Abutment Well

  • Uploaded by: Ambrish
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Abutment Well as PDF for free.

More details

  • Words: 23,053
  • Pages: 74
Copy of Abutment_well

Design of Abutment Well Stability of Well Foundation and steining stresses have been checked for the following four cases:(1) (2) (3) (4)

Normal LWL case with Maximum CWLL Normal HFL case with Minimum CWLL Seismic LWL case with Maximum CWLL Seismic HFL case with Minimum CWLL

45.1 x 2 + 32.1 Design Levels Road Formation Level Soffit Level Abutment Cap Top Level High Flood Level (HFL) LBL Low Water Level (LWL) Foundation Level RL of sand fill in abutment well

= = = = = = = =

81.190 78.513 78.21 75.580 69.582 70.000 52.000 67.01

m m m m m m m m

Total Length of Bridge Abutment Cap Bottom Level Well Cap Top Level Well Cap Bottom Level Maximum Scour Level Raised Scour Level Well Kerb Top Level

= = = = = = =

122.350 77.313 75.990 73.990 67.013 67.870 53.700

m m m m m m m

= = = = = = = = =

10.25 10.25 0.300 3.500 3.500 6.500 0.500 0.075 0.300

m m m m m m m m m

Width of Abutment cap(Uniform portion) Width of Abutment Thickness of Cantilever Return Cantilever at tip of Return wall Expansion Gap at Either end Inner Diameter of Well Foundation Height of Bottom Sump Inner projection at Foundation Level Thickness of uniform dia. below well kerb top

= = = = = = = =

1.350 1.000 0.300 0.300 0.050 4.500 1.000 0.150 0.300

m m m m m m m m m

Height of crash barrier Projection from C/Lof bearing on abutment side Projection from C/L of bearing on Pier side  for friction(POT/PTFE) Thickness of wearing coat

= = = = =

0.850 0.600 1.025 0.050 0.065

m m m

Dimensions of Different Component Length of Abutment cap Length of Abutment Thickness of Dirt Wall Length of Cantilever Return Length of Approach Slab Outer Diameter of Well Thickness of Intermediate Plug Outer projection at well kerb top in either direction Thickness of plug above well kerb top level Projection of well on Earth side(From abut shaft face) Projection of well on River side(From abut shaft face) Width of corbel in abutment cap Uniform height of corbel in abutment cap Varying height of corbel in abutment cap

= =

3.500 m 2.000 m

= = =

0.350 m 0.600 m 0.350 m

Loads and Forces from Superstructure C/C of end span Dead Load Reaction SIDL Reaction FPLL Reaction Max Depth of Superstructure

= = = = =

43.425 3816.7 932.1 61.6 2.500

m kN kN kN m

Base width of Superstructure Min. thickening at bottom at support Thickening at mid section of superstructure Width of cross girder

= = = =

5.000 0.050 0.113 1.200

m m m m

m

CWLL Reaction (Without Impact) Max. Reaction at abutment

Max. Reaction at other end

Due to 70 R Wheeled

=

895.82 kN

Due to 70 R Wheeled

=

0.00 kN

Due to class A 1 Lane

=

166.98 kN

Due to 70 R Wheeled

Due to class A 1 Lane

=

0.00 kN

Due to class A 1 Lane

Impact Factor

=

1.09

+

=

104.18 kN

=

0.00 kN

=

833.02 kN

=

0.00 kN

+

Due to class A 1 Lane

Min. Reaction at abutment

Min. Reaction at other end

Due to 70 R Wheeled

+

+

CWLL Reaction (Used at Abutment Shaft Bottom) Impacr Factor used for moment at abutment shaft bottom =

1.03

Max. Reaction at abutment

Min. Reaction at abutment

Due to 70 R Wheeled

=

918.628 kN

Due to 70 R Wheeled

=

171.233 kN

=

0.000 kN

Due to class A 1 Lane

=

0.000 kN

1.2800 m + 0.000 m

Due to SIDL Due to FPLL(one side only ,if loaded)

= =

= M 40.000 = M 35.000 18.000 kN/m^3 10.000 kN/m^3

Dry wt. of conc. Grade of steel R value for M35 conc. j value for M35 conc.

= = = =

+

+

Due to class A 1 Lane

Transverse eccy. in transverse direction( safety kerb side) Due to 70 R wheeled

=

Due to class A 1 Lane

=

0.4500 m 4.2500 m

Unit wts. of Different Component Grade of conc. of superstructure Grade of conc. of Substructure Dry unit weight of soil = Submerged unit weight of soil =

24.000 kN/m^3 200.000 MPa 1.844 MPa 0.878

Seismic Coefficient : Zone-III Horizontal seismic coefficient

=

0.048

Vertical seismic coefficient

=

0.024

Copy of Abutment_well

0.050 m (At Either End) 3.500 m

0.300 Deck Level

81.190 m

80.890 m Level

Soffit Level

78.513 m

Abutment Cap Top

78.213 m

Abutment Cap Bottom Level

77.31 m

1.350 m HFL

0.950

76.0 m

74.0 m

76.492

Well Cap Top Level 3.500 m

1.000 m

Well Cap Bottom Level

6.500 m

Water Fill cL of well

cL of brg.

1.200 m

67.0 m

MSL

1.000

Intermediate Plug in M 25 Concrete

Sand Fill

Well Kerb Top Level

53.700

m

Foundation Level

52.000

m

75.580 m

Height of Bottom sump

2.000 m

Copy of Abutment_well

1.000 m

3.250 m

3.250 m

10.250 m

6.500 m dia of well

Plan at well cap top Level Dimensions of Substructure Components (i) Dirt Wall Length

=

10.250 m

Thickness

=

0.300 m

Height

=

2.977 m

(ii) Cantilever Returns Depth at Free End = Length

0.300 m =

Depth at Root 3.500 m

=

2.633 m

Thickness =

0.300 m

(iii) Abutment Cap Length

=

10.250 m

Width

=

1.350 m

Thickness

=

0.900 m

=

10.250 m

Width

=

1.000 m

Height

=

1.323 m

= =

3.250 m 5.125 m

Thickness = Minor axis =

2.000 m 2.000 m

(vi) Intermediate Plug Diameter

=

4.500 m

Thickness

0.500 m

Bottom Level

=

67.013 m

(vii) Well Outer Dia.

=

6.500 m

Steining Thickness

=

4.500 m

= = =

0.300 m 0.300 m 1.400 m

(iv) Abutment Shaft Length (v) Well Cap Radius Major axis

(viii) Bottom Plug Dia. at top Dia. at bottom Depth of sump

= = =

4.500 m 6.350 m 1.000 m

=

=

1.000 m

Inner Dia.

Thickness of plug above well kerb top level Thickness of uniform dia. below well kerb top Height of bottom plug of tapering portion

(ix) Well Kerb Outer dia offset at Top

= =

6.650 m 0.075 m

Thickness at Bottom Height

= =

0.150 m 1.700 m

(x) Back fill Parameters  c

Angle of Internal Friction Cohesion

= =

d  sub

30.000 degree 0.000 kN/m^2

= =

18.000 kN/m^3 10.000 kN/m^3

Computation of Volumes of Substructure Components Thickening of slab at bottom Volume

=

5.000

x

1.200

x

0.113

10.250

x

0.300

x

2.977

2.000

x

0.300

x

3.500

x

0.300

x

0.500

x

2.333

x

3.500

=

0.675 m^3

=

9.156 m^3

=

0.630 m^3

=

2.450 m^3

(i) Volume of Dirt Wall = (ii) Volume of Return Walls Uniform Portion

=

(Nos)

Tapered Portion

=

2.000

x

0.300

(Nos)

(iii) Volume of Abutment Cap Rectangular portion =

x

1.350

x

0.550

=

7.611 m^3

Uniform portion of corbel =

10.250

10.250

x

0.350

x

1.000

=

3.588 m^3

Triangular portion of corbel=

10.250

x

0.500

x

0.350

=

0.628 m^3

x

0.350

Copy of Abutment_well

(iv) Volume of Abutment Shaft Above HFL =

10.250

x

1.000

x

1.733

=

17.758 m^3

=

10.250

x

1.000

x

-0.410

=

-4.202 m^3

10.250

x

3.500

=

71.750 m^3

Below HFL

(v) Volume of Well Cap Left rectangular portion =

C.G. of back Fill From Abutment Face

Rectangular portion =

=

10.250  2.000

Right elliptical portion =

3.500

/

x

1.000

x

2.000

x

5.125

x

2.000

C.G. of Front Fill From Abutment Face

=

4R 

=

x

2.000

2.000

x

4.000 3.000

=

= 1.750 m 3.500 2.000 from the face of abutment on left side = 20.500 m^3

2.000

x x

=

2.000 3.142

=

32.201 m^3

= 0.849 m 8.000 9.425 from the face of abutment on right side

(vi) Volume of Intermediate Plug =

 4.000

(vii) Volume of Well Steining upto RL Area =  4.000 Volume

=

17.279

=

4.500 ^2

x

0.500

x (

53.700 m 6.500 ^2

-

4.500 ^2 )

x

(vii) Volume of Well Steining upto RL Area =  4.000 Volume

x

62.901 m 6.500 ^2

x

=

=

17.279

x

=

350.59 m^3

=

191.596 m^3

=

270.83 m^3

=

207.22 m^3

=

261.76 m^3

=

9.543 m^3

=

32.674 m^3

=

42.217 m^3

=

21.599 m^3

17.279 m^2

15.674 61.997 m

17.279

x

11.993

(vii) Volume of Well Steining upto RL Volume

=

=

58.316 m

(vii) Volume of Well Steining upto RL Volume

4.500 ^2 )

11.089

(vii) Volume of Well Steining upto RL Volume

-

7.952 m^3

17.279 m^2

20.290

x (

17.279

=

=

58.84 m

17.279

x

15.149

(viii) Volume of Bottom Plug (a) Uniform dia. Portion =  4.000

x

4.500 ^2

x

(

0.300

+

0.300 )

(b) Flared Portion Plan area at Top,

A1

Plan area at Bottom, A2

=

Height Volume

h =

 4.000  4.000

=

h 3.000

x

4.500 ^2

=

15.90

m^2

x

6.350 ^2

=

31.67

m^2

= x

= (

A1 + A2 +

1.400 m

A1.A2 )

Total Volume of Bottom Plug (ix) Well Curb =

 4.000

x (

6.650 ^2

x

1.700

-4.500 ^2

x

0.300 )

-32.674

(x) Volume of Backfill

Above HFL Volume

=

10.250

x

3.500

x

5.610

=

201.259 m^3

=

10.250

x

3.500

x

-0.410

=

-14.709 m^3

=

206.96 m^3

Below HFL Volume

(xi) Volume of Sandfill =

 4.000

(xii) Volume of Earth on Well Curb Area =  4.000

x

4.500 ^2

x

x (

6.650 ^2

-

13.013

6.500 ^2 )

=

1.549 m^2

Volume in Normal Case

=

1.549

x

13.313

=

20.624 m^3

Volume in Seismic Case

=

1.549

x

14.170

=

21.952 m^3

Copy of Abutment_well

(xiii) Volume of Sump in Bottom Plug C

A

3.175 1.000

3.175 B D

Let the sump be a part of sphere of radius = R then by the intersecting arcs AB and CD (2R

-1.000 )

Volume of sump

x

1.000 R

= =

3.175 5.540 m

x

3.175

 x h^2 (R-h/3)

=

=

16.358 m^3

(XIV) Volume of Front Fill Total Hori. Distance between free end (Cantilever Return) from Abutment Shaft edge(River Side) Height from Deck Level to the RL of starting of front pitching slope

=

1.000 =

+

3.500

4.500 1.500

=

4.500 m

=

3.000 m

RL of point from which front slope pitching starts

=

81.125

-3.000

=

77.825 m

RL of point for front pitching above the well cap edge (River side)

=

77.825

-2.000 1.500

=

76.492 m

=

77.825

-1.888 1.500

=

76.567 m

Average height of Front fill pitching

=

77.825

Average height of Front fill pitching

=

1.888 m from face

RL of point for frontpitching above the well cap edge (River side)

=

Major Semi Axis

=

Minor Semi Axis

=

Area in Plan of Front Fill

=

Volume of Front Fill on Well cap C.G. of Front Fill From Abutment Face

(

6.500

-2.000 ) x

-0.300

-75.990

+ 2.000

76.492

-75.990

-75.990

+ 2.000

76.567

-75.990

1.168 m 77.825

=

1.206 m

2.000

=

3.000 m

0.500

=

2.000 m 

x

= =

5.125

x

2.000

16.101

x

1.168

=

4.000 3.000

4R 

x

 x x

2.000 3.142

16.101 m ^2

18.8 m ^3 =

8.000 9.425

=

0.849 m

from the face of abutment

Seismic coefficient analysis Horizontal Seismic Force Feq Feq Ah

= = =

Seismic forces to be resisted Ah x (Dead load + Appropriate Live load) horizontal seismic coefficient

=

Z 2

Sa g R I

Z

=

Zone factor

I

=

Importance factor

Zone No. V IV III II

Important bridges Other bridges

= =

T

Fundamental period of the bridge member (in sec.) or horizontal vibrations.

