive Force due to c soil below Well cap bottom upto depth Z
0.0 Z + 2.0 (FOS) -c Passive Force due Passive Force due to phai soil below Well cto phai soil below Well cap bottom
+
upto depth Z -1487.6 Z 2.0
upto depth Z 186.4 Z^2 2.0
+
Passive Force due to -ve Surcharge upto Well cap bottom by phai of soil
-126.4
+
Passive Force due to -ve Surcharge below Well cap bottom by phai of soil
upto depth Z 40.2 Z 2.0
+
Eqating both active and passive earth pressure : 3029.7
+
185.9 Z
+
4.5 Z^2
=
2213.6
816.0
+
909.6 Z
+
-88.7 Z^2
=
0.0
-9.2
+
-10.3 Z
Z
=
10.3
+
Z^2
+
= 11.9
=
+
-723.7 Z
0.0 11.1 m
2.0 This means, Point of zero shear will be at a distance of
Live Load Surcharge upto RL
Deck Level
81.2
Well cap top(MSL)
76.0
LWL
70.0
Well cap bottom
74.0
Well kerb top End Layer 2 Foundation Level
62.9 m
62.9 m
Layer Ka = thickness Pressure (m) (kN / m^2)
Reduced Level
End Layer 1
11.1 m in layer 2 i.e. at RL
0.3 Length
Force
c.g. of force
Moment @ 62.9 (kN. m)
5.2
6.0
10.3
321.7
78.6
5046.5
6.0
6.0
10.3
370.5
73.0
3740.0
-4.0
6.0
10.3
-246.8
72.0
-2244.4
11.1
6.0
6.5
435.0
68.4
2411.6
0.0
6.0
6.5
0.0
0.0
0.0
0.0
6.0
6.5
0.0
0.0
0.0
0.0
6.0
6.5
0.0
0.0
0.0
62.9 0.0 0.0 0.0 18.3
880.4
8953.7
+
93.2 Z^2
Copy of Abutment_well
Active Earth Pressure(Normal Case)(LWL Case) upto RL Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
Deck Level
81.2
Well cap top(MSL)
76.0
LWL
70.0
Well cap bottom
74.0
End Layer 1 Well kerb top
62.9 m
N
2c / N (kN / m^2)
5.2
0.0
25.0
3.6
18.0
0.0
6.0
0.0
25.0
3.6
18.0
0.0
-4.0
0.0
25.0
3.6
10.0
0.0
11.1
0.0
25.0
3.6
10.0
0.0
0.0
0.0
25.0
3.6
10.0
0.0
0.0
0.0
25.0
3.6
10.0
0.0
0.0
0.0
25.0
3.6
10.0
0.0
yz / N (kN / m^2) 0.0 26.2 26.2 56.3 56.3 45.1 45.1 76.1 0.0 0.0 0.0 0.0 0.0 0.0
62.9 0.0
End Layer 2
0.0
Foundation Level
0.0
3.6 3.6 3.6 3.6 3.6 3.6 3.6
18.3
Reduced Level
Layer thickness
-2c / N
yz / N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
Force due to
(FOS=3)
(kN)
Deck Level
81.2
Well cap top(MSL)
76.0
LWL
70.0
Well cap bottom
74.0
End of Layer 1 Well kerb top End Layer 2 Foundation Level
5.2
0.0
6.0
0.0
-4.0
0.0
11.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
62.9 0.0 0.0
0.0 26.2 26.2 56.3 56.3 45.1 45.1 76.1 0.0 0.0 0.0 0.0 0.0 0.0
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 62.9 c
Moment @ 62.9
(kN.m)
(kN.m)
10.3
1.0
0.0
1.0
696.9
78.6
77.7
0.0
10330.0
10.3
1.0
0.0
1.0
2530.5
73.0
72.6
0.0
24618.0
10.3
3.0
0.0
2.0
-1036.8
72.0
71.9
0.0
-9352.4
6.5
3.0
0.0
2.0
2184.6
68.4
68.0
0.0
11080.2
6.5
3.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
6.5
3.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
6.5
3.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
0.0
18.3 Total Total Active Force
0.0
4375.2
4375.2
0.0 Total Active Moment
36675.8 8953.7
Grand total
45629.5
36675.8
Copy of Abutment_well
Passive Earth Pressure(Normal Case)(LWL Case) upto Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
LWL
70.0
Well cap bottom
74.0
End of Layer 1
N
2c * N (kN / m^2)
-4.0
0.0
25.0
5.7
10.0
0.0
11.1
0.0
25.0
5.7
10.0
0.0
0.0
0.0
25.0
5.7
10.0
0.0
0.0
0.0
25.0
5.7
10.0
0.0
0.0
0.0
25.0
5.7
10.0
0.0
yz * N (kN / m^2) 0.0 -228.9 -228.9 407.2 0.0 0.0 0.0 0.0 0.0 0.0
62.9
Well kerb top
0.0
End Layer 2
0.0
Foundation Level
62.9 m
5.7 5.7 5.7 5.7 5.7
0.0 7.1
Reduced Level
Layer thickness
2c * N
yz * N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
LWL
70.0
Well cap bottom
74.0
End of Layer 1 Well kerb top End Layer 2 Foundation Level
-4.0
0.0
11.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
62.9 0.0 0.0
0.0 -228.9 -228.9 407.2 0.0 0.0 0.0 0.0 0.0 0.0
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
Moment @ 62.9 c
Moment @ 62.9
(m)
(kN.m)
(kN.m)
10.3
2.0
0.0
2.0
2340.0
72.0
72.7
0.0
22835.1
6.5
2.0
0.0
2.0
3212.9
68.4
61.9
0.0
-3367.4
6.5
3.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
6.5
3.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
6.5
3.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
0.0 7.1 Total Total Passive Force
0.0
5552.9
5552.9
0.0 Total Passive Moment
19467.7
19467.7
Copy of Abutment_well
Passive relief due to (-ve) surcharge upto RL Layer thickness c (m) (kN /m^2) (degree)
Reduced Level
LWL
70.0
Well cap bottom
74.0
End of Layer 1 Well kerb top
62.9 m
N
Surcharge height =
0.251 m
y z * N (kN / m^2)
-4.0
0.0
25.0
5.7
10.0
14.4
5.736
11.1
0.0
25.0
5.7
10.0
14.4
5.736
0.0
0.0
25.0
5.7
10.0
14.4
5.736
0.0
0.0
25.0
5.7
10.0
14.4
5.736
0.0
0.0
25.0
5.7
10.0
0.0
5.736
(FOS)
Force
(kN)
62.9 0.0
End Layer 2
0.0
Foundation Level
0.0 7.1
Reduced Level
Layer thickness
yz * N
Projected Length of we
c.g. of force (m)
Moment @ 62.9 c (kN.m)
LWL
70.0
Well cap bottom
74.0
End of Layer 1 Well kerb top End Layer 2 Foundation Level
-4.0
14.4
10.3
2.0
-294.2
72.0
-2675.4
11.1
14.4
6.5
2.0
518.5
68.4
2874.7
0.0
14.4
6.5
2.0
0.0
0.0
0.0
0.0
14.4
6.5
2.0
0.0
0.0
0.0
0.0
0.0
6.5
2.0
0.0
0.0
0.0
62.9 0.0 0.0 0.0 7.1 Total Grand Total Passive Force
224.3
5777 Total Passive Moment
199.3
19667.0
Copy of Abutment_well
Case 1 Calculation for Loads and Moments upto RL
62.9 m
Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment @ = (Due to long. Force)
= 393.7
x
393.7 kN (
78.5
+
-62.9
= = = =
1146.7 0.0 261.8 419.4
)
= =
393.7 6145.7 kNm
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =
895.8 0.0 61.6 932.1
x x x x
1.3 0.0 4.3 0.5
kN.m kN.m kN.m kN.m
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 62.9 m and @ cg of Foundation Level S.No.
1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
Item
Volume (m^3)
Unit Wt. (kN/m^3)
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
2.0 Nos.
0.7 9.2 7.6 3.6 0.6 17.8 -4.2 0.6 2.5 3.8
24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 3.0
Total Load and moments @ RL 15.0
16.0
eL (m)
ML (kNm)
3816.7 932.1 61.6
1.2 1.2 1.2
4580.0 1118.5 73.9
895.8 0.0
1.2 1.2
1075.0 0.0
16.2 219.7 182.7 86.1 15.1 426.2 -100.9 15.1 58.8 22.8
1.2 0.4 0.2 1.4 1.4 0.8 0.8 -1.5 -0.9 -1.4
19.4 87.9 32.0 122.7 20.6 319.6 -75.6 -22.7 -53.9 -30.8
6648
7266.7
Backfill behind Abutment On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL)
201.3 -14.7
18.0 18.0
Front Fill on Well cap
18.8
18.0
Total Load and moments @ RL (Including Back Fill + Front Fill ) 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0
P (kN)
Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb Total Load and moments @ RL
3622.7 -264.8
-1.5 -1.5
338.6
2.1
10345
71.8 20.5 32.2 0.0 191.6 0.0 0.0 0.0 0.0 0.0
22.5 22.5 22.5 12.0 22.5 12.0 14.0 12.0 10.0 10.0
1614.4 461.3 724.5 0.0 4310.9 0.0 0.0 0.0 0.0 0.0 17455.6
-5434.0 397.1 710.7 2940.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2940.5
x
15.6
Copy of Abutment_well
Loads and moments upto RL
62.9 m
Vertical Load
=
17455.6 kN
Moment, ML
=
2941
+
45629
+
6146
=
Moment, MT
=
1147
+
0
+
262
+
Total Active Earth Press. Moment.
Resultant Moment
MR
=
54716 ^2
Due to Horiz. Force at bearing Level
54715.7
kN.m
419.4 = 54746 kN.m
1828 ^2
1827.9 kN.m
Moment due to Tilt & Shift Total Loads upto Well Cap Top Level
Mts .=
SHIFT
10344.5 x ( 0.150 +
TILT
Total Loads below Well Cap Top Level
13.1 ) + 80.0
7111.1
MR
Total Resultant Moment
=
54746
Total Moment upto RL
62.9 m
Passive Resistance
=
P max.
P min.