=

=

Zone factor 0.36 0.24 0.16 0.1

1.5 1.0

2.0

D 1000F

1/2

D

=

appropriate dead load of the superstructure , and live load in KN

F

=

Horizontal force in KN required to be applied at the center of mass of the superstructure for one mm horizontal deflection at the top of the pier/abutment along the considered direction of horizontal force.

D

=

DL

=

SIDL

7633.4

+

9620.8

+

Shear Rating

=

3.8218

x

6

T

=

2.0

x

10620.8 22930.8

=

1.361

=

Response reduction factor =

For medium soil sites = Sa g

Ah

2.5 1.36 /T

=

10620.8

=

22.9308

1/2

0.0 < T < 0.55 0.55 < T < 4.0

=

1.36 1.361

=

0.999

=

0.16 2

x

0.999

=

123.2

sec

2.5 1.5 Ah

+

0.048

KN

No of bearings

F

R

FPLL

1864.2 LL 1000

2.5

KN

Copy of Abutment_well

Live Load Analysis Class A 2 Lane Max CWLL Reaction at Abutment 68.000

68.000 3.000

68.000 3.000

68.000 3.000

0.600 RA

114.000 4.300

114.000 1.100

27.000 3.200

27.000 1.200

43.425 m

1.025 RB Free end

Fixed end RA

+

RB

=

68.000

x

2.400

+

68.000

x

5.400

+

68.000

x

8.400

+

114.000

x

12.700

+

114.000

x

13.800

+

27.000

x

17.000

+

27.000

x

18.200

+

-68.000

x

0.600

=

163.200

+

367.200

+

571.200

+

1447.80

+

1573.20

+

459.000

Max. reaction at Abutment for class A 1 Lane Min. reaction at Abutment for class A 1 Lane

= =

438.117 kN 115.883 kN

Max. reaction at Abutment for class A 2 Lane Min. reaction at Abutment for class A 2 Lane

= =

876.23 kN 231.765 kN

43.425 RB

=

RB

=

115.883 kN

RA

=

438.117 kN

554.000 kN

Without impact

+

491.400

-40.800

Copy of Abutment_well

70 R wheeled Max CWLL Reaction at Abutment 170.000

170.000

170.000

170.000

120.000

120.000

1.370

3.050

1.370

2.130

1.520

80.000 3.960

0.600

1.025 RA

43.425 m

RA

+

43.425 RB

RB =

+

=

=

RB

1000.00 kN

170.000

x

0.770

+

170.000

x

3.820

+

170.000

x

5.190

120.000

x

7.320

+

120.000

x

8.840

+

80.000

x

12.800

-170.000

x

0.600

130.900

+

649.400

+

882.300

+

878.400

+

1060.80

+

1024.00

RB

=

104.175 kN

RA

=

895.825 kN

Without impact Max. reaction (70 R wheeled) Min. reaction (70 R wheeled)

= =

895.825 kN 104.175 kN

-102.000

Copy of Abutment_well

Class A 2 Lane Min CWLL Reaction at Abutment 68.000

68.000 3.000

68.000 3.000

68.000 3.000

0.600 RA Fixed end

114.000

114.000

4.300

1.200

27.000 3.200

43.425 m

RA

+

43.425 RB

RB =

=

554.000 kN

x (

25.650

+

28.650

+

+

114.000

x (

38.950

+

40.150

)

+

27.000

x (

43.350

+

44.450

)

=

8200.80

+

9017.40

+

2370.60

Reaction at Abutment end for class A 1 Lane Reaction at other end for class A 1 Lane

= =

102.905 kN 451.095 kN

Reaction at Abutment end for class A 2 Lane Reaction at other end for class A 2 Lane

= =

205.810 kN 902.19 kN

=

451.095 kN

RA

=

102.905 kN

1.100 1.025 RB Free end

68.000

RB

27.000

Without impact

31.650

+

34.650

)

Copy of Abutment_well

70 R wheeled Min CWLL Reaction at Abutment 170.000

170.000 1.370

170.000

170.000

120.000

120.000

3.050

1.370

2.130

1.520

0.600

80.000 3.960

43.425 m

RB 1.025

RA

+

43.425 RB

=

RB

=

1000.00 kN

170.000

x (

31.050

+

32.420

+

35.470

+

36.840

+

120.000

x (

38.970

+

40.490

) +

80.000

x

44.450

=

23082.60

+

9535.20

+

3556.00

=

36173.80

RB

=

833.018 kN

RA

=

166.982 kN

Without impact Reaction at Abutment end for (70 R Wheeled) Reaction at other end for (70 R wheeled)

= =

166.982 kN 833.018 kN

)

Copy of Abutment_well

Normal ..... Max. CWLL at abutment

Longitudinal Horizontal Breaking Force (HL) = Braking force is considered 20 % of live load coming on the span for two lane as per cl. 214.2 of IRC :6. For third lane , 5% braking force will be considered. Max. CWLL at abutment end

Fh due to 70 R Wheeled

=

0.2

x

(

Fh due to class A

=

0.05

x

(

=

200

895.82

Min. CWLL at other end

+

Max. CWLL at abutment end

104.18 )

=

200 kN

=

0 kN

Min. CWLL at other end

0.00

+

0.00 )

0

=

200 kN

(For 3rd Lane)

Total Fh

+

Longitudinal Horizontal Force At Bearing Level For a simply supported span sitting on identical Elastomeric Bearings at each end and resting on unyielding supports. Force At Each End

=

Fh / 2

+

Vr . ltc

= 3821.800 N/mm Vr = Shear Rating of the Elastomeric Bearing ltc = Movement of deck above Bearing, other than that due to applied forces. Movement due to temprreture will be considered for contraction and as well as for expansion both. Movement of superstructure Due to Temperatur

=

Co-efficient of Expansion

=

Variation in the temperature

=

 . L . t 0 0.000012 / C

(Refer IRC -6) o  C

(for moderate conditions)

Movement of superstructure due to temperature

=

12.70 mm

Movement of superstructure Due to Creep

=

8.79 mm

Movement of superstructure Due to Shrinkage

= = =

x

Strain due to Residual Shrinkage at 28 days

0.00019 x 4.13 mm

Span/2

21712.500

( Refer IRC: 18)

Net expansion due to temp.,shrinkage & creep

=

-12.70

+

8.79

+

4.1

=

0.2 mm

Net contraction due to temp.,shrinkage & creep

=

12.70

+

8.787

+

4.1

=

25.6 mm

Force due to temp., shrinkage & creep in expansion case

=

x

3821.8 1000

x

0.2

=

2.4 kN

Force due to temp.,shrinkage & creep in contraction case

=

3

x

3821.8 1000

x

25.6

=

293.7 kN

Fh/2 + Vr ltc in expansion case

=

100

+

2.41

=

102.4 kN

Fh/2 + Vr ltc in contraction case

=

100

+

293.68

=

393.7 kN

No. of bearings

3 No. of bearings

Governing Longitudnal Force at bearing level

=

393.677 kN

Seismic ..... Max. CWLL at abutment

Seismic case Longitudnal Horizontal Force (HL) = Fh due to 70 R Wheeled

=

0.200

x

(

447.91

+

52.09

)

=

100.000 kN

0.100

x

(

0.00

+

0.00

)

=

0.000 kN

x (

7633.400

+

+

461.416

=

(For first two lane)

Fh in seismic case

= =

0.0480 461.416 kN

Total Fh in seismic case

=

100.000

1864.20

+

123.2

)

561.416 kN

Longitudinal Horizontal Force At Bearing Level For a simply supported span sitting on identical Elastomeric Bearings at each end and resting on unyielding supports. Force At Each End

=

Fh / 2

+

Vr . ltc

Vr = Shear Rating of the Elastomeric Bearing = 3821.800 N/mm ltc = Movement of deck above Bearing, other than that due to applied forces. Movement due to temprreture will be considered for contraction and as well as for expansion both. Net expansion due to temp., shrinkage and creep

=

12.70

+

8.79

+

4.1

=

Net contraction due to temp, shrinkage and creep

=

-12.70

Force in expansion case

=

3.000

+

8.79

x

3821.80 1000.00

Force in contraction case

=

3.000

x

Fh/2 + Vr. ltc in expansion case

=

280.71

Fh/2 + Vr. ltc in contraction case

=

280.71

Governing Longitudnal force (Temp. rise case)

=

574.38 kN

Governing Longitudnal force (Temp. fall case)

=

283.12 kN

25.6 mm

+

4.1

=

x

25.6

=

293.7 kN

3821.80 1000.00

x

0.2

=

2.4 kN

+

293.677

=

574.4 kN

+

2.41

=

283.1 kN

0.2 mm

Copy of Abutment_well

Governing Longitudnal force

=

574.38 kN

Copy of Abutment_well

Case 1 (Normal case........... LWL Case With Max. CWLL) Case 1 (a) Calculation for Loads and Moments at Abutment Shaft Bottom Moment at abutment base = (Due to long. Force)

393.677

x

(

78.513

-75.990

)

= =

393.677 993.05 kN

x

2.523

Moment " MT" due to Transverse Live Load Eccentricity = Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =

918.628 0.000 61.600 932.100

x x x x

1.280 0.000 4.250 0.450

= = = =

Volume (m^3)

Unit Wt. (kN/m^3)

1175.844 0.000 261.800 419.445

kN.m kN.m kN.m kN.m

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 75.990 m and @ cg of Abutment Shaft S.No.

1 2 3 4

Item

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane

5 6 7 8 9 10 11 12 13 14

Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

15

Total Load and moments at Abutment Shaft Bottom

2.000 Nos.

0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800

24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 3.000

P (kN)

eL (m)

ML (kNm)

3816.700 932.100 61.600

0.450 0.450 0.450

1717.515 419.445 27.720

918.628 0.000

0.450 0.450

413.383 0.000

16.200 219.739 182.655 86.100 15.068 426.195 -100.860 15.120 58.800 22.800

0.450 -0.350 0.175 0.000 0.617 0.000 0.000 -2.250 -1.667 -2.100

7.290 -76.909 31.965 0.000 9.292 0.000 0.000 -34.020 -98.000 -47.880

6670.845

2369.800

Loads and moments at Abutment Shaft Bottom Vertical Load

=

6670.845 kN

Moment, ML

=

2369.800

+

993.050

+

2044.377

=

Moment, MT

= =

1175.844 + 1857.089 kN.m

0.000

+

261.800

+

Due to Horz. force

Due o Back Fill

5407.227 kN.m 419.445

Case 1 (b) Calculation for Loads and Moments at Foundation Level Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment at abutment base = (Due to long. Force)

= 393.677

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = 895.825 Due to Class A = 0.000 Due to FPLL = 61.600 Due to SIDL = 932.100

x

393.677 kN (

x x x x

78.513

1.280 0.000 4.250 0.450

+

-52.000

)

= = = =

1146.656 0.000 261.800 419.445

kN.m kN.m kN.m kN.m

= =

393.677 10437.4 kN

x

26.513

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 52.000 m and @ cg of Foundation Level S.No.

1 2 3 4

Item

Volume (m^3)

Unit Wt. (kN/m^3)

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane

5 6 7 8 9 10 11 12 13 14

Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800

2.000 Nos. Total Load and moments at Abutment Shaft Bottom

24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 3.000

P (kN)

eL (m)

ML (kNm)

3816.700 932.100 61.600

1.200 1.200 1.200

4580.040 1118.520 73.920

895.825 0.000

1.200 1.200

1074.990 0.000

16.200 219.739 182.655 86.100 15.068 426.195 -100.860 15.120 58.800 22.800

1.200 0.400 0.175 1.425 1.367 0.750 0.750 -1.500 -0.917 -1.350

19.440 87.896 31.965 122.693 20.592 319.646 -75.645 -22.680 -53.900 -30.780

6648.042

7266.70

15

Backfill behind Abutment

16

On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL) Front Fill on Well cap Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill )

201.259 -14.709 18.811

18.000 18.000 18.000

3622.658 -264.757 338.597 10344.54

-1.500 -1.500 2.099

-5433.986 397.136 710.656 2940.50

Well Cap (Left rectangular portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb Total Loads and Moment at Well Foundation

71.750 20.500 32.201 7.952 350.586 42.217 21.599 16.358 206.963 20.624

14.000 14.000 14.000 12.000 14.000 12.000 14.000 12.000 10.000 10.000

1004.500 287.000 450.819 95.426 4908.204 506.602 302.390 196.298 2069.628 206.245 20371.65

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2940.50

17 18 19 20 21 22 23 24 25 26

Loads and moments at Well Foundation Level Vertical Load

=

Moment, ML

=

20371.65 kN 2940.50

+

121925.045

+

10437.359

=

135302.906

Moment, MT

=

1146.656

+

0.000

+

261.800

+

419.445

Total Active Earth Press. Moment.

Resultant Moment

MR

=

135302.9 ^2

+

Due to Horiz. Force at bearing Level

1827.901 ^2

=

kN.m =

135315.3

Moment due to Tilt & Shift Total Loads upto Well Cap Top Level

Mts .=

10344.539

SHIFT

TILT

Total Loads below Well Cap Top Level

x ( 0.150 +

23.990 ) + 80.000

10027.113

MR

Total Resultant Moment

=

135315.253

x

TILT

23.990 160.000

Mts

+

6157.190

=

141472.443 kNm

=

6157.190 kNm

1827.90 kN.m

Copy of Abutment_well

7.1.3 Computation of Base Pressure Total Moment at Foundation Soil Resistance

P max.

P min.

=

=

=

MR + Mts

=

= 201322.29 Hence, No Moment will Transfer to the Base

A

=

Z

=

P A

+

141472.443 = =

141472.443 0.000 kN

+

-201322.293

 4.000  32.000

x

6.650 ^2

=

34.732 m^2

x

6.650 ^3

=

28.871 m^3

M Z

=

20371.652 34.732

+

=

586.534

+

0.000

-

< 0.000 28.871

-

P A

141472.4 kNm >

= =

M Z

586.534 kPa 20371.652 34.732

=

586.534

=

586.534 kPa

0.000 28.871

-

801.434 Hence OK

0.000 >

0.000 No Uplift , Hence OK

Case 2 (Normal case........... HFL Case With Min. CWLL) Case 2 (a) Calculation for Loads and Moments at Abutment Shaft Bottom Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)

393.677

= x

(

393.677 kN

78.513

-75.990

)

= =

393.677 993.050 kN

x

Moment " MT" due to Transverse Live Load Eccentricity = Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =

171.233 0.000 61.600 932.100

x x x x

1.280 0.000 4.250 0.450

= = = =

219.178 0.000 261.800 419.445

kN.m kN.m kN.m kN.m

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 75.990@ cg of Abutment Shaft S.No.

1 2 3 4

5 6 7 8 9 10 11 12 13 14 15

Item

Volume (m^3)

Unit Wt. (kN/m^3)

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap (Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

2.000 Nos. Total Load and moments at Abutment Shaft Bottom

0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800

24.000 24.000 24.000 24.000 24.000 24.000 14.000 24.000 24.000 3.000

P (kN)

eL (m)

ML (kNm)

3816.700 932.100 61.600

0.450 0.450 0.450

1717.515 419.445 27.720

171.233 0.000

0.450 0.450

77.055 0.000

16.200 219.739 182.655 86.100 15.068 426.195 -58.835 15.120 58.800 22.800

0.450 -0.350 0.175 0.000 0.617 0.000 0.000 -2.250 -1.667 -2.100

7.290 -76.909 31.965 0.000 9.292 0.000 0.000 -34.020 -98.000 -47.880

5965.475

2033.472

2.523

Copy of Abutment_well

Loads and moments at Abutment Shaft Bottom Vertical Load

=

5965.475 kN

Moment, ML

=

2033.472

+

993.050

+

2044.640

=

5071.162 kN.m

Moment, MT

=

219.178

+

0.000

+

261.800

+ =

419.445 900.423 kN.m

Due to Horz. force

Due o Back Fill

Case 2 (b) Calculation for Loads and Moments at Foundation Level Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)

393.677

= x

(

393.677 kN

78.513

+

-52.000

)

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =

= =

166.982 0.000 61.600 932.100

x x x x

1.280 0.000 4.250 0.450

= = = =

213.737 0.000 261.800 419.445

kN.m kN.m kN.m kN.m

393.677 10437.359 kN

x

26.513

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 52.000 g of Well Foundation Level S.No.

1.000 2.000 3.000 4.000

5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000

Item

Volume (m^3)

Unit Wt. (kN/m^3)

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap (Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

2.000

0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800

24.000 24.000 24.000 24.000 24.000 24.000 14.000 24.000 24.000 3.000

16.000

ML (kNm)

3816.700 932.100 61.600

1.200 1.200 1.200

4580.040 1118.520 73.920

166.982 0.000

1.200 1.200

200.379 0.000

16.200 219.739 182.655 86.100 15.068 426.195 -58.835 15.120 58.800 22.800

1.200 0.400 0.175 1.425 1.367 0.750 0.750 -1.500 -0.917 -1.350

19.440 87.896 31.965 122.693 20.592 319.646 -44.126 -22.680 -53.900 -30.780 6423.60

Backfill behind Abutment On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL)

201.259 -14.709

18.000 10.000

Front Fill on Well cap

18.811

10.000

Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill + Return Wall) 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000

eL (m)

5961.224

Total Load and moments at Abutment Shaft Bottom 15.000

P (kN)

Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb Total Loads and Moment at Well Foundation

3622.658 -147.087

-1.500 -1.500

-5433.986 220.631

188.109

2.099

394.809

9624.904

71.750 20.500 32.201 7.952 350.586 42.217 21.599 16.358 206.963 20.624

14.000 14.000 14.000 12.000 14.000 12.000 14.000 12.000 10.000 10.000

1004.500 287.000 450.819 95.426 4908.204 506.602 302.390 196.298 2069.628 206.245 19652.02

1605.06

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1605.06

Copy of Abutment_well

Loads and moments at Well Foundation Level Vertical Load

=

Moment, ML

=

19652.016 kN 1605.058

+

109339.446

+

10437.359

=

Moment, MT

=

213.737

+

0.000

+

261.800

+

Total Active Earth Press. Moment.

Resultant Moment

MR

=

121381.863 ^2

+

Due to Horiz. Force at bearing Level

894.982 ^2

121381.863 kN.m 419.445 =

894.982 kN.m

= 121385.162

Moment due to Tilt & Shift Total Loads upto Well Cap Top Level

Mts .=

9624.904

SHIFT

x ( 0.150 +

Total Loads below Well Cap Top Level

TILT

23.990 ) + 80.000

10027.113

MR

Total Resultant Moment

=

121385.162

TILT

x

23.990 160.000

=

5833.444 kNm

Mts

+

5833.444

=

<

127218.61

127218.606 kNm

Computation of Base Pressure Total Moment at Foundation Level

=

Soil Resistance

=

MR + Mts

=

127218.6 kNm

97911.60

Hence, Moment will Transfer to the Base P max.

P min.

=

=

P A

P A

+

-

M Z

M Z

=

127218.606

=

19652.016 34.732

+

0.000 28.871

=

565.814

+

=

565.814 kPa 19652.016 34.732

-

=

565.814

-

=

565.814 kPa

Case 3 (Seismic case........... LWL Case With Max. CWLL) Loads and forces due to seismic Horizontal Seismic Coefficient Vertical Seismic Coefficient

= =

0.048 0.024

-97911.603 0.000 kN

0.000 <

=

+ =

801.434 Hence OK

0.000 28.871 0.000 >

0.000 No Uplift , Hence OK

Copy of Abutment_well

Considering Seismic Force in Longitudnal direction S.No.

1 2 3 4

Item

Volume

Unit Wt.

P

Fh

Fv

(m^3)

(kN/m^3)

(kN)

(kN)

(kN)

Reaction from Superstructure DL SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane

5 6 7 8 9 10 11 12 13 14

Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

15

Total Load and moments at Abutment Shaft Bottom

16

Well Cap (RSL)

2.000 Nos.

0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800

0.000

24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 3.000

Total Load and moments at Well Foundation Level

eL at c.g. of abutment shaft

ML @ RL 75.990 (kN.m)

ML at abut. shaft bottom

91.525 22.352 1.477

0.450 0.450 0.450

41.186 10.058 0.665

41.186 10.058 0.665

459.314 0.000

11.014 0.000

0.450 0.450

4.956 0.000

4.956 0.000

0.777 10.539 8.760 4.129 0.723 20.440 -4.837 0.725 2.820 1.093

0.388 5.269 4.380 2.065 0.361 10.220 -2.419 0.363 1.410 0.547

6211.531

45.170

148.953

0.000

0.000

6211.531

45.170

148.953

574.385

x

0.000

78.569 79.701 77.763 77.913 77.496 76.446 75.785 81.040 80.112 81.615

0.450 -0.350 0.175 0.000 0.617 0.000 0.000 -2.250 -1.667 -2.100

71.502

= 574.385

x

2.004 39.112 15.527 7.939 1.088 9.326 0.992 3.662 11.625 6.151

0.175 -1.844 0.767 0.000 0.223 0.000 0.000 -0.816 -2.350 -1.148

20.643 291.937 225.684 107.002 18.424 499.691 -115.054 21.059 79.278 32.384

12.875 186.579 138.107 65.720 11.200 295.345 -66.695 13.809 51.086 21.452

97.425

51.872

97.43

51.87

1181.0

729.5

0.00

0.00

0.0

0.0

97.43

51.87

1181.0

729.5

0.000

574.385 kN (

78.513

-75.990

)

=

2.523

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =

459.314 0.000 61.600 932.100

x x x x

1.280 0.000 4.250 0.450

= = = =

587.922 0.000 261.800 419.445

kN.m kN.m kN.m kN.m

Loads and moments at Abutment Shaft Bottom Vertical Load

=

6670.845 kN

Moment, ML

=

2369.800

Due to Horz. force

Due to Trans. eccy. of CWLL

Moment, MT

=

1857.089 kN.m

+

1448.885

Moment Due o Back Fil in normal case

+

2591.145

Due to Seismic Force

+

97.425 =

6507.256 kN.m

=

ML at 61.997 (kN.m)

0.175 -1.844 0.767 0.000 0.223 0.000 0.000 -0.816 -2.350 -1.148

Longitudnal Horizontal Force (HL) =

Moment at abutment base = (Due to long. Force)

ML at 52.000 (kN.m)

2.004 39.112 15.527 7.939 1.088 9.326 0.992 3.662 11.625 6.151

Case 3 (a) Calculation for Loads and Moments at Abutment Shaft Bottom

Governing Longitudnal Force at Bearing Level

ML at @ ML @ RL 75.990 c.g. of (kN.m) Well Fnd.

3816.700 932.100 61.600

16.200 219.739 182.655 86.100 15.068 426.195 -100.860 15.120 58.800 22.800

24.000

c.g. of Force RL in m

1448.885 kN

Copy of Abutment_well

Case 3 (b) Calculation for Loads and Moments at Foundation Level Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)

574.385

= x

(

78.513

574.385 kN +

-52.000

)

= =

574.385 15228.375 kN

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL = S.No.

1.000 2.000 3.000

(

447.912 0.000 61.600 932.100

( ( (

+ + + +

Item

Total Loads and Moment at Well Foundation in Normal Case Earth on Well Kerb in Normal case Earth on Well Kerb in Seismic case Total Loads and Moment at Well Foundation in Seismic Case

10.741 0.000 1.477 22.352 Volume (m^3)

-20.624 21.952

) ) ) )

x x x x

1.280 0.000 4.250 0.450

= = = =

587.076 0.000 268.078 429.503

Unit Wt. (kN/m^3)

P (kN)

eL (m)

ML (kNm)

10.000 10.000

20371.65 -206.24 219.52

0.00 0.00

2940.50 0.00 0.00

20384.92

2940.50

kN.m kN.m kN.m kN.m

x

26.513

Copy of Abutment_well

Loads and moments at Well Foundation Level Vertical Load

=

20384.924

+

Moment, ML

=

2940.503

+

Moment, MT

=

1284.658 kN.m

148.953

=

20533.877

Total Active Earth Press. Moment.