=
=
=
Z
=
P A
+
P A
3826
MR + Mts 19667
Check for safety of section
-
=
58572 kNm
=
3825.8 kNm
=
58572 kNm <
58572 = =
58572 38905 kN
+
-19667.0
4.0 208.0
x
22.0
=
17.3 m^2
x
1375.0
=
20.8 m^3
M Z
=
17455.6 17.3
+
38905 20.8
=
1010.2
+
1873
=
2883.6 kPa
M Z
1.0 6.3
13.1 160.0
Mts
+
Hence, Moment will Transfer to the steining
A
TILT
x
+
=
17455.6 17.3
-
38905 20.8
=
1010.2
-
1873.3
= =
-863.1 kPa 0.9 1.9 8.3
=
0.4
< Section is uncracked < 1.0
6.1
Case2 Live Load Surcharge Layer Ka = thickness Pressure (m) (kN / m^2)
Reduced Level Deck Level
81.2
HFL
75.6
Well cap top
Force c.g. of force
Moment @ Moment @ 52.0 76.0 (kN. m) (kN. m)
5.6
6.0
10.3
347.0
78.4
9156.4
831.1
-0.4
6.0
10.3
-25.4
75.8
-603.2
5.2
2.0
6.0
10.3
123.7
75.0
2844.3
1.0
6.0
6.5
39.2
73.5
843.0
6.0
6.0
6.5
234.5
70.0
4220.7
2.0
6.0
6.5
78.5
66.0
1099.4
2.0
6.0
6.5
78.5
64.0
942.5
9.3
6.0
6.5
365.3
58.4
2322.2
1.7
6.0
6.7
68.2
52.9
76.0
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
0.3 Length
63.0
Well kerb top
53.7
Foundation Level
52.0 29.2
1309.5
58.0 20883
836.3
Hence OK
Copy of Abutment_well
Case 2 Active Earth Pressure(Normal Case)(HFL Case) Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
Deck Level
81.2
HFL
75.6
Well cap top
76.0
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2 End of Layer 3
N
2c / N (kN / m^2)
5.6
0.0
25.0
3.6
18.0
0.0
-0.4
0.0
25.0
3.6
10.0
0.0
2.0
0.0
25.0
3.6
10.0
0.0
1.0
0.0
25.0
3.6
10.0
0.0
6.0
0.0
25.0
3.6
8.0
0.0
2.0
0.0
25.0
3.6
8.0
0.0
2.0
0.0
25.0
3.6
9.3
0.0
9.3
0.0
25.0
3.6
10.0
0.0
1.7
0.0
25.0
3.6
10.0
0.0
65.0 63.0
Well kerb top
53.7
Foundation Level
52.0
29.2
yz / N (kN / m^2) 0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 58.5 58.5 84.5 84.5 89.2
3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579
Copy of Abutment_well
Reduced Level
Layer thickness
-2c / N
yz / N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
Deck Level
81.2
HFL
75.6
Well cap top
0.0 0.0
2.0
0.0
76.0
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
5.6 -0.4
1.0
0.0
6.0
0.0
2.0
0.0
2.0
0.0
9.3
0.0
1.7
0.0
63.0
Well kerb top
53.7
Foundation Level
52.0
0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 58.5 58.5 84.5 84.5 89.2
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 52.0 c
Moment @ 52.0
(kN.m)
(kN.m)
Moment @ 76.0 c
Moment @ 76.0
(kN.m)
(kN.m)
10.3
1.0
0.0
1.0
811.2
78.4
77.5
0.0
20644.6
0.0
1184.3
10.3
1.0
0.0
1.0
-116.2
75.8
75.8
0.0
-2762.7
0.0
24.0
10.3
1.0
0.0
1.0
612.2
75.0
75.0
0.0
14054.8
6.5
1.0
0.0
1.0
221.3
73.5
73.5
0.0
4755.2
6.5
1.0
0.0
1.0
1636.8
70.0
69.8
0.0
29205.9 4644.6
6.5
3.0
0.0
2.0
331.8
66.0
66.0
0.0
6.5
3.0
0.0
2.0
363.2
64.0
64.0
0.0
4357.6
6.5
2.0
0.0
2.0
2163.7
58.4
58.1
0.0
13142.5
6.7
2.0
0.0
2.0
491.0
52.9
52.8
0.0
413.6
29.2 Total Total Active Force
0.0
6515.1
6515.1
0.0 Total Active Moment
Grand total
88456.2
88456.2
0.0
1208.3
20883.2
836.3
109339.4
2044.6
1208.3
Copy of Abutment_well
Passive Earth Pressure(Normal Case) Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
MSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
N
2c * N (kN / m^2)
2.0
0.0
25.0
5.7
8.0
0.0
2.0
0.0
25.0
5.7
9.3
0.0
9.3
0.0
25.0
5.7
10.0
0.0
1.7
0.0
25.0
5.7
10.0
0.0
yz * N (kN / m^2) 0.0 91.8 91.8 198.5 198.5 732.7 732.7 830.2
5.7 5.7 5.7 5.7
52.0 15.0
Reduced Level
Layer thickness
2c * N
yz * N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
MSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
2.0
0.0
2.0
0.0
9.3
0.0
1.7
0.0
0.0 91.8 91.8 198.5 198.5 732.7 732.7 830.2
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 52.0 c
Moment @ 52.0
(kN.m)
(kN.m)
6.5
3.0
0.0
2.0
298.3
66.0
65.7
0.0
4080.3
6.5
3.0
0.0
2.0
943.3
64.0
63.9
0.0
11216.1
6.5
2.0
0.0
2.0
14091.3
58.4
57.5
0.0
77023.2
6.7
2.0
0.0
2.0
4416.9
52.9
52.8
0.0
3676.3
52.0 15.0 Total Total Passive Force
0.0
19749.8
19749.8
0.0 Total Passive Moment
95995.8
95995.8
Copy of Abutment_well
Passive relief due to (-ve) surcharge
Surcharge height =
0.3 m 67.0 m
Layer thickness c (m) (kN /m^2) (degree)
Reduced Level MSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
52.0
N
y z * N (kN / m^2)
2.0
0.0
25.0
2.5
10.0
6.2
5.7
2.0
0.0
25.0
2.5
10.0
6.2
5.7
9.3
0.0
25.0
2.5
10.0
6.2
5.7
1.7
0.0
25.0
2.5
10.0
6.2
5.7
15.0
Reduced Level
yz * N
Layer thickness
Projected Length of we
(FOS)
Force
(kN)
c.g. of force (m)
67.0
End of Layer 2
65.0
End of Layer 3
52.0 c
2.0
6.2
6.5
3.0
26.8
66.0
2.0
6.2
6.5
3.0
26.8
64.0
375.3 321.7
9.3
6.2
6.5
2.0
187.1
58.4
1189.1
1.7
6.2
6.7
2.0
34.9
52.9
29.7
63.0
Well kerb top
53.7
Foundation Level
52.0 15.0 Total Grand Total Passive Force
275.6
20025 Total Passive Moment
65.0 m
6.2
63.0 m
6.2
53.7 m
6.2
52.0 m
Moment @
(kN.m)
MSL
6.2
1915.8
97911.6
Passive relief due to (-ve) surcharge
Copy of Abutment_well
Check for steining : Case 2 It is assumed that point of zero shear will be at a distance of Z m below from Layer 2.
Total Active force = 393.7
+
797.5
+
0.0
+
39.2 Z 0.0 3.0
3497.1
+
346.3 Z 2.0
+ Z
+
+
8.4 Z^2 2.0
Total Passive force = 0.0
298.3
26.8
+
0.0 Z + 3.0
+
596.5 Z 2.0
+
40.2 Z 3.0
+
173.4 Z^2 2.0
+
Eqating both active and passive earth pressure : 4688.3
+
212.4 Z
+
4.2 Z^2
=
325.1
4363.3
+
-99.3 Z
+
-82.5 Z^2
=
0.0
-52.9
+
1.2
+
=
-1.2
+
Z
Z^2 14.6
=
0.0
=
6.7 m
+
311.7 Z
2.0 This means, Point of zero shear will be at a distance of
6.7 m in layer 2 i.e. at RL
58.3 m
+
86.7 Z^2
Copy of Abutment_well
Live Load Surcharge upto RL
Layer Ka = thickness Pressure (m) (kN / m^2)
Reduced Level
Deck Level
81.2
HFL
75.6
Well cap top
58.3 m
0.3 Length
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 2
65.0
End of Layer 3
58.3
Well kerb top
0.0
Foundation Level
0.0
5.6
6.0
10.3
347.0
78.4
-0.4
6.0
10.3
-25.4
75.8
-443.1
2.0
6.0
10.3
123.7
75.0
2062.9
1.0
6.0
6.5
39.2
73.5
595.2
6.0
6.0
6.5
234.5
70.0
2739.8
2.0
6.0
6.5
78.5
66.0
603.9
6.7
6.0
6.5
262.7
61.7
879.7
22.9
1060.2
Active Earth Pressure(Normal Case) upto RL Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
Deck Level
81.2
HFL
75.6
Well cap top
76.0
Well cap bottom
74.0
End Layer 1
73.0
MSL
67.0
End of Layer 3
Moment @ 58.3 (kN. m)
6964.5
76.0
Well cap bottom
End of Layer 2
Force c.g. of force
13403
58.3 m
N
2c / N (kN / m^2)
5.6
0.0
25.0
3.6
18.0
0.0
-0.4
0.0
25.0
3.6
10.0
0.0
yz / N (kN / m^2) 0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 70.7
3.6 3.6
2.0
0.0
25.0
3.6
10.0
0.0
1.0
0.0
25.0
3.6
10.0
0.0
6.0
0.0
25.0
3.6
8.0
0.0
2.0
0.0
25.0
3.6
8.0
0.0
6.7
0.0
25.0
3.6
9.3
0.0
0.0
25.0
3.6
10.0
0.0
3.6
0.0
25.0
3.6
10.0
0.0
3.6
65.0
3.6 3.6 3.6 3.6 3.6
58.3
Well kerb top Foundation Level 22.9
Copy of Abutment_well
Reduced Level
Layer thickness
-2c / N
yz / N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
Deck Level
81.2
HFL
75.6
Well cap top Well cap bottom
74.0 73.0
MSL
67.0
End of Layer 2
65.0
Well kerb top Foundation Level
0.0 0.0
2.0
0.0
76.0
End Layer 1
End of Layer 3
5.6 -0.4
0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 70.7 0.0 0.0 0.0 0.0
1.0
0.0
6.0
0.0
2.0
0.0
6.7
0.0
0.0
0.0
0.0
0.0
58.3 0.0
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 58.3 c
Moment @ 58.3
(kN.m)
(kN.m)
15521.2
10.3
1.0
0.0
1.0
811.2
78.4
77.5
0.0
10.3
1.0
0.0
1.0
-116.2
75.8
75.8
0.0
-2029.1
10.3
1.0
0.0
1.0
612.2
75.0
75.0
0.0
10188.3
6.5
1.0
0.0
1.0
221.3
73.5
73.5
0.0
3357.2
6.5
1.0
0.0
1.0
1636.8
70.0
69.8
0.0
18868.0
6.5
3.0
0.0
3.0
221.2
66.0
66.0
0.0
1699.3
6.5
3.0
0.0
3.0
899.4
61.7
61.5
0.0
2870.6
6.5
2.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
6.7
2.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
0.0 22.9 Total
0.0
4285.9
4285.9
Total Active Force
0.0
50475.6
50475.6
Total Active Moment
13403.0
Grand total
Passive Earth Pressure(Normal Case) upto RL
MSL
67.0
End of Layer 2
65.0
End of Layer 3
58.3
Well kerb top
53.7
Foundation Level
58.3 m
Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
63878.6
N
2c * N (kN / m^2)
2.0
0.0
25.0
5.7
8.0
0.0
6.7
0.0
25.0
5.7
9.3
0.0
0.0
0.0
25.0
5.7
10.0
0.0
0.0
0.0
25.0
5.7
10.0
0.0
yz * N (kN / m^2) 0.0 91.8 91.8 449.0 0.0 0.0 0.0 0.0 0.0
52.0
5.7 5.7 5.7 5.7
8.7
Reduced Level
Layer thickness
2c * N
yz * N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
MSL
67.0
End of Layer 2
65.0
End of Layer 3
58.3
Well kerb top
53.7
Foundation Level
2.0
0.0
6.7
0.0
0.0
0.0
0.0
0.0
52.0
0.0 91.8 91.8 449.0 0.0 0.0 0.0 0.0 0.0
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 58.3 c
Moment @ 58.3
(kN.m)
(kN.m)
6.5
3.0
0.0
2.0
298.3
66.0
65.7
0.0
2196.4
6.5
3.0
0.0
2.0
5885.3
61.7
60.9
0.0
15367.6
6.5
2.0
0.0
2.0
0.0
53.7
0.0
0.0
0.0
6.7
2.0
0.0
2.0
0.0
52.0
0.0
0.0
0.0
8.7 Total Total Passive Force
0.0
6183.6
6183.6
0.0 Total Passive Moment
17564.0
17564.0
Copy of Abutment_well
Passive relief due to (-ve) surcharge upto RL Layer thickness c (m) (kN /m^2) (degree)
Reduced Level
MSL
67.0
End of Layer 2
65.0
End of Layer 3 Well kerb top Foundation Level
58.3 m
Surcharge height =
N
0.3 m
y z * N (kN / m^2)
2.0
0.0
25.0
5.7
10.0
14.4
5.7
6.7
0.0
25.0
5.7
10.0
14.4
5.7
0.0
0.0
25.0
5.7
10.0
0.0
5.7
0.0
0.0
25.0
5.7
10.0
0.0
5.7
(FOS)
Force
(kN)
58.3 53.7 52.0 8.7
Reduced Level
yz * N
Layer thickness
Projected Length of we
c.g. of force (m)
Moment @ 58.3 c (kN.m)
MSL
67.0
End of Layer 2
65.0
End of Layer 3 Well kerb top Foundation Level
2.0
14.4
6.5
3.0
62.3
66.0
479.9
6.7
14.4
6.5
3.0
208.8
61.7
699.1
0.0
0.0
6.5
2.0
0.0
53.7
0.0
0.0
0.0
6.7
2.0
0.0
52.0
0.0
58.3 53.7 52.0 8.7 Total
271.1
Case 2 Calculation for Loads and Moments upto RL
1178.9
6454.7 Total Passive Moment
Grand Total Passive Force
18742.9
58.3 m
Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment at abutment base = (Due to long. Force)
= 393.7
x
393.7 kN (
78.5
+
-58.3
= = = =
213.7 0.0 261.8 419.4
)
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =
167.0 0.0 61.6 932.1
x x x x
1.3 0.0 4.3 0.5
kN.m kN.m kN.m kN.m
= =
393.7 7950.9 kN
x
20.2
Copy of Abutment_well
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 58.3 m and @ cg of Foundation Level S.No.