Resultant Moment

MR

=

178882.49

198284.288 ^2

+

kN

Due to Horiz. Force at bearing Level

+

15228.375

1284.658 ^2

+

51.872 =

+ 1181.048 198284.288 kN.m

= 198288.449 kNm

Moment due to Tilt & Shift

Mts .= (

Total Loads upto Well Cap Top

Increment in Load

Level in normal case

Due to Seismic

10344.539

+

Total Loads below Well SHIFT

148.953 ) x ( 0.150 +

Increment in Load

Cap top level in Normal Case

TILT

23.990 ) + 80.000

(

10027.113

Due to Seismic

+ =

MR

Total Resultant Moment

=

198288.449

TILT

0.000

)

x

23.990 160.000

6224.200 kNm

Mts

+

6224.200

=

>

204512.649

204512.649 kNm

Computation of Base Pressure Total Moment at Foundation Level

=

Soil Resistance

=

MR + Mts

=

251652.87

204512.6 kNm

Hence, No Moment will Transfer to the Bas

P max.

P min.

=

=

A

=

Z

=

P A

+

P A

-

=

204512.649

+ =

-251652.9 0.000 kN

 4.000  32.000

x

6.650 ^2

=

34.732 m^2

x

6.650 ^3

=

28.871 m^3

M Z

=

20533.877 34.732

+

=

591.205

+

=

591.205 kPa

M Z

0.000 28.871 0.000 <

=

20533.877 34.732

-

0.000 28.871

=

591.205

-

0.000

=

591.205 kPa

>

1001.793 Hence OK

0.000 No Uplift , Hence OK

Copy of Abutment_well

Case 4 (Seismic case........... HFL Case With Min. CWLL) Loads and forces due to seismic Horizontal Seismic Coefficient Vertical Seismic Coefficient

= =

0.048 0.024

Considering Seismic Force in Longitudnal direction

S.No.

1.000 2.000 3.000 4.000

5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000

Item

Volume

Unit Wt.

P

Fh

Fv

(m^3)

(kN/m^3)

(kN)

(kN)

(kN)

Reaction from Superstructure DL SIDL FPLL Reaction from CWLL (min.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

2.000

0.675 9.156 7.611 3.588 0.628 17.758 -4.202 0.630 2.450 3.800

24.000 24.000 24.000 24.000 24.000 24.000 14.000 24.000 24.000 3.000

Total Load and moments at Abutment Shaft Bottom 15.000

Well Cap

0.000

Total Load and moments at Well Foundation Level

24.000

c.g. of Force RL in m

eL at c.g. of abutment shaft

Well cap top RSL ML @ RL ML at eL at c.g. ML @ RL 75.990 of abutment 67.870 c.g. of (kN.m) shaft (kN.m) Well Fnd.

3816.700 932.100 61.600

91.525 22.352 1.477

0.450 0.450 0.450

41.186 10.058 0.665

41.186 10.058 0.665

85.616 0.000

2.053 0.000

0.450 0.450

0.924 0.000

0.924 0.000

16.200 219.739 182.655 86.100 15.068 426.195 -58.835 15.120 58.800 22.800

0.777 10.539 8.760 4.129 0.723 20.440 -2.822 0.725 2.820 1.093

0.388 5.269 4.380 2.065 0.361 10.220 -1.411 0.363 1.410 0.547

5879.858

47.185

141.000

0.000

0.000

0.000

5879.858

47.185

141.000

78.569 79.701 77.763 77.913 77.496 76.446 75.785 81.040 80.112 81.615

71.502

0.450 -0.350 0.175 0.000 0.617 0.000 0.000 -2.250 -1.667 -2.100

0.000

ML at 52.000 (kN.m)

ML at 58.841 (kN.m)

2.004 39.112 15.527 7.939 1.088 9.326 0.578 3.662 11.625 6.151

0.175 -1.844 0.767 0.000 0.223 0.000 0.000 -0.816 -2.350 -1.148

8.313 124.690 86.663 41.470 6.956 175.308 -22.335 9.551 34.525 15.030

0.175 -1.844 0.767 0.000 0.223 0.000 0.000 -0.816 -2.350 -1.148

20.643 291.937 225.684 107.002 18.424 499.691 -67.115 21.059 79.278 32.384

15.328 219.846 165.760 78.755 13.481 359.868 -47.813 16.098 59.988 24.904

97.012

47.839

480.17

47.84

1229.0

906.2

0.00

0.00

0.0

0.0

480.17

47.84

1229.0

906.2

Copy of Abutment_well

Case 4 (a) Calculation for Loads and Moments at Abutment Shaft Bottom Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)

=

574.385

x

(

574.385 kN

78.513

-75.990

)

=

574.385

x

2.523

=

1448.885 kN

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =

85.616 0.000 61.600 932.100

x x x x

1.280 0.000 4.250 0.450

= = = =

109.589 0.000 261.800 419.445

kN.m kN.m kN.m kN.m

Loads and moments at Abutment Shaft Bottom Vertical Load

=

5965.475 kN

Moment, ML

=

2033.472

Moment, MT

=

Due to Horz. force

+

Moment Due o Back Fil in normal case

1448.885

+

2044.640

Due to Seismic Force

+

97.012

=

574.385 15228.375 kN

x

5624.009 kN.m

Due to Trans. eccy. of CWLL

900.423 kN.m

Case 4 (b) Calculation for Loads and Moments at Foundation Level Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at bearing level Moment at abutment base = (Due to long. Force)

=

574.385

x

(

574.385 kN

78.513

+

-52.000

)

= =

26.513

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL = S.No.

1.000 2.000 3.000

(

83.491 0.000 61.600 932.100

( ( (

+ + + +

2.002 0.000 1.477 22.352

Item

Volume (m^3)

Total Loads and Moment at Well Foundation in Normal Case Earth on Well Kerb in Normal case Earth on Well Kerb in Seismic case

-20.624 21.952

) ) ) )

x x x x

1.280 0.000 4.250 0.450

= = = =

109.431 0.000 268.078 429.503

Unit Wt. (kN/m^3)

P (kN)

eL (m)

ML (kNm)

10.000 10.000

19652.02 -206.24 219.52

0.00 0.00

1605.1 0.0 0.0

ds and Moment at Well Foundation in Seismic Case

19665.29

kN.m kN.m kN.m kN.m

1605.1

Loads and moments at Well Foundation Level Vertical Load

=

19665.288

+

141.000

=

Total Active Earth Press. Moment.

Moment, ML

=

Moment, MT

=

Resultant Moment

MR

1605.058

+

114979.0

19806.288

kN

Due to Horiz. Force at bearing Level

+

15228.375

+

807.013 kN.m =

133089.296 ^2

+

807.013 ^2

= 133091.742 kNm

47.839 =

+ 1228.987 133089.296 kN.m

Copy of Abutment_well

Moment due to Tilt & Shift Total Loads upto Well Cap Top

Increment in Load

Level in normal case

Mts .= (

9624.904

Due to Seismic

+

Total Loads below Well SHIFT

141.000 ) x ( 0.150 +

Increment in Load

Cap top level

TILT

23.990 ) + 80.000

(

Due to Seismic

10027.113

+

= MR

Total Resultant Moment

=

133091.742

TILT

0.000

)

x

23.990 160.000

5896.876 kNm

Mts

+

5896.876

=

<

138988.618

138988.618 kNm

Computation of Base Pressure Total Moment at Foundation Level

=

Soil Resistance

=

MR + Mts

=

126583.83

138988.6 kNm

Hence, Moment will Transfer to the Base

P max.

=

A

=

Z

=

P A

+

=

P A

-

138988.618

+ =

-126583.830 12404.788 kN

 4.000  32.000

x

6.650 ^2

=

34.732 m^2

x

6.650 ^3

=

28.871 m^3

M Z

=

19806.288 34.732

+

12404.788 28.871

=

570.256

+

429.660

19806.288 34.732

-

12404.788 28.871

=

570.256

-

429.660

=

140.596 kPa

= P min.

=

M Z

=

999.916 kPa

<

>

1001.793 Hence OK

0.000 No Uplift , Hence OK

Copy of Abutment_well

Case 1 Live Load Surcharge Layer Ka = 0.2794 thickness Pressure Length (m) (kN / m^2)

Reduced Level

Deck Level

81.2

Well cap top(Assumed MSL)

76.0

LWL

c.g. of force

Moment @ Moment @ 52.0 76.0 (kN. m) (kN. m)

5.2

6.0

10.3

321.7

78.6

8553

836.3

6.0

6.0

10.3

370.5

73.0

7779.4

0.0

-4.0

6.0

10.3

-246.8

72.0

-4935.1

1.0

6.0

6.5

39.2

73.5

843.0

6.0

6.0

6.5

234.5

70.0

4220.7

2.0

6.0

6.5

78.5

66.0

1099.4

2.0

6.0

6.5

78.5

64.0

942.5

9.3

6.0

6.5

365.3

58.4

2322.2

1.7

6.0

6.65

68.2

52.9

58.0

70.0

Well cap bottom

74.0

End of Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

Force

63.0

Well kerb top

53.7

Foundation Level

52.0 29.2

1309.5

20883

836.3

Case 1 Active Earth Pressure(Normal Case) (LWL Case)

In case of LWL , it is assumed that MSL is at Well cap level

Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

Deck Level

81.2

Well cap top(Assumed MSL)

76.0

LWL

70.0

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

52.0

N 

-2c / N  (kN / m^2)

5.2

0.0

25.0

3.6

18.0

0.0

6.0

0.0

25.0

3.6

18.0

0.0

-4.0

0.0

25.0

3.6

10.0

0.0

1.0

0.0

25.0

3.6

10.0

0.0

6.0

0.0

25.0

3.6

10.0

0.0

2.0

0.0

25.0

3.6

10.0

0.0

2.0

0.0

25.0

3.6

10.0

0.0

9.3

0.0

25.0

3.6

10.0

0.0

1.7

0.0

25.0

3.6

10.0

0.0

29.2

yz / N  (kN / m^2) 0.0 26.2 26.2 56.3 56.3 45.1 45.1 47.9 47.9 64.6 64.6 70.2 70.2 75.8 75.8 101.8 101.8 106.6

3.579

Copy of Abutment_well

Reduced Level

Layer thickness

-2c / N 

yz / N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



Force due to

 (FOS=2)

(kN)

Deck Level

81.2

Well cap top(Assumed MSL)

76.0

LWL

0.0 0.0

-4.0

0.0

70.0

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

5.2 6.0

0.0 26.2 26.2 56.3 56.3 45.1 45.1 47.9 47.9 64.6 64.6 70.2 70.2 75.8 75.8 101.8 101.8 106.6

1.0

0.0

6.0

0.0

2.0

0.0

2.0

0.0

9.3

0.0

1.7

0.0

c.g. of force c (m)

c.g. of force  (m)

Moment @ 52.0 c

Moment @ 52.0 

Moment @ 76.0 c

Moment @ 76.0 

(kN)

(m)

(m)

(kN.m)

(kN.m)

(kN.m)

(kN.m)

10.3

1.0

0.0

1.0

696.9

0.0

77.7

0.0

17927.8

0.0

1208.0

10.3

1.0

0.0

1.0

2530.5

0.0

72.6

0.0

52203.6

0.0

0.0

10.3

3.0

0.0

2.0

-1036.8

0.0

71.9

0.0

-20655.2

6.5

3.0

0.0

2.0

151.2

0.0

73.5

0.0

3248.7

6.5

3.0

0.0

2.0

1093.1

0.0

69.9

0.0

19516.0

6.5

3.0

0.0

2.0

438.2

0.0

66.0

0.0

6134.5

6.5

3.0

0.0

2.0

474.5

0.0

64.0

0.0

5694.5

6.5

2.0

0.0

2.0

2688.0

0.0

58.1

0.0

16475.0

6.7

2.0

0.0

2.0

589.0

0.0

52.8

0.0

496.8

52.0

29.2 Total

0.0

Total Active Force

7624.6

7624.6

0.0 Total Active Moment

Grand total

Passive Earth Pressure(Normal Case)(LWL Case) Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

LWL

70.0

Well cap bottom

74.0

End Layer 1 MSL End of Layer 2

2c * N  (kN / m^2)

-4.0

0.0

25.0

5.7

10.0

0.0

1.0

0.0

25.0

5.7

10.0

0.0

6.0

0.0

25.0

5.7

10.0

0.0

2.0

0.0

25.0

5.7

10.0

0.0

2.0

0.0

25.0

5.7

10.0

0.0

73.0 67.0 65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

N 

9.3

0.0

25.0

5.7

10.0

0.0

1.7

0.0

25.0

5.7

10.0

0.0

52.0 18.0

yz * N  (kN / m^2) 0.0 -228.9 -228.9 -171.5 -171.5 171.3 171.3 286.1 286.1 400.8 400.8 935.0 935.0 1032.5

5.736 5.736 5.736 5.736 5.736 5.736 5.736

101041.8

101041.8

0.0

1208.0

20883.2

836.3

121925.0

2044.4

1208.0

Copy of Abutment_well

Reduced Level

Layer thickness

2c * N 

yz * N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)

Force due to





(kN) LWL

70.0

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

-4.0

0.0

1.0

0.0

6.0

0.0

2.0

0.0

2.0

0.0

9.3

0.0

1.7

0.0

0.0 -228.9 -228.9 -171.5 -171.5 171.3 171.3 286.1 286.1 400.8 400.8 935.0 935.0 1032.5

(kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 52.0 c

Moment @ 52.0 

(kN.m)

(kN.m)

10.3

2.0

0.0

2.0

2340.0

0.0

72.7

0.0

48344.7

6.5

2.0

0.0

2.0

-650.6

0.0

73.5

0.0

-13997.1

6.5

3.0

0.0

2.0

-1.7

0.0

2054.7

0.0

-3347.2

6.5

3.0

0.0

2.0

1486.5

0.0

65.9

0.0

20706.2

6.5

3.0

0.0

2.0

2232.2

0.0

64.0

0.0

26691.1

6.5

2.0

0.0

2.0

20214.6

0.0

57.7

0.0

115946.1

6.7

2.0

0.0

2.0

5560.5

0.0

52.8

0.0

4648.3

52.0 18.0 Total Total Passive Force

Passive relief due to (-ve) surcharge

Surcharge height =

Layer thickness c  (m) (kN /m^2) (degree)

Reduced Level

LWL

70.0

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

52.0

0.0

31181.6

31181.6

0.3 m

N 

70.0 m

y z * N  (kN / m^2)

74.0 m

-4.0

0.0

25.0

2.46

10.0

6.2

5.736

1.0

0.0

25.0

2.46

10.0

6.2

5.7

6.0

0.0

25.0

2.46

10.0

6.2

5.7

2.0

0.0

25.0

2.46

10.0

6.2

5.7

2.0

0.0

25.0

2.46

10.0

6.2

5.7

9.3

0.0

25.0

2.46

10.0

6.2

5.7

1.7

0.0

25.0

2.46

10.0

6.2

5.7

18.0

0.0

198992.2

Total Passive Moment

6.2

73.0 m

6.2

67.0 m

6.2

65.0 m

6.2

63.0

6.2

53.7

198992.2

Copy of Abutment_well

Reduced Level

Layer thickness

6.2

yz * N 

Projected Length of we

(FOS)

Force



(kN)

c.g. of force  (m)

52.0 m

Moment @ 52.0 c (kN.m)

Passive relief due to (-ve) surcharge 70.0

LWL

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

-4.0

6.2

10.3

2.0

-126.4

72.0

-2527.0

1.0

6.2

6.5

2.0

20.1

73.5

431.6

6.0

6.2

6.5

2.0

120.1

70.0

2161.2

2.0

6.2

6.5

2.0

40.2

66.0

562.9

2.0

6.2

6.5

2.0

40.2

64.0

482.6

9.3

6.2

6.5

2.0

187.1

58.4

1189.1

1.7

6.2

6.7

2.0

34.9

52.9

29.7

63.0

Well kerb top

53.7

Foundation Level

52.0 18.0 Total

316.1

2330.1

31498 Total Passive Moment

Grand Total Passive Force

201322.3

Check for steining : As per clause 710.2.3.1 ,the minimum thickness of steining shall not be less than 500mm and satisfy the following relationship. t required

=

Thickness provided

kd

l

=

=

0.03

1.00 m

x

6.5

x

Hence OK

Case 1 It is assumed that point of zero shear will be at a distance of Z m below from well cap bottom. Total Active force = Governing Longitudnal Force at Bearing Level

393.7

+

Active force upto Well cap bottom by surcharge

445.4

+

Active Force due to c soil upto Well cap bottom

0.0

+

Active Force due to  upto Well cap bottom

2190.6

Active force below Well cap bottom for Z depth by surcharge

39.2 Z

+

Active Force due to c soil below Well cap bottom

0.0 3.0 (FOS) -c

Z

+

Active Force due Active Force due to phai soil below Well cto phai soil below Well cap bottom

+

293.3 Z 2.0 (FOS) 

+

9.1 Z2 2.0

4.9

=

0.955 m

Copy of Abutment_well

Total Passive force = Passive Force due to c soil upto Well cap bottom

0.0

+

Passive Force due  upto Well cap bottom

2340.0

Passive Force due to c soil below Well cap bottom upto depth Z

0.0 Z + 2.0 (FOS) -c Passive Force due Passive Force due to phai soil below Well cto phai soil below Well cap bottom

+

upto depth Z -1487.6 Z 2.0

upto depth Z 186.4 Z^2 2.0

+

Passive Force due to -ve Surcharge upto Well cap bottom by phai of soil

-126.4

+

Passive Force due to -ve Surcharge below Well cap bottom by phai of soil

upto depth Z 40.2 Z 2.0

+

Eqating both active and passive earth pressure : 3029.7

+

185.9 Z

+

4.5 Z^2

=

2213.6

816.0

+

909.6 Z

+

-88.7 Z^2

=

0.0

-9.2

+

-10.3 Z

Z

=

10.3

+

Z^2

+

= 11.9

=

+

-723.7 Z

0.0 11.1 m

2.0 This means, Point of zero shear will be at a distance of

Live Load Surcharge upto RL

Deck Level

81.2

Well cap top(MSL)

76.0

LWL

70.0

Well cap bottom

74.0

Well kerb top End Layer 2 Foundation Level

62.9 m

62.9 m

Layer Ka = thickness Pressure (m) (kN / m^2)

Reduced Level

End Layer 1

11.1 m in layer 2 i.e. at RL

0.3 Length

Force

c.g. of force

Moment @ 62.9 (kN. m)

5.2

6.0

10.3

321.7

78.6

5046.5

6.0

6.0

10.3

370.5

73.0

3740.0

-4.0

6.0

10.3

-246.8

72.0

-2244.4

11.1

6.0

6.5

435.0

68.4

2411.6

0.0

6.0

6.5

0.0

0.0

0.0

0.0

6.0

6.5

0.0

0.0

0.0

0.0

6.0

6.5

0.0

0.0

0.0

62.9 0.0 0.0 0.0 18.3

880.4

8953.7

+

93.2 Z^2

Copy of Abutment_well

Active Earth Pressure(Normal Case)(LWL Case) upto RL Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

Deck Level

81.2

Well cap top(MSL)

76.0

LWL

70.0

Well cap bottom

74.0

End Layer 1 Well kerb top

62.9 m

N 

2c / N  (kN / m^2)

5.2

0.0

25.0

3.6

18.0

0.0

6.0

0.0

25.0

3.6

18.0

0.0

-4.0

0.0

25.0

3.6

10.0

0.0

11.1

0.0

25.0

3.6

10.0

0.0

0.0

0.0

25.0

3.6

10.0

0.0

0.0

0.0

25.0

3.6

10.0

0.0

0.0

0.0

25.0

3.6

10.0

0.0

yz / N  (kN / m^2) 0.0 26.2 26.2 56.3 56.3 45.1 45.1 76.1 0.0 0.0 0.0 0.0 0.0 0.0

62.9 0.0

End Layer 2

0.0

Foundation Level

0.0

3.6 3.6 3.6 3.6 3.6 3.6 3.6

18.3

Reduced Level

Layer thickness

-2c / N 

yz / N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



Force due to

 (FOS=3)

(kN)

Deck Level

81.2

Well cap top(MSL)

76.0

LWL

70.0

Well cap bottom

74.0

End of Layer 1 Well kerb top End Layer 2 Foundation Level

5.2

0.0

6.0

0.0

-4.0

0.0

11.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

62.9 0.0 0.0

0.0 26.2 26.2 56.3 56.3 45.1 45.1 76.1 0.0 0.0 0.0 0.0 0.0 0.0

(kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 62.9 c

Moment @ 62.9 

(kN.m)

(kN.m)

10.3

1.0

0.0

1.0

696.9

78.6

77.7

0.0

10330.0

10.3

1.0

0.0

1.0

2530.5

73.0

72.6

0.0

24618.0

10.3

3.0

0.0

2.0

-1036.8

72.0

71.9

0.0

-9352.4

6.5

3.0

0.0

2.0

2184.6

68.4

68.0

0.0

11080.2

6.5

3.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

6.5

3.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

6.5

3.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

0.0

18.3 Total Total Active Force

0.0

4375.2

4375.2

0.0 Total Active Moment

36675.8 8953.7

Grand total

45629.5

36675.8

Copy of Abutment_well

Passive Earth Pressure(Normal Case)(LWL Case) upto Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

LWL

70.0

Well cap bottom

74.0

End of Layer 1

N 

2c * N  (kN / m^2)

-4.0

0.0

25.0

5.7

10.0

0.0

11.1

0.0

25.0

5.7

10.0

0.0

0.0

0.0

25.0

5.7

10.0

0.0

0.0

0.0

25.0

5.7

10.0

0.0

0.0

0.0

25.0

5.7

10.0

0.0

yz * N  (kN / m^2) 0.0 -228.9 -228.9 407.2 0.0 0.0 0.0 0.0 0.0 0.0

62.9

Well kerb top

0.0

End Layer 2

0.0

Foundation Level

62.9 m

5.7 5.7 5.7 5.7 5.7

0.0 7.1

Reduced Level

Layer thickness

2c * N 

yz * N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

LWL

70.0

Well cap bottom

74.0

End of Layer 1 Well kerb top End Layer 2 Foundation Level

-4.0

0.0

11.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

62.9 0.0 0.0

0.0 -228.9 -228.9 407.2 0.0 0.0 0.0 0.0 0.0 0.0

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

Moment @ 62.9 c

Moment @ 62.9 

(m)

(kN.m)

(kN.m)

10.3

2.0

0.0

2.0

2340.0

72.0

72.7

0.0

22835.1

6.5

2.0

0.0

2.0

3212.9

68.4

61.9

0.0

-3367.4

6.5

3.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

6.5

3.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

6.5

3.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

0.0 7.1 Total Total Passive Force

0.0

5552.9

5552.9

0.0 Total Passive Moment

19467.7

19467.7

Copy of Abutment_well

Passive relief due to (-ve) surcharge upto RL Layer thickness c  (m) (kN /m^2) (degree)

Reduced Level

LWL

70.0

Well cap bottom

74.0

End of Layer 1 Well kerb top

62.9 m

N 

Surcharge height =

0.251 m

y z * N  (kN / m^2)

-4.0

0.0

25.0

5.7

10.0

14.4

5.736

11.1

0.0

25.0

5.7

10.0

14.4

5.736

0.0

0.0

25.0

5.7

10.0

14.4

5.736

0.0

0.0

25.0

5.7

10.0

14.4

5.736

0.0

0.0

25.0

5.7

10.0

0.0

5.736

(FOS)

Force



(kN)

62.9 0.0

End Layer 2

0.0

Foundation Level

0.0 7.1

Reduced Level

Layer thickness

yz * N 

Projected Length of we

c.g. of force  (m)

Moment @ 62.9 c (kN.m)

LWL

70.0

Well cap bottom

74.0

End of Layer 1 Well kerb top End Layer 2 Foundation Level

-4.0

14.4

10.3

2.0

-294.2

72.0

-2675.4

11.1

14.4

6.5

2.0

518.5

68.4

2874.7

0.0

14.4

6.5

2.0

0.0

0.0

0.0

0.0

14.4

6.5

2.0

0.0

0.0

0.0

0.0

0.0

6.5

2.0

0.0

0.0

0.0

62.9 0.0 0.0 0.0 7.1 Total Grand Total Passive Force

224.3

5777 Total Passive Moment

199.3

19667.0

Copy of Abutment_well

Case 1 Calculation for Loads and Moments upto RL

62.9 m

Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment @ = (Due to long. Force)

= 393.7

x

393.7 kN (

78.5

+

-62.9

= = = =

1146.7 0.0 261.8 419.4

)

= =

393.7 6145.7 kNm

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =

895.8 0.0 61.6 932.1

x x x x

1.3 0.0 4.3 0.5

kN.m kN.m kN.m kN.m

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 62.9 m and @ cg of Foundation Level S.No.