Item
1.0 2.0 3.0 4.0
Volume (m^3)
Unit Wt. (kN/m^3)
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
15.0
Backfill behind Abutment
0.7 9.2 7.6 3.6 0.6 17.8 -4.2 0.6 2.5 3.8
2.0 Nos.
17.0
On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL)
201.3 -14.7
18.0 10.0
Front Fill on Well cap
18.8
10.0
Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb
3816.7 932.1 61.6
1.2 1.2 1.2
4580.0 1118.5 73.9
167.0 0.0
1.2 1.2
200.4 0.0
16.2 219.7 182.7 86.1 15.1 426.2 -94.6 15.1 58.8 22.8
1.2 0.4 0.2 1.4 1.4 0.8 0.8 -1.5 -0.9 -1.4
19.4 87.9 32.0 122.7 20.6 319.6 -70.9 -22.7 -53.9 -30.8
6396.8
3622.7 -147.1
-1.5 -1.5
188.1
2.1
9589.2
71.8 20.5 32.2 0.0 270.8 0.0 0.0 0.0 0.0 0.0
22.5 22.5 22.5 12.0 22.5 12.0 14.0 12.0 10.0 10.0
Total Loads and Moment at Well Foundation
Loads and moments upto RL
ML (kNm)
5925.5
Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill )
18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0
eL (m)
24.0 24.0 24.0 24.0 24.0 24.0 22.5 24.0 24.0 3.0
Total Load and moments at Abutment Shaft Bottom
16.0
P (kN)
1614.4 461.3 724.5 0.0 6093.6 0.0 0.0 0.0 0.0 0.0
-5434.0 220.6
394.8 1578.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18483
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1578.3
58.3 m
Vertical Load
=
Moment, ML
=
18483 kN 1578
+
63879
+
7951
=
73408
kN.m
Moment, MT
=
214
+
0
+
262
+
419 =
895.0
Total Active Earth Press. Moment.
Resultant Moment
MR
=
73408 ^2
Due to Horiz. Force at bearing Level
895 ^2
kN.m
73413
Moment due to Tilt & Shift Total Loads upto Well Cap Top Level
Mts .=
SHIFT
9589.2 x ( 0.150 +
TILT
Total Loads below Well Cap Top Level
17.7 ) + 80.0
8893.8
MR
Total Resultant Moment
=
73413
TILT
x
17.7 160.0
=
77952 kNm
Mts
+
4539
=
4539.3 kNm
Copy of Abutment_well
Total Moment upto RL
58 m
Passive Resistance
MR + Mts
=
18743
=
77952 kNm <
77952
Hence, Moment will Transfer to the steining
P max.
P min.
=
=
P A
P A
+
M Z
-
M Z
18483 17.3
+
59210 20.8
=
1070
+
2851
=
3921 kPa 18483 17.3
-
59210 20.8
1070
-
2851
=
= = 1.1 6.3
+
77952 59210 kN
=
=
Check for safety of section
= =
-1781 kPa 1.78 2.9 8.3
=
0.5
+
-18742.9
< 6.10 Section is uncracked < 1.0 Hence OK
Case3 Live Load Surcharge (Seismic Case) (LWL Case) Layer Ka = thickness Pressure (m) (kN / m^2)
Reduced Level Deck Level
81.2
Well cap top(Assumed RSL)
76.0
LWL
Force c.g. of force
Moment @ Moment @ 52.0 76.0 (kN. m) (kN. m)
5.2
6.0
10.3
321.7
78.6
8553.1
836.3
6.0
6.0
10.3
370.5
73.0
7779.4
0.0
-4.0
6.0
10.3
-246.8
72.0
-4935.1
1.0
6.0
6.5
39.2
73.5
843.0
6.0
6.0
6.5
234.5
70.0
4220.7
2.0
6.0
6.5
78.5
66.0
1099.4
2.0
6.0
6.5
78.5
64.0
942.5
9.3
6.0
6.5
365.3
58.4
2322.2
1.7
6.0
6.7
68.2
52.9
70.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
End of Layer 2
65.0
End of Layer 3
0.3 Length
63.0
Well kerb top
53.7
Foundation Level
52.0 29.2
1309.5
58.0 20883
836.3
Active Earth Pressure(Seismic Case) (LWL Case) Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level Deck Level
81.2
Well cap top(Assumed RSL)
76.0
LWL Well cap bottom
74.0 73.0
RSL
67.0
End of Layer 2
65.0
Well kerb top Foundation Level
2c / N (kN / m^2)
5.2
0.0
25.0
2.5
18.0
0.0
6.0
0.0
25.0
2.5
18.0
0.0
-4.0
0.0
25.0
2.5
10.0
0.0
70.0
End Layer 1
End of Layer 3
N
1.0
0.0
25.0
2.5
10.0
0.0
6.0
0.0
25.0
2.5
10.0
0.0
2.0
0.0
25.0
2.5
10.0
0.0
2.0
0.0
25.0
2.5
10.0
0.0
9.3
0.0
25.0
2.5
10.0
0.0
1.7
0.0
25.0
2.5
10.0
0.0
63.0 53.7 52.0 29.2
yz / N (kN / m^2) 0.0 38.0 38.0 81.7 81.7 65.6 65.6 69.6 69.6 93.9 93.9 102.0 102.0 110.1 110.1 147.9 147.9 154.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Copy of Abutment_well
Reduced Level
Layer thickness
-2c / N
yz / N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
Deck Level
81.2
Well cap top(Assumed RSL)
76.0
LWL
70.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
End of Layer 2
65.0
End of Layer 3 Well kerb top Foundation Level
5.2
0.0
6.0
0.0
-4.0
0.0
1.0
0.0
6.0
0.0
2.0
0.0
2.0
0.0
9.3
0.0
1.7
0.0
0.0 38.0 38.0 81.7 81.7 65.6 65.6 69.6 69.6 93.9 93.9 102.0 102.0 110.1 110.1 147.9 147.9 154.8
63.0 53.7
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
Moment @ 52.0
Moment @ 76.0 c
Moment @ 76.0
(m)
(kN.m)
(kN.m)
(kN.m)
(kN.m)
1012.4
78.6
77.7
0.0
26042.0
0.0
1754.8
1.0
3675.8
73.0
72.6
0.0
75831.4
0.0
0.0
1.6
-1882.6
72.0
71.9
0.0
-37504.8
1.6
274.6
73.5
73.5
0.0
5898.9
1.6
1984.8
70.0
69.9
0.0
35436.4
0.0
1.6
795.7
66.0
66.0
0.0
11138.8
0.0
1.6
861.6
64.0
64.0
0.0
10339.8
1.6
0.0
1.6
4880.8
58.4
58.1
0.0
29914.7
1.6
0.0
1.6
1069.4
52.9
52.8
0.0
902.1
10.3
1.0
0.0
1.0
10.3
1.0
0.0
10.3
1.6
0.0
6.5
1.6
0.0
6.5
1.6
0.0
6.5
1.6
6.5
1.6
6.5 6.7
(m)
Moment @ 52.0 c
52.0 29.2 Total
0.0
12672.4
12672.4
Total Active Force
0.0
157999.3
157999.3
Total Active Moment
Grand total
20883.2
836.3
178882.5
2591.1
Passive Earth Pressure(Seismic Case)(LWL Case) Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
LWL
70.0
Well cap bottom
74.0
End Layer 1 RSL End of Layer 2 End of Layer 3 Well kerb top Foundation Level
N
2c * N (kN / m^2)
-4.0
0.0
25.0
5.7
10.0
0.0
1.0
0.0
25.0
5.7
10.0
0.0
6.0
0.0
25.0
5.7
10.0
0.0
2.0
0.0
25.0
5.7
10.0
0.0
2.0
0.0
25.0
5.7
10.0
0.0
9.3
0.0
25.0
5.7
10.0
0.0
1.7
0.0
25.0
5.7
10.0
0.0
yz * N (kN / m^2) 0.0 -228.9 -228.9 -171.5 -171.5 171.3 171.3 286.1 286.1 400.8 400.8 935.0 935.0 1032.5
73.0 67.0 65.0 63.0 53.7
5.7 5.7 5.7 5.7 5.7 5.7 5.7
52.0 18.0
Reduced Level
Layer thickness
2c * N
yz * N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN) LWL
70.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
-4.0
0.0
1.0
0.0
6.0
0.0
2.0
0.0
2.0
0.0
9.3
0.0
1.7
0.0
0.0 -228.9 -228.9 -171.5 -171.5 171.3 171.3 286.1 286.1 400.8 400.8 935.0 935.0 1032.5
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 52.0 c
Moment @ 52.0
(kN.m)
(kN.m)
10.3
1.6
0.0
1.6
2925.0
72.0
72.7
0.0
60430.9
6.5
1.6
0.0
1.6
-813.3
73.5
73.5
0.0
-17496.3
6.5
2.4
0.0
1.6
-2.1
70.0
2054.7
0.0
-4184.0
6.5
2.4
0.0
1.6
1858.1
66.0
65.9
0.0
25882.8
6.5
2.4
0.0
1.6
2790.2
64.0
64.0
0.0
33363.8
6.5
1.6
0.0
1.6
25268.3
58.4
57.7
0.0
144932.6
6.7
1.6
0.0
1.6
6950.6
52.9
52.8
0.0
5810.4
52.0 18.0 Total Total Passive Force
0.0
38977.0
38977.0
0.0 Total Passive Moment
0.0
1754.8
248740.2
248740.2
1754.8
Copy of Abutment_well
Passive relief due to (-ve) surcharge
Surcharge height =
Layer thickness c (m) (kN /m^2) (degree)
Reduced Level
LWL
70.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
0.3 m
N
70.0 m
y z * N (kN / m^2) 6.2
-4.0
0.0
25.0
2.5
10.0
6.2
5.7
1.0
0.0
25.0
2.5
10.0
6.2
5.7
6.0
0.0
25.0
2.5
10.0
6.2
5.7
2.0
0.0
25.0
2.5
10.0
6.2
5.7
2.0
0.0
25.0
2.5
10.0
6.2
5.7
9.3
0.0
25.0
2.5
10.0
6.2
5.7
1.7
0.0
25.0
2.5
10.0
6.2
5.7
74.0 m
6.2 73.0 m
6.2 67.0 m
6.2 65.0 m
52.0 18.0
6.2
63.0 m
6.2 Reduced Level
Layer thickness
53.7 m
yz * N
Projected Length of we
(FOS)
Force
(kN)
c.g. of force (m)
Moment @ 52.0 c (kN.m)
LWL
70.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
End of Layer 2
-4.0
6.2
10.3
1.6
-158.0
72.0
-3158.7
1.0
6.2
6.5
1.6
25.1
73.5
539.6
6.0
6.2
6.5
1.6
150.1
70.0
2701.4
2.0
6.2
6.5
1.6
50.2
66.0
703.7
2.0
6.2
6.5
1.6
50.2
64.0
603.2
9.3
6.2
6.5
1.6
233.8
58.4
1486.3
1.7
6.2
6.7
1.6
43.7
52.9
37.1
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
52.0 18.0 Total Grand Total Passive Force
Check for steining : Case 3 It is assumed that point of zero shear will be at a distance of Z m below from well cap bottom.