1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Item

Volume (m^3)

Unit Wt. (kN/m^3)

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

2.0 Nos.

0.7 9.2 7.6 3.6 0.6 17.8 -4.2 0.6 2.5 3.8

24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 3.0

Total Load and moments @ RL 15.0

16.0

eL (m)

ML (kNm)

3816.7 932.1 61.6

1.2 1.2 1.2

4580.0 1118.5 73.9

895.8 0.0

1.2 1.2

1075.0 0.0

16.2 219.7 182.7 86.1 15.1 426.2 -100.9 15.1 58.8 22.8

1.2 0.4 0.2 1.4 1.4 0.8 0.8 -1.5 -0.9 -1.4

19.4 87.9 32.0 122.7 20.6 319.6 -75.6 -22.7 -53.9 -30.8

6648

7266.7

Backfill behind Abutment On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL)

201.3 -14.7

18.0 18.0

Front Fill on Well cap

18.8

18.0

Total Load and moments @ RL (Including Back Fill + Front Fill ) 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0

P (kN)

Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb Total Load and moments @ RL

3622.7 -264.8

-1.5 -1.5

338.6

2.1

10345

71.8 20.5 32.2 0.0 191.6 0.0 0.0 0.0 0.0 0.0

22.5 22.5 22.5 12.0 22.5 12.0 14.0 12.0 10.0 10.0

1614.4 461.3 724.5 0.0 4310.9 0.0 0.0 0.0 0.0 0.0 17455.6

-5434.0 397.1 710.7 2940.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2940.5

x

15.6

Copy of Abutment_well

Loads and moments upto RL

62.9 m

Vertical Load

=

17455.6 kN

Moment, ML

=

2941

+

45629

+

6146

=

Moment, MT

=

1147

+

0

+

262

+

Total Active Earth Press. Moment.

Resultant Moment

MR

=

54716 ^2

Due to Horiz. Force at bearing Level

54715.7

kN.m

419.4 = 54746 kN.m

1828 ^2

1827.9 kN.m

Moment due to Tilt & Shift Total Loads upto Well Cap Top Level

Mts .=

SHIFT

10344.5 x ( 0.150 +

TILT

Total Loads below Well Cap Top Level

13.1 ) + 80.0

7111.1

MR

Total Resultant Moment

=

54746

Total Moment upto RL

62.9 m

Passive Resistance

=

P max.

P min.

=

=

=

Z

=

P A

+

P A

3826

MR + Mts 19667

Check for safety of section

-

=

58572 kNm

=

3825.8 kNm

=

58572 kNm <

58572 = =

58572 38905 kN

+

-19667.0

 4.0  208.0

x

22.0

=

17.3 m^2

x

1375.0

=

20.8 m^3

M Z

=

17455.6 17.3

+

38905 20.8

=

1010.2

+

1873

=

2883.6 kPa

M Z

1.0 6.3

13.1 160.0

Mts

+

Hence, Moment will Transfer to the steining

A

TILT

x

+

=

17455.6 17.3

-

38905 20.8

=

1010.2

-

1873.3

= =

-863.1 kPa 0.9 1.9 8.3

=

0.4

< Section is uncracked < 1.0

6.1

Case2 Live Load Surcharge Layer Ka = thickness Pressure (m) (kN / m^2)

Reduced Level Deck Level

81.2

HFL

75.6

Well cap top

Force c.g. of force

Moment @ Moment @ 52.0 76.0 (kN. m) (kN. m)

5.6

6.0

10.3

347.0

78.4

9156.4

831.1

-0.4

6.0

10.3

-25.4

75.8

-603.2

5.2

2.0

6.0

10.3

123.7

75.0

2844.3

1.0

6.0

6.5

39.2

73.5

843.0

6.0

6.0

6.5

234.5

70.0

4220.7

2.0

6.0

6.5

78.5

66.0

1099.4

2.0

6.0

6.5

78.5

64.0

942.5

9.3

6.0

6.5

365.3

58.4

2322.2

1.7

6.0

6.7

68.2

52.9

76.0

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

0.3 Length

63.0

Well kerb top

53.7

Foundation Level

52.0 29.2

1309.5

58.0 20883

836.3

Hence OK

Copy of Abutment_well

Case 2 Active Earth Pressure(Normal Case)(HFL Case) Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

Deck Level

81.2

HFL

75.6

Well cap top

76.0

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2 End of Layer 3

N 

2c / N  (kN / m^2)

5.6

0.0

25.0

3.6

18.0

0.0

-0.4

0.0

25.0

3.6

10.0

0.0

2.0

0.0

25.0

3.6

10.0

0.0

1.0

0.0

25.0

3.6

10.0

0.0

6.0

0.0

25.0

3.6

8.0

0.0

2.0

0.0

25.0

3.6

8.0

0.0

2.0

0.0

25.0

3.6

9.3

0.0

9.3

0.0

25.0

3.6

10.0

0.0

1.7

0.0

25.0

3.6

10.0

0.0

65.0 63.0

Well kerb top

53.7

Foundation Level

52.0

29.2

yz / N  (kN / m^2) 0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 58.5 58.5 84.5 84.5 89.2

3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579 0.000 3.579

Copy of Abutment_well

Reduced Level

Layer thickness

-2c / N 

yz / N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

Deck Level

81.2

HFL

75.6

Well cap top

0.0 0.0

2.0

0.0

76.0

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

5.6 -0.4

1.0

0.0

6.0

0.0

2.0

0.0

2.0

0.0

9.3

0.0

1.7

0.0

63.0

Well kerb top

53.7

Foundation Level

52.0

0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 58.5 58.5 84.5 84.5 89.2

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 52.0 c

Moment @ 52.0 

(kN.m)

(kN.m)

Moment @ 76.0 c

Moment @ 76.0 

(kN.m)

(kN.m)

10.3

1.0

0.0

1.0

811.2

78.4

77.5

0.0

20644.6

0.0

1184.3

10.3

1.0

0.0

1.0

-116.2

75.8

75.8

0.0

-2762.7

0.0

24.0

10.3

1.0

0.0

1.0

612.2

75.0

75.0

0.0

14054.8

6.5

1.0

0.0

1.0

221.3

73.5

73.5

0.0

4755.2

6.5

1.0

0.0

1.0

1636.8

70.0

69.8

0.0

29205.9 4644.6

6.5

3.0

0.0

2.0

331.8

66.0

66.0

0.0

6.5

3.0

0.0

2.0

363.2

64.0

64.0

0.0

4357.6

6.5

2.0

0.0

2.0

2163.7

58.4

58.1

0.0

13142.5

6.7

2.0

0.0

2.0

491.0

52.9

52.8

0.0

413.6

29.2 Total Total Active Force

0.0

6515.1

6515.1

0.0 Total Active Moment

Grand total

88456.2

88456.2

0.0

1208.3

20883.2

836.3

109339.4

2044.6

1208.3

Copy of Abutment_well

Passive Earth Pressure(Normal Case) Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

MSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

N 

2c * N  (kN / m^2)

2.0

0.0

25.0

5.7

8.0

0.0

2.0

0.0

25.0

5.7

9.3

0.0

9.3

0.0

25.0

5.7

10.0

0.0

1.7

0.0

25.0

5.7

10.0

0.0

yz * N  (kN / m^2) 0.0 91.8 91.8 198.5 198.5 732.7 732.7 830.2

5.7 5.7 5.7 5.7

52.0 15.0

Reduced Level

Layer thickness

2c * N 

yz * N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

MSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

2.0

0.0

2.0

0.0

9.3

0.0

1.7

0.0

0.0 91.8 91.8 198.5 198.5 732.7 732.7 830.2

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 52.0 c

Moment @ 52.0 

(kN.m)

(kN.m)

6.5

3.0

0.0

2.0

298.3

66.0

65.7

0.0

4080.3

6.5

3.0

0.0

2.0

943.3

64.0

63.9

0.0

11216.1

6.5

2.0

0.0

2.0

14091.3

58.4

57.5

0.0

77023.2

6.7

2.0

0.0

2.0

4416.9

52.9

52.8

0.0

3676.3

52.0 15.0 Total Total Passive Force

0.0

19749.8

19749.8

0.0 Total Passive Moment

95995.8

95995.8

Copy of Abutment_well

Passive relief due to (-ve) surcharge

Surcharge height =

0.3 m 67.0 m

Layer thickness c  (m) (kN /m^2) (degree)

Reduced Level MSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

52.0

N 

y z * N  (kN / m^2)

2.0

0.0

25.0

2.5

10.0

6.2

5.7

2.0

0.0

25.0

2.5

10.0

6.2

5.7

9.3

0.0

25.0

2.5

10.0

6.2

5.7

1.7

0.0

25.0

2.5

10.0

6.2

5.7

15.0

Reduced Level

yz * N 

Layer thickness

Projected Length of we

(FOS)

Force



(kN)

c.g. of force  (m)

67.0

End of Layer 2

65.0

End of Layer 3

52.0 c

2.0

6.2

6.5

3.0

26.8

66.0

2.0

6.2

6.5

3.0

26.8

64.0

375.3 321.7

9.3

6.2

6.5

2.0

187.1

58.4

1189.1

1.7

6.2

6.7

2.0

34.9

52.9

29.7

63.0

Well kerb top

53.7

Foundation Level

52.0 15.0 Total Grand Total Passive Force

275.6

20025 Total Passive Moment

65.0 m

6.2

63.0 m

6.2

53.7 m

6.2

52.0 m

Moment @

(kN.m)

MSL

6.2

1915.8

97911.6

Passive relief due to (-ve) surcharge

Copy of Abutment_well

Check for steining : Case 2 It is assumed that point of zero shear will be at a distance of Z m below from Layer 2.

Total Active force = 393.7

+

797.5

+

0.0

+

39.2 Z 0.0 3.0

3497.1

+

346.3 Z 2.0

+ Z

+

+

8.4 Z^2 2.0

Total Passive force = 0.0

298.3

26.8

+

0.0 Z + 3.0

+

596.5 Z 2.0

+

40.2 Z 3.0

+

173.4 Z^2 2.0

+

Eqating both active and passive earth pressure : 4688.3

+

212.4 Z

+

4.2 Z^2

=

325.1

4363.3

+

-99.3 Z

+

-82.5 Z^2

=

0.0

-52.9

+

1.2

+

=

-1.2

+

Z

Z^2 14.6

=

0.0

=

6.7 m

+

311.7 Z

2.0 This means, Point of zero shear will be at a distance of

6.7 m in layer 2 i.e. at RL

58.3 m

+

86.7 Z^2

Copy of Abutment_well

Live Load Surcharge upto RL

Layer Ka = thickness Pressure (m) (kN / m^2)

Reduced Level

Deck Level

81.2

HFL

75.6

Well cap top

58.3 m

0.3 Length

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 2

65.0

End of Layer 3

58.3

Well kerb top

0.0

Foundation Level

0.0

5.6

6.0

10.3

347.0

78.4

-0.4

6.0

10.3

-25.4

75.8

-443.1

2.0

6.0

10.3

123.7

75.0

2062.9

1.0

6.0

6.5

39.2

73.5

595.2

6.0

6.0

6.5

234.5

70.0

2739.8

2.0

6.0

6.5

78.5

66.0

603.9

6.7

6.0

6.5

262.7

61.7

879.7

22.9

1060.2

Active Earth Pressure(Normal Case) upto RL Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

Deck Level

81.2

HFL

75.6

Well cap top

76.0

Well cap bottom

74.0

End Layer 1

73.0

MSL

67.0

End of Layer 3

Moment @ 58.3 (kN. m)

6964.5

76.0

Well cap bottom

End of Layer 2

Force c.g. of force

13403

58.3 m

N 

2c / N  (kN / m^2)

5.6

0.0

25.0

3.6

18.0

0.0

-0.4

0.0

25.0

3.6

10.0

0.0

yz / N  (kN / m^2) 0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 70.7

3.6 3.6

2.0

0.0

25.0

3.6

10.0

0.0

1.0

0.0

25.0

3.6

10.0

0.0

6.0

0.0

25.0

3.6

8.0

0.0

2.0

0.0

25.0

3.6

8.0

0.0

6.7

0.0

25.0

3.6

9.3

0.0

0.0

25.0

3.6

10.0

0.0

3.6

0.0

25.0

3.6

10.0

0.0

3.6

65.0

3.6 3.6 3.6 3.6 3.6

58.3

Well kerb top Foundation Level 22.9

Copy of Abutment_well

Reduced Level

Layer thickness

-2c / N 

yz / N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

Deck Level

81.2

HFL

75.6

Well cap top Well cap bottom

74.0 73.0

MSL

67.0

End of Layer 2

65.0

Well kerb top Foundation Level

0.0 0.0

2.0

0.0

76.0

End Layer 1

End of Layer 3

5.6 -0.4

0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 70.7 0.0 0.0 0.0 0.0

1.0

0.0

6.0

0.0

2.0

0.0

6.7

0.0

0.0

0.0

0.0

0.0

58.3 0.0

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 58.3 c

Moment @ 58.3 

(kN.m)

(kN.m)

15521.2

10.3

1.0

0.0

1.0

811.2

78.4

77.5

0.0

10.3

1.0

0.0

1.0

-116.2

75.8

75.8

0.0

-2029.1

10.3

1.0

0.0

1.0

612.2

75.0

75.0

0.0

10188.3

6.5

1.0

0.0

1.0

221.3

73.5

73.5

0.0

3357.2

6.5

1.0

0.0

1.0

1636.8

70.0

69.8

0.0

18868.0

6.5

3.0

0.0

3.0

221.2

66.0

66.0

0.0

1699.3

6.5

3.0

0.0

3.0

899.4

61.7

61.5

0.0

2870.6

6.5

2.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

6.7

2.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

0.0 22.9 Total

0.0

4285.9

4285.9

Total Active Force

0.0

50475.6

50475.6

Total Active Moment

13403.0

Grand total

Passive Earth Pressure(Normal Case) upto RL

MSL

67.0

End of Layer 2

65.0

End of Layer 3

58.3

Well kerb top

53.7

Foundation Level

58.3 m

Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

63878.6

N 

2c * N  (kN / m^2)

2.0

0.0

25.0

5.7

8.0

0.0

6.7

0.0

25.0

5.7

9.3

0.0

0.0

0.0

25.0

5.7

10.0

0.0

0.0

0.0

25.0

5.7

10.0

0.0

yz * N  (kN / m^2) 0.0 91.8 91.8 449.0 0.0 0.0 0.0 0.0 0.0

52.0

5.7 5.7 5.7 5.7

8.7

Reduced Level

Layer thickness

2c * N 

yz * N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

MSL

67.0

End of Layer 2

65.0

End of Layer 3

58.3

Well kerb top

53.7

Foundation Level

2.0

0.0

6.7

0.0

0.0

0.0

0.0

0.0

52.0

0.0 91.8 91.8 449.0 0.0 0.0 0.0 0.0 0.0

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 58.3 c

Moment @ 58.3 

(kN.m)

(kN.m)

6.5

3.0

0.0

2.0

298.3

66.0

65.7

0.0

2196.4

6.5

3.0

0.0

2.0

5885.3

61.7

60.9

0.0

15367.6

6.5

2.0

0.0

2.0

0.0

53.7

0.0

0.0

0.0

6.7

2.0

0.0

2.0

0.0

52.0

0.0

0.0

0.0

8.7 Total Total Passive Force

0.0

6183.6

6183.6

0.0 Total Passive Moment

17564.0

17564.0

Copy of Abutment_well

Passive relief due to (-ve) surcharge upto RL Layer thickness c  (m) (kN /m^2) (degree)

Reduced Level

MSL

67.0

End of Layer 2

65.0

End of Layer 3 Well kerb top Foundation Level

58.3 m

Surcharge height =

N 

0.3 m

y z * N  (kN / m^2)

2.0

0.0

25.0

5.7

10.0

14.4

5.7

6.7

0.0

25.0

5.7

10.0

14.4

5.7

0.0

0.0

25.0

5.7

10.0

0.0

5.7

0.0

0.0

25.0

5.7

10.0

0.0

5.7

(FOS)

Force



(kN)

58.3 53.7 52.0 8.7

Reduced Level

yz * N 

Layer thickness

Projected Length of we

c.g. of force  (m)

Moment @ 58.3 c (kN.m)

MSL

67.0

End of Layer 2

65.0

End of Layer 3 Well kerb top Foundation Level

2.0

14.4

6.5

3.0

62.3

66.0

479.9

6.7

14.4

6.5

3.0

208.8

61.7

699.1

0.0

0.0

6.5

2.0

0.0

53.7

0.0

0.0

0.0

6.7

2.0

0.0

52.0

0.0

58.3 53.7 52.0 8.7 Total

271.1

Case 2 Calculation for Loads and Moments upto RL

1178.9

6454.7 Total Passive Moment

Grand Total Passive Force

18742.9

58.3 m

Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment at abutment base = (Due to long. Force)

= 393.7

x

393.7 kN (

78.5

+

-58.3

= = = =

213.7 0.0 261.8 419.4

)

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =

167.0 0.0 61.6 932.1

x x x x

1.3 0.0 4.3 0.5

kN.m kN.m kN.m kN.m

= =

393.7 7950.9 kN

x

20.2

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 58.3 m and @ cg of Foundation Level S.No.

Item

1.0 2.0 3.0 4.0

Volume (m^3)

Unit Wt. (kN/m^3)

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

15.0

Backfill behind Abutment

0.7 9.2 7.6 3.6 0.6 17.8 -4.2 0.6 2.5 3.8

2.0 Nos.

17.0

On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL)

201.3 -14.7

18.0 10.0

Front Fill on Well cap

18.8

10.0

Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb

3816.7 932.1 61.6

1.2 1.2 1.2

4580.0 1118.5 73.9

167.0 0.0

1.2 1.2

200.4 0.0

16.2 219.7 182.7 86.1 15.1 426.2 -94.6 15.1 58.8 22.8

1.2 0.4 0.2 1.4 1.4 0.8 0.8 -1.5 -0.9 -1.4

19.4 87.9 32.0 122.7 20.6 319.6 -70.9 -22.7 -53.9 -30.8

6396.8

3622.7 -147.1

-1.5 -1.5

188.1

2.1

9589.2

71.8 20.5 32.2 0.0 270.8 0.0 0.0 0.0 0.0 0.0

22.5 22.5 22.5 12.0 22.5 12.0 14.0 12.0 10.0 10.0

Total Loads and Moment at Well Foundation

Loads and moments upto RL

ML (kNm)

5925.5

Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill )

18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0

eL (m)

24.0 24.0 24.0 24.0 24.0 24.0 22.5 24.0 24.0 3.0

Total Load and moments at Abutment Shaft Bottom

16.0

P (kN)

1614.4 461.3 724.5 0.0 6093.6 0.0 0.0 0.0 0.0 0.0

-5434.0 220.6

394.8 1578.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18483

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1578.3

58.3 m

Vertical Load

=

Moment, ML

=

18483 kN 1578

+

63879

+

7951

=

73408

kN.m

Moment, MT

=

214

+

0

+

262

+

419 =

895.0

Total Active Earth Press. Moment.

Resultant Moment

MR

=

73408 ^2

Due to Horiz. Force at bearing Level

895 ^2

kN.m

73413

Moment due to Tilt & Shift Total Loads upto Well Cap Top Level

Mts .=

SHIFT

9589.2 x ( 0.150 +

TILT

Total Loads below Well Cap Top Level

17.7 ) + 80.0

8893.8

MR

Total Resultant Moment

=

73413

TILT

x

17.7 160.0

=

77952 kNm

Mts

+

4539

=

4539.3 kNm

Copy of Abutment_well

Total Moment upto RL

58 m

Passive Resistance

MR + Mts

=

18743

=

77952 kNm <

77952

Hence, Moment will Transfer to the steining

P max.

P min.

=

=

P A

P A

+

M Z

-

M Z

18483 17.3

+

59210 20.8

=

1070

+

2851

=

3921 kPa 18483 17.3

-

59210 20.8

1070

-

2851

=

= = 1.1 6.3

+

77952 59210 kN

=

=

Check for safety of section

= =

-1781 kPa 1.78 2.9 8.3

=

0.5

+

-18742.9

< 6.10 Section is uncracked < 1.0 Hence OK

Case3 Live Load Surcharge (Seismic Case) (LWL Case) Layer Ka = thickness Pressure (m) (kN / m^2)

Reduced Level Deck Level

81.2

Well cap top(Assumed RSL)

76.0

LWL

Force c.g. of force

Moment @ Moment @ 52.0 76.0 (kN. m) (kN. m)

5.2

6.0

10.3

321.7

78.6

8553.1

836.3

6.0

6.0

10.3

370.5

73.0

7779.4

0.0

-4.0

6.0

10.3

-246.8

72.0

-4935.1

1.0

6.0

6.5

39.2

73.5

843.0

6.0

6.0

6.5

234.5

70.0

4220.7

2.0

6.0

6.5

78.5

66.0

1099.4

2.0

6.0

6.5

78.5

64.0

942.5

9.3

6.0

6.5

365.3

58.4

2322.2

1.7

6.0

6.7

68.2

52.9

70.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

End of Layer 2

65.0

End of Layer 3

0.3 Length

63.0

Well kerb top

53.7

Foundation Level

52.0 29.2

1309.5

58.0 20883

836.3

Active Earth Pressure(Seismic Case) (LWL Case) Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level Deck Level

81.2

Well cap top(Assumed RSL)

76.0

LWL Well cap bottom

74.0 73.0

RSL

67.0

End of Layer 2

65.0

Well kerb top Foundation Level

2c / N  (kN / m^2)

5.2

0.0

25.0

2.5

18.0

0.0

6.0

0.0

25.0

2.5

18.0

0.0

-4.0

0.0

25.0

2.5

10.0

0.0

70.0

End Layer 1

End of Layer 3

N 

1.0

0.0

25.0

2.5

10.0

0.0

6.0

0.0

25.0

2.5

10.0

0.0

2.0

0.0

25.0

2.5

10.0

0.0

2.0

0.0

25.0

2.5

10.0

0.0

9.3

0.0

25.0

2.5

10.0

0.0

1.7

0.0

25.0

2.5

10.0

0.0

63.0 53.7 52.0 29.2

yz / N  (kN / m^2) 0.0 38.0 38.0 81.7 81.7 65.6 65.6 69.6 69.6 93.9 93.9 102.0 102.0 110.1 110.1 147.9 147.9 154.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Copy of Abutment_well

Reduced Level

Layer thickness

-2c / N 

yz / N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

Deck Level

81.2

Well cap top(Assumed RSL)

76.0

LWL

70.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

End of Layer 2

65.0

End of Layer 3 Well kerb top Foundation Level

5.2

0.0

6.0

0.0

-4.0

0.0

1.0

0.0

6.0

0.0

2.0

0.0

2.0

0.0

9.3

0.0

1.7

0.0

0.0 38.0 38.0 81.7 81.7 65.6 65.6 69.6 69.6 93.9 93.9 102.0 102.0 110.1 110.1 147.9 147.9 154.8

63.0 53.7

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

Moment @ 52.0 

Moment @ 76.0 c

Moment @ 76.0 

(m)

(kN.m)

(kN.m)

(kN.m)

(kN.m)

1012.4

78.6

77.7

0.0

26042.0

0.0

1754.8

1.0

3675.8

73.0

72.6

0.0

75831.4

0.0

0.0

1.6

-1882.6

72.0

71.9

0.0

-37504.8

1.6

274.6

73.5

73.5

0.0

5898.9

1.6

1984.8

70.0

69.9

0.0

35436.4

0.0

1.6

795.7

66.0

66.0

0.0

11138.8

0.0

1.6

861.6

64.0

64.0

0.0

10339.8

1.6

0.0

1.6

4880.8

58.4

58.1

0.0

29914.7

1.6

0.0

1.6

1069.4

52.9

52.8

0.0

902.1

10.3

1.0

0.0

1.0

10.3

1.0

0.0

10.3

1.6

0.0

6.5

1.6

0.0

6.5

1.6

0.0

6.5

1.6

6.5

1.6

6.5 6.7

(m)

Moment @ 52.0 c

52.0 29.2 Total

0.0

12672.4

12672.4

Total Active Force

0.0

157999.3

157999.3

Total Active Moment

Grand total

20883.2

836.3

178882.5

2591.1

Passive Earth Pressure(Seismic Case)(LWL Case) Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

LWL

70.0

Well cap bottom

74.0

End Layer 1 RSL End of Layer 2 End of Layer 3 Well kerb top Foundation Level

N 

2c * N  (kN / m^2)