Total active force = 574.4
+
445.4
+
0.0
+
39.2 Z 0.0 1.6
2805.6
+
426.1 Z 1.6
+ Z
+
+
13.2 Z^2 1.6
Total Passive force = 0.0
2925.0
-158.0
+
0.0 Z + 1.6
+
-1487.6 Z 1.6
+
40.2 Z 1.6
+
186.4 Z^2 1.6
+
395.1
39372 Total Passive Moment
2912.6
251652.9
6.2 52.0 m
Passive relief due to (-ve) surcharge
Copy of Abutment_well
Eqating both active and passive earth pressure : 3825.3
+
305.5 Z
+
8.2 Z^2
=
2767.0
1058.3
+
1210.2 Z
+
-108.3 Z^2
=
0.0
-9.8
+
-11.2 Z
Z
=
11.2
+
Z^2
+
= 12.8
=
+
-904.7 Z
+
116.5 Z^2
0.0 12.0 m
2.0 This means, Point of zero shear will be at a distance of
Live Load Surcharge upto RL
Deck Level
81.2
HFL
76.0
Well cap top(MSL)
70.0
Well cap bottom
74.0
Well kerb top End Layer 2 Foundation Level
0.3 Length
Force c.g. of force
5.2
6.0
10.3
321.7
78.6
5337.4
6.0
10.3
370.5
73.0
4075.1
-4.0
6.0
10.3
-246.8
72.0
-2467.6
12.0
6.0
6.5
470.5
68.0
2821.0
0.0
6.0
6.5
0.0
0.0
0.0
0.0
6.0
6.5
0.0
0.0
0.0
0.0
6.0
6.5
0.0
0.0
0.0
62.0 0.0 0.0 0.0 915.8
9765.9
Active Earth Pressure(Seismic Case)(LWL Case) upto R Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
Deck Level
81.2
Well cap top(Assumed RSL)
76.0
Well cap bottom
74.0 62.0
End of Layer 2 End of Layer 3
62.0 m
N
2c / N (kN / m^2)
5.2
0.0
25.0
3.6
18.0
0.0
6.0
0.0
25.0
3.6
18.0
0.0
-4.0
0.0
25.0
3.6
10.0
0.0
70.0
End Layer 1 MSL
Moment @ 62.0 (kN. m)
6.0
19.2
LWL
62.0 m
62.0 m
Layer Ka = thickness Pressure (m) (kN / m^2)
Reduced Level
End Layer 1
12.0 m in layer 2 i.e. at RL
12.0
0.0
25.0
3.6
10.0
0.0
0.0
0.0
25.0
3.6
10.0
0.0
0.0
0.0
25.0
3.6
10.0
0.0
0.0
0.0
25.0
3.6
10.0
0.0
0.0
25.0
3.6
0.0
25.0
3.6
0.0 0.0 0.0
Well kerb top Foundation Level 19.2
yz / N (kN / m^2) 0.0 26.2 26.2 56.3 56.3 45.1 45.1 78.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
Copy of Abutment_well
Reduced Level
Layer thickness
-2c / N
yz / N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
Force due to
(FOS=3)
(kN)
Deck Level
81.2
Well cap top(Assumed RSL)
76.0
LWL
70.0
Well cap bottom
74.0
End Layer 1 MSL End of Layer 2 End of Layer 3
5.2
0.0
6.0
0.0
-4.0
0.0
12.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 26.2 26.2 56.3 56.3 45.1 45.1 78.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
62.0 0.0 0.0 0.0 0.0
Well kerb top
0.0 0.0
Foundation Level
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 62.0 c
Moment @ 62.0
(kN.m)
(kN.m)
10.3
1.0
0.0
1.0
696.9
78.6
77.7
0.0
10960.3
10.3
1.0
0.0
1.0
2530.5
73.0
72.6
0.0
26906.3
10.3
1.6
0.0
1.6
-1296.0
72.0
71.9
0.0
-12862.5
6.5
1.6
0.0
1.6
3015.0
68.0
67.5
0.0
16447.5
6.5
1.6
0.0
2.4
0.0
0.0
0.0
0.0
0.0
6.5
1.6
0.0
2.4
0.0
0.0
0.0
0.0
0.0
6.5
1.6
0.0
2.4
0.0
0.0
0.0
0.0
0.0
6.5
1.6
0.0
1.6
0.0
0.0
0.0
0.0
0.0
6.7
1.6
0.0
1.6
0.0
0.0
0.0
0.0
0.0
0.0
19.2 Total Total Active Force
0.0
4946.4
4946.4
0.0 Total Active Moment
41451.6 9765.9
Grand total
Passive Earth Pressure(Seismic Case)(LWL Case) upto Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
LWL
70.0
Well cap bottom
74.0
End Layer 1 RSL End of Layer 2 End of Layer 3
62.0 m
N
2c * N (kN / m^2)
yz * N (kN / m^2) 0.0 -98.3 -98.3 197.2 0.0 0.0 0.0 0.0 0.0 0.0
-4.0
0.0
25.0
2.5
10.0
0.0
12.0
0.0
25.0
2.5
10.0
0.0
0.0
0.0
25.0
2.5
10.0
0.0
0.0
0.0
25.0
2.5
10.0
0.0
0.0
0.0
25.0
2.5
10.0
0.0
0.0
25.0
2.5
0.0
5.7
0.0
25.0
2.5
0.0
5.7
62.0 0.0 0.0
5.7 5.7 5.7 5.7 5.7
0.0
Well kerb top Foundation Level 8.0
51217.4
41451.6
Copy of Abutment_well
Reduced Level
Layer thickness
2c * N
yz * N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
Force due to
(kN) LWL
70.0
Well cap bottom
74.0
End Layer 1 MSL
-4.0
0.0
12.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 -98.3 -98.3 197.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
62.0 0.0
End of Layer 2
0.0
End of Layer 3
0.0 0.0
Well kerb top
0.0 0.0
Foundation Level
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 62.0 c
Moment @ 62.0
(kN.m)
(kN.m)
10.3
1.6
0.0
1.6
1256.4
72.0
72.7
0.0
13397.3
6.5
1.6
0.0
1.6
2408.6
68.0
62.0
0.0
54.8
6.5
2.4
0.0
1.6
0.0
0.0
0.0
0.0
0.0
6.5
2.4
0.0
1.6
0.0
0.0
0.0
0.0
0.0
6.5
2.4
0.0
1.6
0.0
0.0
0.0
0.0
0.0
6.5
1.6
0.0
1.6
0.0
0.0
0.0
0.0
6.7
1.6
0.0
1.6
0.0
0.0
0.0
0.0
0.0 8.0 Total Total Passive Force
Passive relief due to (-ve) surcharge upto RL Layer thickness c (m) (kN /m^2) (degree)
Reduced Level
LWL
70.0
Well cap bottom
74.0
End Layer 1 MSL End of Layer 2 End of Layer 3 Well kerb top Foundation Level
62.0 m
Surcharge height =
N
0.0
3665.0
3665.0
0.3 m
y z * N (kN / m^2)
-4.0
0.0
25.0
2.5
10.0
6.2
5.7
12.0
0.0
25.0
2.5
10.0
6.2
5.7
0.0
0.0
25.0
2.5
10.0
6.2
5.7
0.0
0.0
25.0
2.5
10.0
6.2
5.7
0.0
0.0
25.0
2.5
10.0
0.0
5.7
0.0
0.0
25.0
2.5
10.0
0.0
5.7
0.0
0.0
25.0
2.5
10.0
0.0
5.7
62.0 0.0 0.0 0.0 0.0 0.0 8.0
0.0 Total Passive Moment
13452.1
13452.1
Copy of Abutment_well
Reduced Level
yz * N
Layer thickness
Projected
(FOS)
Force
(kN)
Length of we
c.g. of force (m)
Moment @ 62.0 c (kN.m)
LWL
70.0
Well cap bottom
74.0
End Layer 1 MSL End of Layer 2 End of Layer 3 Well kerb top Foundation Level
-4.0
6.2
10.3
1.6
-158.0
72.0
-1579.4
12.0
6.2
6.5
1.6
301.1
68.0
1805.6
0.0
6.2
6.5
1.6
0.0
0.0
0.0
0.0
6.2
6.5
1.6
0.0
0.0
0.0
0.0
0.0
6.5
1.6
0.0
0.0
0.0
0.0
0.0
6.5
1.6
0.0
0.0
0.0
0.0
0.0
6.7
1.6
0.0
0.0
0.0
62.0 0.0 0.0 0.0 0.0 0.0 8.0 Total
143.1
Case 3 Calculation for Loads and Moments upto RL
226.2
3808 Total Passive Moment
Grand Total Passive Force
13678.3
62.0 m
Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment at abutment base = (Due to long. Force)
= 574.4
x
574 kN (
78.5
+
-62.0
)
= =
574.4 9486.2 kN
x
16.5
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = ( Due to Class A = ( Due to FPLL = ( Due to SIDL = (
447.9 0.0 61.6 932.1
+ + + +
10.7 0.0 1.5 22.4
) ) ) )
x x x x
1.3 0.0 4.3 0.5
= = = =
587.1 0.0 268.1 429.5
kN.m kN.m kN.m kN.m
Copy of Abutment_well
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 62.0 m and @ cg of Foundation Level S.No.
1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
15.0
16.0
Item
Volume (m^3)
Unit Wt. (kN/m^3)
P (kN)
eL (m)
ML (kNm)
3816.7 932.1 61.6
1.2 1.2 1.2
4580.0 1118.5 73.9
895.8 0.0
1.2 1.2
1075.0 0.0
24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 3.0
16.2 219.7 182.7 86.1 15.1 426.2 -100.9 15.1 58.8 22.8
1.2 0.4 0.2 1.4 1.4 0.8 0.8 -1.5 -0.9 -1.4
19.4 87.9 32.0 122.7 20.6 319.6 -75.6 -22.7 -53.9 -30.8
18.0 18.0
3622.7 -264.8
-1.5 -1.5
-5434.0 397.1
338.6
2.1
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
0.7 9.2 7.6 3.6 0.6 17.8 -4.2 0.6 2.5 3.8
2.0 Nos. Total Load and moments at Abutment Shaft Bottom Backfill behind Abutment On Rectangular Portion (Above HFL) 201.3 On Rectangular Portion (Below HFL) -14.7 Front Fill on Well cap
18.8
6648.0
18.0
Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill ) 17.0 18.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb Total Loads and Moment at Well Foundation
Loads and moments upto RL
10344.5
71.8 20.5 32.2 0.0 207.2 0.0 0.0 0.0 0.0 0.0
22.5 22.5 22.5 12.0 22.5 12.0 14.0 12.0 10.0 10.0
=
17807.2
+
Moment, ML
=
2941
+
149.0
=
= MR
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2940.5
17956.1 kN
Total Active Earth Press. Moment.
Resultant Moment
1614.4 461.3 724.5 0.0 4662.5 0.0 0.0 0.0 0.0 0.0 17807.2
710.7 2940.5
62.0 m
Vertical Load
Moment, MT
7266.7
587 =
51217
+
Due to Horiz. Force at bearing Level
+
0
9486
+
64425 ^2
268
1285 ^2
+ =
64425
52
+
430
+
729.5
kN.m =
1284.7 kN.m
64438
Moment due to Tilt & Shift Total Loads upto Well Cap Top Level
Mts .=
(
10344.5
+
SHIFT
TILT
149 x ( 0.150 +
Total Loads below Well Cap Top Level
14 ) + 80
(
7463
TILT
+
0
= MR
Total Resultant Moment
=
Total Moment upto RL Passive Resistance
64438
62 m
13678
4062
=
=
P A
+
M Z
4062 kNm
=
68500 kNm
68500 kNm <
Hence, Moment will Transfer to the steining
P max.
x
Mts
+
MR + Mts
=
)
68500 = =
68500 54822 kN
=
17956.1 17.3
+
54822 21
=
1039.2
+
2640
=
3679.0 kPa
+
-13678.3
14.0 160.0
Copy of Abutment_well
P min.
=
P A
-
M Z
=
17956.1 17.3
-
54822 21
=
1039.2
-
2639.8
= =
Check for safety of section
1.0 6.3
+
-1601 kPa 1.6 2.6 8.3
=
0.5
< Section is uncracked < 1.0
6.1 Hence OK
Case4 Live Load Surcharge Layer Ka = thickness Pressure (m) (kN / m^2)
Reduced Level
Deck Level
81.2
HFL
75.6
Well cap top
Force c.g. of force
Moment @ Moment @ 52.0 76.0 (kN. m) (kN. m)
5.6
6.0
10.3
347.0
78.4
9156.4
831.1
-0.4
6.0
10.3
-25.4
75.8
-603.2
5.2
2.0
6.0
10.3
123.7
75.0
2844.3
1.0
6.0
6.5
39.2
73.5
843.0
6.0
6.0
6.5
234.5
70.0
4220.7
2.0
6.0
6.5
78.5
66.0
1099.4
2.0
6.0
6.5
78.5
64.0
942.5
9.3
6.0
6.5
365.3
58.4
2322.2
1.7
6.0
6.7
68.2
52.9
58.0
76.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
End of Layer 2
65.0
End of Layer 3
0.279 Length
63.0
Well kerb top
53.7
Foundation Level
52.0 29.2
1309.5
20883.2
836.3
Case4 Active Earth Pressure(Seismic Case)(HFL Case) Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
Deck Level
81.2
HFL
75.6
Well cap top
76.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
52.0
N
2c / N (kN / m^2)
5.6
0.0
25.0
3.6
18.0
0.0
-0.4
0.0
25.0
3.6
10.0
0.0
2.0
0.0
25.0
3.6
10.0
0.0
1.0
0.0
25.0
3.6
10.0
0.0
6.0
0.0
25.0
3.6
8.0
0.0
2.0
0.0
25.0
3.6
8.0
0.0
2.0
0.0
25.0
3.6
9.3
0.0
9.3
0.0
25.0
3.6
10.0
0.0
1.7
0.0
25.0
3.6
10.0
0.0
29.2
yz / N (kN / m^2) 0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 58.5 58.5 84.5 84.5 89.2
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
Copy of Abutment_well
Reduced Level
Layer thickness
-2c / N
yz / N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
Deck Level
81.2
HFL
75.6
Well cap top
0.0 0.0
2.0
0.0
76.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
End of Layer 2
65.0
End of Layer 3
5.6 -0.4
0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 58.5 58.5 84.5 84.5 89.2
1.0
0.0
6.0
0.0
2.0
0.0
2.0
0.0
9.3
0.0
1.7
0.0
63.0
Well kerb top
53.7
Foundation Level
52.0
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 52.0 c
Moment @ 52.0
(kN.m)
(kN.m)
Moment @ 76.0 c
Moment @ 76.0
(kN.m)
(kN.m)
10.3
1.0
0.0
1.0
811.2
78.4
77.5
0.0
20644.6
0.0
1184.3
10.3
1.0
0.0
1.0
-116.2
75.8
75.8
0.0
-2762.7
0.0
24.0
10.3
1.0
0.0
1.0
612.2
75.0
75.0
0.0
14054.8
6.5
1.0
0.0
1.0
221.3
73.5
73.5
0.0
4755.2
6.5
1.0
0.0
1.0
1636.8
70.0
69.8
0.0
29205.9 5805.7
6.5
1.6
0.0
1.6
414.7
66.0
66.0
0.0
6.5
1.6
0.0
1.6
454.0
64.0
64.0
0.0
5447.1
6.5
1.6
0.0
1.6
2704.7
58.4
58.1
0.0
16428.2
6.7
1.6
0.0
1.6
613.8
52.9
52.8
0.0
517.0
29.2 Total
0.0
7352.6
7352.6
Total Active Force
0.0
94095.8
94095.8
Total Active Moment
Grand total
20883.2
836.3
114979.0
2044.6
Passive Earth Pressure(Seismic Case) Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
RSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
N
2c * N (kN / m^2)
2.0
0.0
25.0
5.7
8.0
0.0
2.0
0.0
25.0
5.7
9.3
0.0
9.3
0.0
25.0
5.7
10.0
0.0
1.7
0.0
25.0
5.7
10.0
0.0
yz * N (kN / m^2) 0.0 91.8 91.8 198.5 198.5 732.7 732.7 830.2
5.7 5.7 5.7 5.7
52.0
15.0
Reduced Level
Layer thickness
2c * N
yz * N
Projected Length of wel
(FOS)
c
Force due to c soil
(FOS)
(kN)
RSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
2.0
0.0
2.0
0.0
9.3
0.0
1.7
0.0
0.0 91.8 91.8 198.5 198.5 732.7 732.7 830.2
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 52.0 c
Moment @ 52.0
(kN.m)
(kN.m)
6.5
2.4
0.0
1.6
372.8
66.0
65.7
0.0
5100.3
6.5
2.4
0.0
1.6
1179.1
64.0
63.9
0.0
14020.1
6.5
1.6
0.0
1.6
17614.1
58.4
57.5
0.0
96278.9
6.7
1.6
0.0
1.6
5521.2
52.9
52.8
0.0
4595.4
52.0 15.0 Total Total Passive Force
0.0
24687.3
24687.3
0.0 Total Passive Moment
0.0
1208.3
119994.8
119994.8
1208.3
Copy of Abutment_well
Passive relief due to (-ve) surcharge
Surcharge height =
Layer thickness c (m) (kN /m^2) (degree)
Reduced Level
RSL
67.0
End of Layer 2
65.0
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
0.3 m
N
y z * N (kN / m^2)
67.0 m
2.0
0.0
25.0
5.7
10.0
14.4
5.7
2.0
0.0
25.0
5.7
10.0
14.4
5.7
9.3
0.0
25.0
5.7
10.0
14.4
5.7
1.7
0.0
25.0
5.7
10.0
14.4
5.7
14.4
65.0 m
63.0 m 14.4
52.0 14.4
53.7 m
14.4
52.0 m
15.0
Reduced Level
Layer thickness
yz * N
Projected Length of we
(FOS)
Force
(kN)
c.g. of force (m)
Moment @ 52.0 c (kN.m)
Well cap top(MSL)
67.0
Well cap bottom
65.0
End of Layer 1
2.0
14.4
6.5
1.6
116.9
66.0
1638.1
2.0
14.4
6.5
1.6
116.9
64.0
1404.3
9.3
14.4
6.5
1.6
544.3
58.4
3460.2
1.7
14.4
6.7
1.6
101.7
52.9
86.4
63.0
Well kerb top
53.7
End Layer 2
52.0 15.0 Total Grand Total Passive Force
Check for steining : Case4 It is assumed that point of zero shear will be at a distance of Z m below from RSL.
Total Active force = 574.4
+
719.1
+
0.0
+
39.2 Z 0.0 1.6
3165.3
+
317.3 Z 1.6
+ Z
+
+
7.3 Z^2 1.6
Total Passive force = 0.0
0.0
0.0
+
0.0 Z + 2.4
+
0.0 Z 1.6
+
93.5 Z 1.6
+
149.1 Z^2 1.6
+
879.8
25567.1 Total Passive Moment
6589.0
126583.8
Passive relief due to (-ve) surcharge
Copy of Abutment_well
Eqating both active and passive earth pressure : 4458.8
+
237.5 Z
+
4.5 Z^2
=
0.0
4458.8
+
179.1 Z
+
-88.7 Z^2
=
0.0
-50.3
+
-2.0 Z
Z
=
2.0
+
Z^2
+
14.3
=
0.0
=
8.2 m
+
58.5 Z
+
93.2 Z^2
2.0 This means, Point of zero shear will be at a distance of
Live Load Surcharge upto RL
Deck Level
81.2
HFL
75.6
0.3 Length
Well cap bottom
74.0 73.0
MSL
67.0
End of Layer 2
58.8
Well kerb top
53.7 52.0
5.6
6.0
10.3
347.0
78.4
-0.4
6.0
10.3
-25.4
75.8
-429.8
2.0
6.0
10.3
123.7
75.0
1998.0
1.0
6.0
6.5
39.2
73.5
574.7
6.0
6.5
234.5
70.0
2616.9 1310.0
8.2
6.0
6.5
320.6
62.9
0.0
6.0
6.5
0.0
63.0
0.0
0.0
6.0
6.5
0.0
53.7
0.0
0.0
6.0
6.7
0.0
52.0
0.0
1039.7
Active Earth Pressure(Normal Case) upto RL Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
Deck Level
81.2
HFL
75.6
Well cap top
76.0
Well cap bottom
74.0
End Layer 1
73.0
RSL
67.0
Well kerb top Foundation Level
6782.5
6.0
22.3
End of Layer 3
Moment @ 58.8 (kN. m)
63.0
Foundation Level
End of Layer 2
Force c.g. of force
76.0
End Layer 1
End of Layer 3
58.8 m
58.8 m
Layer Ka = thickness Pressure (m) (kN / m^2)
Reduced Level
Well cap top
8.2 m from RSL i.e. at RL
12852.3
58.8 m
N
2c / N (kN / m^2)
5.6
0.0
25.0
2.5
18.0
0.0
-0.4
0.0
25.0
2.5
10.0
0.0
2.0
0.0
25.0
2.5
10.0
0.0
1.0
0.0
25.0
2.5
10.0
0.0
6.0
0.0
25.0
2.5
8.0
0.0
8.2
0.0
25.0
2.5
8.0
0.0
0.0
0.0
25.0
2.5
9.3
0.0
0.0
0.0
25.0
2.5
10.0
0.0
0.0
0.0
25.0
2.5
10.0
0.0
58.8 63.0 53.7 52.0 22.3
yz / N (kN / m^2) 0.0 41.0 41.0 39.3 39.3 47.4 47.4 51.5 51.5 70.9 70.9 97.4 0.0 0.0 0.0 0.0 0.0 0.0
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
Copy of Abutment_well
Reduced Level
Layer thickness
-2c / N
yz / N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
Deck Level
81.2
HFL
75.6
Well cap top Well cap bottom
74.0 73.0
RSL
67.0
End of Layer 2
58.8
Well kerb top Foundation Level
0.0 0.0
2.0
0.0
76.0
End Layer 1
End of Layer 3
5.6 -0.4
0.0 41.0 41.0 39.3 39.3 47.4 47.4 51.5 51.5 70.9 70.9 97.4 0.0 0.0 0.0 0.0 0.0 0.0
1.0
0.0
6.0
0.0
8.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
63.0 53.7
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
(m)
Moment @ 58.8 c
Moment @ 58.8
(kN.m)
(kN.m)
21928.1
10.3
1.0
0.0
1.0
1178.3
78.4
77.5
0.0
10.3
1.0
0.0
1.0
-168.7
75.8
75.8
0.0
-2858.9
10.3
1.0
0.0
1.0
889.3
75.0
75.0
0.0
14333.2
6.5
1.0
0.0
1.0
321.5
73.5
73.5
0.0
4708.0
6.5
1.0
0.0
1.0
2377.6
70.0
69.8
0.0
26160.8
6.5
1.6
0.0
1.6
2794.5
62.9
62.7
0.0
10819.0
6.5
1.6
0.0
1.6
0.0
63.0
0.0
0.0
0.0
6.5
1.6
0.0
1.6
0.0
53.7
0.0
0.0
0.0
6.7
1.6
0.0
1.6
0.0
52.0
0.0
0.0
0.0
52.0 22.3 Total
0.0
7392.5
7392.5
Total Active Force
0.0
75090.2
75090.2
Total Active Moment
12852.3
Grand total
Passive Earth Pressure(Seismic Case) upto RL
RSL
67.0
End of Layer 2
58.8
End of Layer 3
63.0
Well kerb top
53.7
Foundation Level
58.8 m
Layer thickness c (m) (kg / cm^2) (degree)
Reduced Level
87942.5
N
2c * N (kN / m^2)
8.2
0.0
25.0
2.5
8.0
0.0
0.0
0.0
25.0
2.5
9.3
0.0
0.0
0.0
25.0
2.5
10.0
0.0
0.0
0.0
25.0
2.5
10.0
0.0
yz * N (kN / m^2) 0.0 161.1 0.0 0.0 0.0 0.0 0.0 0.0
5.7 5.7 5.7 5.7
52.0 8.2
Reduced Level
Layer thickness
2c * N
yz * N
Projected Length of well
(FOS)
c
Force due to c soil
(FOS)
(kN)
RSL
67.0
End of Layer 2
58.8
End of Layer 3 Well kerb top Foundation Level
8.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
63.0 53.7 52.0
0.0 161.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Force due to
(kN)
c.g. of force c (m)
c.g. of force (m)
(m)
Moment @ 58.8 c
Moment @ 58.8
(m)
(kN.m)
(kN.m)
6.5
2.4
0.0
1.6
2674.2
62.9
61.6
0.0
7284.9
6.5
2.4
0.0
1.6
0.0
63.0
0.0
0.0
0.0
6.5
1.6
0.0
1.6
0.0
53.7
0.0
0.0
0.0
6.7
1.6
0.0
1.6
0.0
52.0
0.0
0.0
0.0
8.2 Total Total Passive Force
0.0
2674.2
2674.2
0.0 Total Passive Moment
7284.9
7284.9
Copy of Abutment_well
Passive relief due to (-ve) surcharge upto RL
58.8 m
Layer thickness c (m) (kN /m^2) (degree)
Reduced Level
RSL
67.0
End of Layer 2
58.8
End of Layer 3
Surcharge height =
N
0.3 m
y z * N (kN / m^2)
8.2
0.0
25.0
5.7
10.0
14.4
5.7
0.0
0.0
25.0
5.7
10.0
14.4
5.7
0.0
0.0
25.0
5.7
10.0
14.4
5.7
0.0
0.0
25.0
5.7
10.0
14.4
5.7
(FOS)
Force
(kN)
63.0
Well kerb top
53.7
Foundation Level
52.0 8.2
Reduced Level
yz * N
Layer thickness
Projected Length of we
c.g. of force (m)
Moment @ 58.8 c (kN.m)
RSL
67.0
End of Layer 2
58.8
End of Layer 3
8.2
14.4
6.5
1.6
477.7
62.9
1951.9
0.0
14.4
6.5
1.6
0.0
63.0
0.0
0.0
14.4
6.5
1.6
0.0
53.7
0.0
0.0
14.4
6.7
1.6
0.0
52.0
0.0
63.0
Well kerb top
53.7
Foundation Level
52.0 8.2 Total
477.7
Case 4 Calculation for Loads and Moments upto RL
= 574.4
x
574.4 kN (
78.5
+
-58.8
)
= =
574.4 11299.3 kN
Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =
(
83.5 0.0 61.6 932.1
( ( (
+ + + +
2.0 0.0 1.5 22.4
) ) ) )
x x x x
1.3 0.0 4.3 0.5
= = = =
109.4 0.0 268.1 429.5
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 58.8 m and @ cg of Foundation Level S.No. 1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
Item
Volume (m^3)
Unit Wt. (kN/m^3)
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
9236.8
58.8 m
Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment at abutment base = (Due to long. Force)
1951.9
3152 Total Passive Moment
Grand Total Passive Force
0.7 9.2 7.6 3.6 0.6 17.8 -4.2 0.6 2.5 3.8
2.0 Nos. Total Load and moments at Abutment Shaft Bottom
24.0 24.0 24.0 24.0 24.0 24.0 22.5 24.0 24.0 3.0
P (kN) 3816.7 932.1 61.6
eL (m) 1.2 1.2 1.2
ML (kNm) 4580.0 1118.5 73.9
167.0 0.0
1.2 1.2
200.4 0.0
16.2 219.7 182.7 86.1 15.1 426.2 -94.6 15.1 58.8 22.8
1.2 0.4 0.2 1.4 1.4 0.8 0.8 -1.5 -0.9 -1.4
19.4 87.9 32.0 122.7 20.6 319.6 -70.9 -22.7 -53.9 -30.8
5925.5
6396.8
kN.m kN.m kN.m kN.m
x
19.7
Copy of Abutment_well
15.0
Backfill behind Abutment
16.0
On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL) Front Fill on Well cap
201.3 -14.7 18.8
18.0 10.0 10.0
3622.7 -147.1 188.1
Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill ) 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0
Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb
9589
71.8 20.5 32.2 0.0 261.8 0.0 0.0 0.0 0.0 0.0
22.5 22.5 22.5 12.0 22.5 12.0 14.0 12.0 10.0 10.0
Total Loads and Moment at Well Foundation
Loads and moments upto RL
-1.5 -1.5 2.1
-5434.0 220.6 394.8 1578.3
1614.4 461.3 724.5 0.0 5889.7 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18279
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1578.3
58.8 m
Vertical Load
=
18279
+
Moment, ML
=
1578
+
141
=
Total Active Earth Press. Moment.
87943
+
18420 kN Due to Horiz. Force at bearing Level
11299
+
48 =
Moment, MT
=
Resultant Moment
MR
109 =
+
0
+
101774 ^2
268
807 ^2
+ =
430
+ 101774 kN.m
906
=
807 kN.m
101777
Moment due to Tilt & Shift Total Loads upto Well Cap Top Level
Mts .= (
9589.2
+
SHIFT
141.0
TILT
Total Loads below Well Cap Top Level
x ( 0.150
17.1 ) + ( 80.0
TILT
8689.9
+
0.0 =
MR
Total Resultant Moment
=
101777
Total Moment upto RL
58.8 m
Passive Resistance
=
P min.
=
=
P A
4477
MR + Mts 9237
P A
+
M Z
-
M Z
=
=
106254 kNm <
106254
+
= =
106254 97017 kN
18279 17.28
+
97017 20.77
=
1058
+
4672
=
5729 kPa 18279 17.28
-
97017 20.77
1058
-
4672
=
= = 1.1 6.3
106254 kNm
=
=
Check for safety of section
4476.8 kNm
Mts
+
Hence, Moment will Transfer to the steining
P max.
) x
-3614 kPa 3.6 4.7 8.3
=
0.7
+
< Section is uncracked < 1.0
-9236.8
6.1 Hence OK
17.1 160.0
Copy of Abutment_well
Summary of Loads and Moments at Abutment Shaft Base LWL with max. LL Normal Case
Load (kN) ML (kN.m) MT (kN.m)
6670.8 5407.2 1857.1
Seismic Case
6670.8 6507.3 1857.1
HFL with min. LL Normal Case
5965.5 5071.2 900.4
Seismic Case
5965.5 5624.0 900.4
Summary of Base Pressure at Well Foundation Level Max. Base Pressure V (kN)
Min. Base Pressure V (kN)
LWL with max. LL Normal case
587
587
HFL with min. LL Normal case
566
566
LWL with max. LL Seismic case
591
591
HFL with min. LL Seismic case
1000
141
Copy of Abutment_well
Reinforcement in abutment well steining Since steining is in compression only minimum reinfrocement shall be provided as per Cl. 708.3.4 42.25 4 a. longitudinal reinforcememt @ 0.12% of X-section area =
Steining Area =
-
20.25
=
x
=
0.12 100 20734.5115
mm
17.279 m sq
17.279
x
1000000
2
Longitudinal reinf. Shall be distributed equally on both faces of steining. Area of steel for each face =
Provide
20734.51 2
=
10367 mm
2
20.000 mm dia at each face ( Providing =
36.000 bars of
11310 mm^2
Hence OK
b. Transverse reinforcement. @ .04% by volume =
=
0.04 100
x
17.279
6911.504
x
6.5 2
x
1000000
7850.00
=
54.26
+
4.5
Kg/m of stg.
Length of one set (one inner+one outer) hoopbars 2 x
= Using
10
x
(
mm hoopbars, wt/set=
> No of sets/m of stg= > spacing req =
1000 2.5
34.5575192
x
=
2.5
54.26 21.30601 =
> Provide Hoop bars @
300
)
=
0.62
=
34.557519 m
21.306009 Kg
nos
392.7 mm c/c on each face.
Hence OK
Design of Well Curb Volume of well kerb
=
Min. reinforcement in terms of wt.
=
Provide
21.60 m^3 72.00 kg / m^3
18.00 Nos. 72.00 Nos. of stirrups 6.00 Nos. of links = 75.00 mm = 7850.00 kg / m^3
72.00 sets Clear cover Unit wt. of steel
x
21.60
25.00 dia bar around the periphery. 12.00 dia in well kerb. 12.00 dia in one set.
=
1555.15 kg
No. of bars in top layer No. of bars in bottom layer
= =
5.00 1.00
925.0 225.0
1550.00
65.00
Bar mark
1.00 to
7.00
7.00 Dia
12.00
5.00 Dia
18.00
6.00 Dia
=
6451.00
=
Bar mark
8.00 to
Bar mark
13.00 to
=
=
3.14
x
6451.00 =
3.14
x
5575.00 =
3.14
x
5624.00
x 5575.000
3.85
x
7.00
=
546.38 kg
x
3.85
x
5.00
=
337.27 kg
3.85
x
6.00
5624.00 x
=
Total Balance to be provided in the form of stirups and ties
=
1555.15
-
1291.94
=
Check for the Percentage of remaining steel
=
263.21
/
1555.15
=
263.21 Kg 0.17 %
408.29 kg
1291.9 kg
Copy of Abutment_well
Wt. of stirrups 925 225.0
1550.0 1579.6
65.00 Stirrups Perimetre of one stirrups =
4344.63 mm
Links Average Length of one link =
462.50 mm
Total Length of all the links =
6.00
Total length of the one set of strip and link
=
Weight Per Set
0.89
=
x
x
Total no of sets required
=
263.21
Total no of sets provided
=
72.00
Total weight of all the provided sets Total wt. of reinforcement provided in curb
=
462.50
=
2775.00 mm
4344.63
+
2775.00
7119.63
=
/
6.32
6.32 x =
1291.94
=
=
41.66
72.00 = +
7119.63 mm
6.32 Kg
454.87
454.87 Kg =
1747
> Hence OK
1555 kg
Design of Return Wall
Design of Abutment Well
0.300 m
3.500 m
X
0.300 m
y
2.633 m 1
dy 1.5
X Earth pressure due to live load surcharge =
0.279
x
=
0.279
x
+
5.029 y ) dy
18.000
x
1.200
=
6.035 kN/m^2
=
5.029 y kN/m^2
Taking a strip of thickness "dy" at a depth "y" from top. Earth pressure on this strip dMx
=
(
Mx
=
(
6.035 6.035 =
+
1.125
x
=
5.029 y ) dy (
+
18.000 {
41.850
5.029 y^3
+
x
1.500
(
x
y
(
2.633
1.125 ) x (
+
-y ) } ^2 / 2
6.934 +
6.035 y^2
-31.785 y
y^2 +
-5.267 y ) 34.875 y
+
41.850 )
dy
-26.487 y^2 ) dy
1.125
x
(
5.029 y^3
+
-20.452 y^2
=
1.125
x
(
1.257 y^4
=
1.125
x
(
1.257
x
+
-6.817 y^3 2.633 ^4
x
2.633 ^2
+
+
3.090 y
+
After integrating , we get
+ =
1.125
=
1.125
1.545 x
Mx
=
63.999 kN.m
Mx
=
63.999 2.633
(
60.459
+
56.888
=
24.303 kN.m /m
12 mm and clear cover of
Available effective depth
Required Ast
=
24.303 200
41.850
-124.490
x
Adopting steel bars Dia.
+ +
+
1.545 y^2
+
-6.817
x
x
2.633
10.714
+
41.850 y 2.633 ^3
+
110.204 )
50.000 mm.
=
300
-50.000
=
244.000 mm
x x
1000000 0.878
-6.000
= x
567.22 mm^2 / m
244.000
Provide
12.000 mm dia bar @
150.000 mm c/c horizontally on earth face. ( Provided steel =
Provide
10.000 mm dia bar @
150.000 mm c/c horizontally on other face. ( Provided steel =
753.98 mm^2/m ) 523.60 mm^2/m )
Provide
10.000 mm dia bar @
150.000 mm c/c vertically on both faces. ( Provided steel =
523.60 mm^2/m )
This return will also bend in a vertical plane due to its self wt. Mx
=
0.500
x
(
0.300
+
Mx
=
0.500
x
(
2.933 )
x
Moment due to railing
=
Moment due to railing kerb
=
Total moment at vertical plane
2.633 )
x
32.407
3.500
x
=
47.530 kN.m
0.300
3.500
x
3.000
x
1.750
=
18.375 kN.m
0.300
x
0.450
x
3.500
x
24.000
+
19.845
=
155007.23
=
47.530
+
18.375
=
x
x
1.750
24.000
=
x
1.286
19.845 kN.m
85.750 kN.m
Check for effective depth 85750000.00 d ^2
=
1.844
=
d
x
300.000
8.58E+07 1.844
=
x
393.710 mm
Adopting steel bars Dia.
x
300.000 <
20 mm and clear cover of
d ^2
2633.33 (Hence |OK) 50.000 mm.
provide reinforcement at top in two layers Available effective depth
Required Ast
Check : 0.200 100.000
=
This steel should not be less than x
2633.33
Governing steel at top of cantilever return
Kangsabati
85.750 200
x
=
2633.33
=
2538.33 mm
-50.000
x x
1000000 0.878
-20.000
-25.000
= x
192.4 mm^2
2538.33
0.200 % of bt.d as per 305.16 of IRC : 21. 300.00
=
1580.00 mm^2
=
1580.0 mm^2
Provide
6.000 bars of
20.000 mm dia at top face in two layers. ( Providing =
1885.0 mm^2
Provide
3.000 bars of
12.000 mm dia at bottom in sloping face. ( Providing =
339.3 mm^2
93/1 on NH - 6
Copy of Abutment_well
Design of Dirt Wall Dirt wall will be designed as a vertical cantilever. Surcharge Pressure 0.279 x
18.00
x
1.20
=
6.04 kN/m^2
6.04
2.98 m
14.97 kN/m^2
Earth Pressure Diagram Intensity for = rectangular portion
0.279
x
=
6.04
Intensity for = triangular portion
0.28
F1
18.00
x
1.20
=
x
2.98
x
10.25
=
x
18.00
x
2.98
=
14.97 kN/m^2
2.98
x
10.25
F2
=
0.50
x
14.97
x
Total F
=
184.19
+
228.51
=
412.69 kN
Moment @ RL
184.19 kN
=
228.51 kN
78.213 m (at dirt wall base)
M1
=
184.19
x
1.49
=
274.21 kN.m
M2
=
228.51
x
1.25
=
285.76 kN.m
=
559.96 kN.m
Total M (at dirt wall base) HL
6.04 kN/m^2
=
412.69 kN
Total moment at the base of dirt wall
ML
=
=
559.96 kN.m
=
559.96 10.25
Thickness of dirtwall
=
0.30 m
Adorting clear cover on either face
=
50.00 mm
=
(Centre of pr. considered at an elevation of 0.42m of the ht. of the abutment shaft as per cl. 217.1 of IRC:6
559.96 kN.m
54.63 kN.m/m
(a) Vertical steel on earth face Adopting steel bars Dia.
=
Available effective depth
=
300.00
=
240.00 mm
Rquired effctive depth
Required Ast
=
=
20.00 mm -50.00
-10.00
54.63 1.84
x x
1.00E+06 1000.00
54.63 200.00
x x
1.00E+06 0.88
=
172.12 mm
<
240.00 OK
= x
1296.3 mm^2/m
240.00
Increasing this by 50% to resist the increased tensile forces due to non linear stress pattern above the bracket.( as suggested by note 8 of enclosure to Ministry of Surface Transport (India) Circular no. RW/NH - 34015 / 2 / 86 - S & R dated 22.6.94) Required Ast
=
1.50
x
1296.28
=
1944.43 mm^2/m
Minimum steel
=
0.06 100.00
x
300.00
x
1000.00
=
1944.4 mm^/m
Governing vertical steel at earth face Provide
16.00 mm dia bar @
100.00 mm c/c as vertical steel at earth face. ( Provided steel =
=
180.00 mm^2/m
2010.6 mm^2/m )
Copy of Abutment_well (b) Distribution steel on earth face Adopting distribution steel bars Dia.
=
Available effective depth
=
300.00
=
0.30
x
=
16.39 200.00
x x
1.00E+06 0.88
x
229.00
x
300.00
x
1000.00
0.30 M Required Ast
10.00 mm -50.00
-16.00 54.63
-5.00
=
=
16.39 kN.m/m
229.00 mm
=
407.57 mm^2/m
=
180.00 mm^2/m
0.06% of cross section
Minimum steel
Governing vertical steel at earth face Provide
10.00 mm dia bar @
=
0.06 100.00
=
407.57 mm^/m
150.00 mm c/c as vertical steel at earth face. ( Provided steel =
523.60 mm^2/m )
(c) Vertical steel on other face 0.12 % of cross section
Minimum Reinforcement
Provide
12.00 mm dia bar @
=
0.12 100.00
x
300.00
x
1000.00
=
150.00 mm c/c as vertical steel at earth face. ( Provided steel =
360.00 mm^2/m
753.98 mm^2/m )
(d) Distribution steel on other face Adopting distribution steel bars Dia.
=
10.00 mm 0.06% of cross section
Minimum distribution steel
Provide
10.00 mm dia bar @
=
0.06 100.00
x
300.00
x
1000.00
150.00 mm c/c as vertical steel at earth face. ( Provided steel =
=
180.00 mm^2/m
523.60 mm^2/m )
Copy of Abutment_well
SUMMARY OF LOADS AND MOMENTS AT THE BASE OF ABUTMENT SHAFT S.No.
Case
P (kN)
Ml (kN-m)
Mt (kN-m)
A) 1.00 2.00
Normal Case LWL Condition with Maximum Live Load HFL Condition with Minimum Live Load
6670.85 5965.47
5407.23 5071.16
1857.09 900.42
B) 3.00 4.00
Seismic Case(Longitudinal) LWL Condition with Maximum Live Load HFL Condition with Minimum Live Load
6670.85 5965.47
6507.26 5624.01
1857.09 900.42
Check For Cracked / Uncracked Section Length of the Section Width of the Section Gross Area of Section (Ag)
= = = =
1025.00 cm 100.00 cm 1025.00 1.03E+05 cm^2
Gross M.O.I. of Section ( Igxx )
=
8.54E+07
cm^4
Gross M.O.I. of Section ( Igyy )
=
8.97E+09
cm^4
x
100.00
Y
X
X 100.00 cm
Y 1025.00 cm Abutment Section Transformed Sectional Properties of Section Adopting Modular ratio , m = (Both in Tension as well in Compression) Dia. of Bars No. of Bars on each longer face of abutment(tension face) = Dia. of Bars No. of Bars on each longer face of abutment(compression face) = No. of Bars on each Shorter face of Abutment(both face) = Total bars in Section = Steel Area As = % of Steel = Effective Cover = Y 251.33 cm^2
10.00 2.00 cm 80.00 1.60 cm 80.00 6.00
128 128 167
172.00 436.30 cm^2 0.43 % 7.00 cm
12.06 cm^2 X
43.00 cm X 505.50 cm Y
Asx = 251.33 cm^2 Asy = 12.06 Area of concrete , Ac = Ag - As = 102500.00 -436.30 C.G. of Steel placed on longer face = 43.00 C.G. of Steel placed on shorter face = 505.50 Transformed Area of Section Atfm= Ac +m.As = 106426.74 Transformed M.Itxx. = Igxx+2(m-1).Asx . ax^2 = 85416666.67 + 8364678.94 = Zxx = Itxx/(d/2) = 1875626.91 cm^3 Transformed M.Iyy. = Igyy+2*(m-1).As . ay^2 Ityy = 8974088541.7 + 55487597.6 = Zyy = Iyy/(d/2) = 17618685.15 cm^3 Permissible Stresses Minimum Gross Moment of Inertia ,
Imin.
Area of Section = Hence Least radius of Gyration,r =
=
cm^2 =
1.02E+05 cm^2
cm cm cm^2 93781345.60 cm^4
9029576139.3 cm^4
8.54E+07 cm^4 1.03E+05 cm^2 Imin/Ag =
0.29 m
Copy of Abutment_well
Effective Length of Abutment Shaft (Refer Notes :(2) and (3) at Page 42 of IRC:21-1987) Abutment Shaft Height ,L= Effective length , leff. Slenderness ratio (leff./r)= Type of Member
2.22 m Service Condition (1.75 x L) = 13.47 (<50) ===>Short Column
3.89 m
Stress reduction Coefficient (Refer cl: 306.4.3of IRC:21) 1.00 Permissible Stresses (kg/cm^2) for M35 Grade of Concrete cbc 116.67 Kg/cm^2 co 87.50 Kg/cm^2 Basic tensile Stress -6.70 Kg/cm^2 Permissible Stresses (kg/cm^2) for S415 Grade of Steel st -2000.00 Kg/cm^2
Check for Cracked/ Uncracked Section of Abutment Shaft Normal Case Max. L.L. Min. L.L. LWL Case HFL Case
Item
S. No.
Seismic Case Max. L.L. Min. L.L. LWL Case HFL Case
(1). (2) (3)
Loads and Moments P (t) Mx (tm) My (tm)
667.08 540.72 185.71
(4) (5) (6) (7)
Actual Stresses (kg/cm^2) co,cal (P/Atfm) x cbc,cal (Mx/Zxx) y cbc,cal (My/Zyy) cbc,cal = (5)+(6)
6.27 28.83 1.05 29.88
5.61 27.04 0.51 27.55
6.27 34.69 1.05 35.75
5.61 29.98 0.51 30.50
Permissible stresses (kg/cm^2) co cbc
87.50 116.67
87.50 116.67
131.25 175.00
131.25 175.00
Check for Minimum Steel Area (cm^2) Conc. Area Required for Direct Stress= (1)/(8) % of area required 0 .008 x (10) % of Ag = 0.003 x Ag Governing Minimum Steel (cm^2) Provided Steel Area (cm^2) Remark
7623.82 60.99 307.50 307.50 436.30 (OK)
6817.69 54.54 307.50 307.50 436.30 (OK)
5082.55 40.66 307.50 307.50 436.30 (OK)
4545.12 36.36 307.50 307.50 436.30 (OK)
Check for safety of Section co,cal + co
0.33 < 1 (OK)
0.30 < 1 (OK)
0.25 < 1 (OK)
0.22 < 1 (OK)
(10) (11) (12) (13) (14) (15)
(15)
cbc,cal cbc
596.55 507.12 90.04
667.08 650.73 185.71
596.55 562.40 90.04
Check for Cracked/Uncracked Section (Stresses are in kg/cm^2) (17) (18)
co,cal cbc,cal Permissible Basic tensile stress in Concrete.
-23.61 -6.70
-21.94 -6.70
-29.48 -10.05
-24.89 -10.05
(19)
Section is to be designed as
Cracked
Cracked
Cracked
Cracked
Note:- The design for cracked section in the succeeding pages has been carried out as per computer programme, which is based on "Behaviour of columns and walls" in the book entitled " Reinforced Concrete Structural Elements " by P. Purushothaman . Provision Of Binders and Ties As per clause 306.3.2 the diameter of transverse reinforcement of any type should not be less than one quarter the diameter of the largest longitudinal bar in the column and in no case less than 8 mm The diameter of the main longitudinal bar is 20 mm, hence required dia of transverse reinforcement is 10 mm However provide 10 mm dia binders and ties. As per clause 306.3.3 of IRC: 21- 1987 the pitch of transverse reinforcement should not exceed (i) (ii) (iii)
300.00 mm The least lateral dimension of the column 12 times the dia of the smallest longitudinal bar Provide # 10 mm dia binders and 10 mm dia ties @ 175 mm
= =
1000.00 240.00
mm mm
Copy of Abutment_well
Design of Abutment Cap (M-35) As the cap is fully supported on the abutment. Minimum thickness of the cap required as per cl. 716.2.1 of IRC : 78- 1983 is 225 mm. 900.0 mm. However the thickness of abutment cap is kep Assuming a cap thickness of
225.0 mm
Volume of abutment cap
=
225.0
x
1350.0
x
10250.0
=
3113437500 mm^3
As per cl 716.2.1 of IRC : 78 - 1983 Quantity of steel
= =
1.0 % of volume x
1.0 100.0
Quantity of steel to be provided at top
=
15567188 mm^3
Quantity of steel to be provided at bottom
=
15567188 mm^3
=
3113437500
31134375 mm^3
Top Face (a) Longitudnal steel Quantity of steel to be provided in longitudnal direction Assuming a clear cover of
=
=
Length of bar
=
10250.0
Area of steel required in longitudnal direction
=
7783594 10150.0
Provide
10.0 bar of
7783593.8 mm^3
50.0 mm -100.0
=
10150.0 mm
=
766.9 mm^2
16.0 mm dia bar as longitudnal steel on top face of abutment cap. ( Provided steel =
2010.6 mm^2
(b) Transverse steel Quantity of steel to be provided in transverse direction
=
7783593.8 mm^3
Quantity of steel required
=
7783593.8 10.2
Adopting
16.0 mm dia bar and clear cover
=
766856.5 mm^3/m
50.0 mm
Length of each stirrups
=
Volume of each stirrup
=
No. of stirrups required in per m length
=
Required spacing
=
Provide
150.0 mm c/c stirrups throughout in length of abutment cap. ( Provided steel =
16.0 mm dia bar @
1350.0 4.0
-100.0
=
x
1250.0 mm 16.0 ^2
3.1 ( 1000.0 4.0
x
say
4.0 )
=
250.0 mm
1250.0
=
251327 mm^3
1340.4 mm^2/m )
Same steel will be provided at bottom also
Provide
10.0 bar of
Provide
16.0 mm dia bar @
16.0 mm dia bar as longitudnal steel on bottom face of abutment cap. ( Provided steel
2010.6 mm^2
150.0 mm c/c stirrups throughout in length of the abutment cap. ( Provided steel =
1340.4 mm^2/m )
Copy of Abutment_well
Design of Abutment Well cap Outer dia of well Inner dia of well
= =
6.50 m 4.50 m
Grade of conc. of well cap = Depth of well cap
M 35.00 2.00 m
=
The well cap has been designed as partillay restrained at supports and following coefficients have been adopted for the design of circular well cap under uniformly distibuted load. Sagging moment at bottom
=
Hogging moment at top
=
WD^2 30.00
W = Uniformly distributed load on well cap D = Effective diameter of well
WD^2 60.00
The load transmitted by abutment is assumed to have been dispersed at 45 degree upto effective depth of well cap. Effective dia of well (Av. of inner & outer dia)
=
6.50
+
4.50
=
5.50 m
2.00
Effective depth of well cap
=
Effective dia = (Inner dia + eff. depth)
4.50
Hence,Effective dia =
5.50 m
1.89 m
Thickness of steining
+
1.00
x
1.89
=
1.00 m
=
6.39 m
Normal case........... LWL Case With Max. CWLL Calculation for Loads and Moments at abutment Shaft Bottom Longitudnal Horizontal Force (HL) = Moment at Abutment (from left span) = (Due to long. Force)
393.68
x
(
78.51
-75.99
)
=
393.68
Moment " MT" due to Transverse Live Load Eccentricity 70 R Wheeled Class A 1 lane SIDL FPLL
= = = =
918.63 0.00 61.60 932.10
x x x x
1.28 0.00 4.25 0.45
= = = =
1175.84 0.00 261.80 419.45
kN.m kN.m kN.m kN.m
x
2.52
=
993.0 kN
Copy of Abutment_well
Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 75.99 m and @ cg of Pier Shaft S.No.
Item
1.00 2.00 3.00 4.00
Volume (m^3)
Unit Wt. (kN/m^3)
Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane
5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00
Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return
0.68 9.16 7.61 3.59 0.63 17.76 -4.20 0.63 2.45 3.80
2.00
P (kN)
eL (m)
ML (kNm)
3816.70 932.10 61.60
0.450 0.450 0.450
1717.52 419.45 27.72
918.63 0.00
0.450 0.450
413.38 0.00
16.20 219.74 182.66 86.10 15.07 426.20 -100.86 15.12 58.80 22.80
0.450 -0.350 0.18 0.00 0.62 0.00 0.00 -2.25 -1.67 -2.10
7.29 -76.91 31.96 0.00 9.29 0.00 0.00 -34.02 -98.00 -47.88
24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 3.00
15.00
6670.85
2369.80
Loads and moments at Abutment Shaft Bottom Vertical Load
=
6670.85 kN
Moment, ML
=
2369.80
+
Moment, MT
=
1175.84
+
Due to Horz. force
At X =
Y ^2 5.13 ^2
2.00 m
=
+
0.00
+
2
Equation of the ellipse is given by
0.00
Back fill
993.05
261.80 2
=
5407.23
+
419.45
X A2
+
Y B2
=
1.00
2.00 2 2.00 ^2
+
Y ^2 5.13 ^2
=
1.00
Y
=
kN.m
0.00 m ** on elliptical side only
Abutment width
Dispersion width
2044.38
=
1.89
+
1.00
Well cap depth
+
1.89
=
4.78 m
=
1857.09 kN.m
Copy of Abutment_well
Abutment length
Dispersion length (Elliptical side)
=
10.25
Dispersion length (Rect. side)
=
10.25 m
Dispersion area for both side
=
Backfill above well cap in
2.39
1.89
+
x
0.00
+
2.39 10.25
=
Total weight of well cap (on dispersed area)
=
Total wt. above well cap / m^2
=
=
(
5.13
= 6670.85
5.13 m
x
10.25
+
-73.99
=
236.78
+
36.71 m2
=
x
1.89
x
5.20
x
18.00
=
1810.87 kN
x
1.89
x
1.21
x
18.00
=
209.96 kN
2.03 m +
1810.87
+
209.96
) x
14.00
28.00
= =
8691.67 36.71
75.99
Total weight (including well cap) / m^2
=
-0.69 m
1.89 from the face of abutment shaft = eL of frontfill
Self wt. of well cap / m^2
5.13
x
from the face of abutment shaft = eL of backfill
Front fill above well cap in
2.00 2.00
=
28.00 kN / m^2
=
264.78 kN / m^2
8691.67 kN 236.78 kN / m^2
Transverse Analysis Length of cantilever from cL of well steining
=
Total transverse moment through abutment
=
Total transverse moment through abutment / m length
=
10.25 2.00
-5.50
=
2.38 m
1857.09 kN.m 1857.09 4.78
=
388.92 kN.m / m
To resist this moment a couple will be formed with reaction at one support upward and at other support downward
=
388.92 5.50
=
70.71 kN / m
(+ve) moment at centre due to formation of this couple
=
70.71
x
5.50 2.00
=
194.46 kNm
(-ve) moment at centre due to formation of this couple
=
-70.71
x
5.50 2.00
=
-194.46 kNm
Copy of Abutment_well
Sagging moment at center due to well cap =
264.78
x
5.50 ^2 30.00
=
266.99
kN.m
Hogging moment at center due to well cap =
264.78
x
5.50 ^2 60.00
=
-133.49
kN.m
=
-1057.98
kN.m
Transverse Hogging moment if well cap considered is inscribed square : Outer dia of well
=
6.50 m
Side of inscribed square
=
6.50 2.00
Max. projection of cantilever
=
=
10.25 2.00
Hogging moment at center due to well cap =
4.60 m
-4.60
=
2.83 m
264.78
x
2.83 ^2 2.00
Total Sagging moment at centre
=
266.99
+
194.46
=
461.45 kN.m
Total Hogging moment at centre
=
133.49
or
-1057.98
=
1057.98 kN.m
Longitudnal Analysis Total Longitudnal moment through abutment
=
5407.23 kN.m
Total Longitudnal moment transfered from backfill
=
1810.87
x
-0.69
=
-1256.29 kN.m
Total Longitudnal moment transfered from frontfill
=
209.96
x
2.03
=
426.14 kN.m
Total Longitudnal moment
=
5407.23
+
-1256.29
+
426.14
4577.08 5.13
=
893.09 kN.m / m
893.09 5.50
=
Total Longitudinal moment through abutment / m length
=
=
4577.08 kN.m
162.38 kN / m
To resist this moment a couple will be formed with reaction at one support upward and at other support downward
=
(+ve) moment at centre due to formation of this couple =
162.38
x (
5.50 2.00
-1.00
)
=
365.35 kNm
(+ve) moment at centre due to formation of this couple =
-162.38
x (
5.50 2.00
-1.00
)
=
-365.35 kNm
Copy of Abutment_well
Sagging moment at center due to well cap =
264.78
x
5.50 ^2 30.00
=
266.99
kN.m
Hogging moment at center due to well cap =
264.78
x
5.50 ^2 60.00
=
-133.49
kN.m
+
Total Sagging moment at centre
=
266.99
Total Hogging moment at centre
=
133.49
Design Sagging moment
=
632.34 kN.m
Design Hogging moment
=
1057.98 kN.m
Assume dia of bar Effect of load upto abutment shaft bottom
= =
25.00 2000.00
-75.00
Required effective depth
=
1057.98 1.84
x x
1000000.00 1000.00
Ast required
=
1057.98 200.00
x x
1000000.00 0.88
Provide
25.00 mm dia @
365.35
=
632.34 kN.m
=
133.49 kN.m
Dia of bar
-25.00
-12.50 =
= 757.46
1887.50 mm < Hence OK
1887.50 mm
= x
3192.02 mm^2 /m
1887.50
150.00 c/c in both direction at top and bottom, provided
3272.49
mm^2
Hence OK
Check for shear Total udl on well cap = 28.00 + Shear will be checked at a distance of effective depth from the face of the steining.
236.78
=
264.78 kN / m^2
Distance of section to be checked for shear(from centre)
=
0.363 m
Width of abutment
=
1.00 m The section for the check of shear is under the Abutment
Total load on well cap =
3.14
x (
5.06
+
0.13
) x
Perimeter of the dia
2.00
x
3.14
x (
2.75
+
4320.45 2.28
=
=
Load / m
Load /m due to moment
=
=
264.78
-2.39
=
)=
4320.45 kN 4320.45
2.28 m
1896.89 kN / m
70.71 kN / m
Total shear force
=
1896.89
+
Shear stress
=
1967.60 1887.50
x x
70.71 1000.00 1000.00
=
1967.60 kN
=
1.04
N / mm^2 > Shear Reinforcement Required
0.199
Copy of Abutment_well
Permissible Shear Stress : Area of tension reinforcement
=
100.00 1000.00
x x
3272.49 1887.50
Here,
Asx100/ bxd
=
0.17 For As x 100 / b x d = For As x 100 / b x d =
So,for
Asx100/ bxd
=
0.17
From IRC:21-2000, Table 12B, Permissible Shear Stress, From IRC:21-2000, Table 12C,
c K
So, permissible shear stress,
c
= = = =
Assume Shear Reinforcement provided @
=
0.199 1.00
=
c c
0.15 0.25
= =
0.19 0.23
0.199
(for overall depth of cap is greater than 300mm) c
K x 0.199
150.00 mm spacing along the length of well Cap.
Shear Reinforcement shall be provided to carry a shear Vs=V-c.b.d = =
1967.60
0.199
x
1.888
x
1.000
1591.32 kN
Shear Reinforcement Required
=
Provide
16.00 dia bar @
2.00 legged
-
1591.32 200.00
x x
1000.00 1887.50
x
150.00
150.00 mm along the Length of Well Cap.( Providing
=
632.31 mm^2
402.12 mm^2)
Copy of Abutment_well
Calculation of Bearing Capacity of Well Foundation Available Data Well Cap Top Level Foundation Level
= =
Diameter of well at foundation Lvl
75.990 m 52.000 m 6.650 m
= MSL
p Le
Df.
=
Well Cap Bottom Level MSL Factor of Safety
= = =
73.99 m 67.013 m 2.5
=
12.01 t/m^2
Found. Lvl.
67.013
-
52.000
=
15.013 m
Soil Parameters available at Foundation Level c
= = = =
' (radians)
25 degree 0.00 kN/m^2 8 kN/m^2 0.436
N Overburden Surc q Df. )
tan(45 =
' x
8.000
Shape Factors :s s s
+
Nc = Nq = N
= x
1.570
15.013
=
120.104 kN/m^2
Inclination Factors :-
( For circular base )
i i i
1.300 1.200 0.600
c = q = =
20.72 10.66 10.88
c = q = =
1.000 1.000 1.000
Depth Factors( For circular base ) d
d
c
c
As
=
1.000
+
0.200
x
1.000
+
0.200
x
)
>
q
=
1.000
+
0.100
x
1.000
+
0.100
x
d
q
=
1.354
d
1.000
+
0.100
x
1.000
+
0.100
x
d
+
SBC
=
0.5
Df B 15.013 6.650
x
1.570
N x
1.570
N x
1.570
( As per Cl: 5.1.2.4 of IS: 6403-1984 ) ( for cohesionless Soil )
q . (Nq - 1) . sq . dq . iq
=
x
12.010
5.320 2
x
10.876
x
0.600
=
188.604
+
11.755
=
=
200.358529 2.500
q
d
FOS
(
10.6621424 -
+ (1/2) . B
=
=
x
x
1.354
Net Ultimate Bearing Capacity q
Df B 15.013 6.650
N
10 deg.
d
w'
x
1.709
=
25
d
Df B 15.013 6.650
1
)
x
sv . dv . iv . w'
1.200
x
1.354
x
1.000
x
1.354
x
1.000
x
200.359 t/m^2 =
80.143 t/m^2
0.5