-4.0

0.0

25.0

5.7

10.0

0.0

1.0

0.0

25.0

5.7

10.0

0.0

6.0

0.0

25.0

5.7

10.0

0.0

2.0

0.0

25.0

5.7

10.0

0.0

2.0

0.0

25.0

5.7

10.0

0.0

9.3

0.0

25.0

5.7

10.0

0.0

1.7

0.0

25.0

5.7

10.0

0.0

yz * N  (kN / m^2) 0.0 -228.9 -228.9 -171.5 -171.5 171.3 171.3 286.1 286.1 400.8 400.8 935.0 935.0 1032.5

73.0 67.0 65.0 63.0 53.7

5.7 5.7 5.7 5.7 5.7 5.7 5.7

52.0 18.0

Reduced Level

Layer thickness

2c * N 

yz * N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN) LWL

70.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

-4.0

0.0

1.0

0.0

6.0

0.0

2.0

0.0

2.0

0.0

9.3

0.0

1.7

0.0

0.0 -228.9 -228.9 -171.5 -171.5 171.3 171.3 286.1 286.1 400.8 400.8 935.0 935.0 1032.5

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 52.0 c

Moment @ 52.0 

(kN.m)

(kN.m)

10.3

1.6

0.0

1.6

2925.0

72.0

72.7

0.0

60430.9

6.5

1.6

0.0

1.6

-813.3

73.5

73.5

0.0

-17496.3

6.5

2.4

0.0

1.6

-2.1

70.0

2054.7

0.0

-4184.0

6.5

2.4

0.0

1.6

1858.1

66.0

65.9

0.0

25882.8

6.5

2.4

0.0

1.6

2790.2

64.0

64.0

0.0

33363.8

6.5

1.6

0.0

1.6

25268.3

58.4

57.7

0.0

144932.6

6.7

1.6

0.0

1.6

6950.6

52.9

52.8

0.0

5810.4

52.0 18.0 Total Total Passive Force

0.0

38977.0

38977.0

0.0 Total Passive Moment

0.0

1754.8

248740.2

248740.2

1754.8

Copy of Abutment_well

Passive relief due to (-ve) surcharge

Surcharge height =

Layer thickness c  (m) (kN /m^2) (degree)

Reduced Level

LWL

70.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

0.3 m

N 

70.0 m

y z * N  (kN / m^2) 6.2

-4.0

0.0

25.0

2.5

10.0

6.2

5.7

1.0

0.0

25.0

2.5

10.0

6.2

5.7

6.0

0.0

25.0

2.5

10.0

6.2

5.7

2.0

0.0

25.0

2.5

10.0

6.2

5.7

2.0

0.0

25.0

2.5

10.0

6.2

5.7

9.3

0.0

25.0

2.5

10.0

6.2

5.7

1.7

0.0

25.0

2.5

10.0

6.2

5.7

74.0 m

6.2 73.0 m

6.2 67.0 m

6.2 65.0 m

52.0 18.0

6.2

63.0 m

6.2 Reduced Level

Layer thickness

53.7 m

yz * N 

Projected Length of we

(FOS)

Force



(kN)

c.g. of force  (m)

Moment @ 52.0 c (kN.m)

LWL

70.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

End of Layer 2

-4.0

6.2

10.3

1.6

-158.0

72.0

-3158.7

1.0

6.2

6.5

1.6

25.1

73.5

539.6

6.0

6.2

6.5

1.6

150.1

70.0

2701.4

2.0

6.2

6.5

1.6

50.2

66.0

703.7

2.0

6.2

6.5

1.6

50.2

64.0

603.2

9.3

6.2

6.5

1.6

233.8

58.4

1486.3

1.7

6.2

6.7

1.6

43.7

52.9

37.1

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

52.0 18.0 Total Grand Total Passive Force

Check for steining : Case 3 It is assumed that point of zero shear will be at a distance of Z m below from well cap bottom.

Total active force = 574.4

+

445.4

+

0.0

+

39.2 Z 0.0 1.6

2805.6

+

426.1 Z 1.6

+ Z

+

+

13.2 Z^2 1.6

Total Passive force = 0.0

2925.0

-158.0

+

0.0 Z + 1.6

+

-1487.6 Z 1.6

+

40.2 Z 1.6

+

186.4 Z^2 1.6

+

395.1

39372 Total Passive Moment

2912.6

251652.9

6.2 52.0 m

Passive relief due to (-ve) surcharge

Copy of Abutment_well

Eqating both active and passive earth pressure : 3825.3

+

305.5 Z

+

8.2 Z^2

=

2767.0

1058.3

+

1210.2 Z

+

-108.3 Z^2

=

0.0

-9.8

+

-11.2 Z

Z

=

11.2

+

Z^2

+

= 12.8

=

+

-904.7 Z

+

116.5 Z^2

0.0 12.0 m

2.0 This means, Point of zero shear will be at a distance of

Live Load Surcharge upto RL

Deck Level

81.2

HFL

76.0

Well cap top(MSL)

70.0

Well cap bottom

74.0

Well kerb top End Layer 2 Foundation Level

0.3 Length

Force c.g. of force

5.2

6.0

10.3

321.7

78.6

5337.4

6.0

10.3

370.5

73.0

4075.1

-4.0

6.0

10.3

-246.8

72.0

-2467.6

12.0

6.0

6.5

470.5

68.0

2821.0

0.0

6.0

6.5

0.0

0.0

0.0

0.0

6.0

6.5

0.0

0.0

0.0

0.0

6.0

6.5

0.0

0.0

0.0

62.0 0.0 0.0 0.0 915.8

9765.9

Active Earth Pressure(Seismic Case)(LWL Case) upto R Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

Deck Level

81.2

Well cap top(Assumed RSL)

76.0

Well cap bottom

74.0 62.0

End of Layer 2 End of Layer 3

62.0 m

N 

2c / N  (kN / m^2)

5.2

0.0

25.0

3.6

18.0

0.0

6.0

0.0

25.0

3.6

18.0

0.0

-4.0

0.0

25.0

3.6

10.0

0.0

70.0

End Layer 1 MSL

Moment @ 62.0 (kN. m)

6.0

19.2

LWL

62.0 m

62.0 m

Layer Ka = thickness Pressure (m) (kN / m^2)

Reduced Level

End Layer 1

12.0 m in layer 2 i.e. at RL

12.0

0.0

25.0

3.6

10.0

0.0

0.0

0.0

25.0

3.6

10.0

0.0

0.0

0.0

25.0

3.6

10.0

0.0

0.0

0.0

25.0

3.6

10.0

0.0

0.0

25.0

3.6

0.0

25.0

3.6

0.0 0.0 0.0

Well kerb top Foundation Level 19.2

yz / N  (kN / m^2) 0.0 26.2 26.2 56.3 56.3 45.1 45.1 78.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

Copy of Abutment_well

Reduced Level

Layer thickness

-2c / N 

yz / N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



Force due to

 (FOS=3)

(kN)

Deck Level

81.2

Well cap top(Assumed RSL)

76.0

LWL

70.0

Well cap bottom

74.0

End Layer 1 MSL End of Layer 2 End of Layer 3

5.2

0.0

6.0

0.0

-4.0

0.0

12.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 26.2 26.2 56.3 56.3 45.1 45.1 78.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

62.0 0.0 0.0 0.0 0.0

Well kerb top

0.0 0.0

Foundation Level

(kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 62.0 c

Moment @ 62.0 

(kN.m)

(kN.m)

10.3

1.0

0.0

1.0

696.9

78.6

77.7

0.0

10960.3

10.3

1.0

0.0

1.0

2530.5

73.0

72.6

0.0

26906.3

10.3

1.6

0.0

1.6

-1296.0

72.0

71.9

0.0

-12862.5

6.5

1.6

0.0

1.6

3015.0

68.0

67.5

0.0

16447.5

6.5

1.6

0.0

2.4

0.0

0.0

0.0

0.0

0.0

6.5

1.6

0.0

2.4

0.0

0.0

0.0

0.0

0.0

6.5

1.6

0.0

2.4

0.0

0.0

0.0

0.0

0.0

6.5

1.6

0.0

1.6

0.0

0.0

0.0

0.0

0.0

6.7

1.6

0.0

1.6

0.0

0.0

0.0

0.0

0.0

0.0

19.2 Total Total Active Force

0.0

4946.4

4946.4

0.0 Total Active Moment

41451.6 9765.9

Grand total

Passive Earth Pressure(Seismic Case)(LWL Case) upto Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

LWL

70.0

Well cap bottom

74.0

End Layer 1 RSL End of Layer 2 End of Layer 3

62.0 m

N 

2c * N  (kN / m^2)

yz * N  (kN / m^2) 0.0 -98.3 -98.3 197.2 0.0 0.0 0.0 0.0 0.0 0.0

-4.0

0.0

25.0

2.5

10.0

0.0

12.0

0.0

25.0

2.5

10.0

0.0

0.0

0.0

25.0

2.5

10.0

0.0

0.0

0.0

25.0

2.5

10.0

0.0

0.0

0.0

25.0

2.5

10.0

0.0

0.0

25.0

2.5

0.0

5.7

0.0

25.0

2.5

0.0

5.7

62.0 0.0 0.0

5.7 5.7 5.7 5.7 5.7

0.0

Well kerb top Foundation Level 8.0

51217.4

41451.6

Copy of Abutment_well

Reduced Level

Layer thickness

2c * N 

yz * N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)

Force due to





(kN) LWL

70.0

Well cap bottom

74.0

End Layer 1 MSL

-4.0

0.0

12.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 -98.3 -98.3 197.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

62.0 0.0

End of Layer 2

0.0

End of Layer 3

0.0 0.0

Well kerb top

0.0 0.0

Foundation Level

(kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 62.0 c

Moment @ 62.0 

(kN.m)

(kN.m)

10.3

1.6

0.0

1.6

1256.4

72.0

72.7

0.0

13397.3

6.5

1.6

0.0

1.6

2408.6

68.0

62.0

0.0

54.8

6.5

2.4

0.0

1.6

0.0

0.0

0.0

0.0

0.0

6.5

2.4

0.0

1.6

0.0

0.0

0.0

0.0

0.0

6.5

2.4

0.0

1.6

0.0

0.0

0.0

0.0

0.0

6.5

1.6

0.0

1.6

0.0

0.0

0.0

0.0

6.7

1.6

0.0

1.6

0.0

0.0

0.0

0.0

0.0 8.0 Total Total Passive Force

Passive relief due to (-ve) surcharge upto RL Layer thickness c  (m) (kN /m^2) (degree)

Reduced Level

LWL

70.0

Well cap bottom

74.0

End Layer 1 MSL End of Layer 2 End of Layer 3 Well kerb top Foundation Level

62.0 m

Surcharge height =

N 

0.0

3665.0

3665.0

0.3 m

y z * N  (kN / m^2)

-4.0

0.0

25.0

2.5

10.0

6.2

5.7

12.0

0.0

25.0

2.5

10.0

6.2

5.7

0.0

0.0

25.0

2.5

10.0

6.2

5.7

0.0

0.0

25.0

2.5

10.0

6.2

5.7

0.0

0.0

25.0

2.5

10.0

0.0

5.7

0.0

0.0

25.0

2.5

10.0

0.0

5.7

0.0

0.0

25.0

2.5

10.0

0.0

5.7

62.0 0.0 0.0 0.0 0.0 0.0 8.0

0.0 Total Passive Moment

13452.1

13452.1

Copy of Abutment_well

Reduced Level

yz * N 

Layer thickness

Projected

(FOS)

Force



(kN)

Length of we

c.g. of force  (m)

Moment @ 62.0 c (kN.m)

LWL

70.0

Well cap bottom

74.0

End Layer 1 MSL End of Layer 2 End of Layer 3 Well kerb top Foundation Level

-4.0

6.2

10.3

1.6

-158.0

72.0

-1579.4

12.0

6.2

6.5

1.6

301.1

68.0

1805.6

0.0

6.2

6.5

1.6

0.0

0.0

0.0

0.0

6.2

6.5

1.6

0.0

0.0

0.0

0.0

0.0

6.5

1.6

0.0

0.0

0.0

0.0

0.0

6.5

1.6

0.0

0.0

0.0

0.0

0.0

6.7

1.6

0.0

0.0

0.0

62.0 0.0 0.0 0.0 0.0 0.0 8.0 Total

143.1

Case 3 Calculation for Loads and Moments upto RL

226.2

3808 Total Passive Moment

Grand Total Passive Force

13678.3

62.0 m

Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment at abutment base = (Due to long. Force)

= 574.4

x

574 kN (

78.5

+

-62.0

)

= =

574.4 9486.2 kN

x

16.5

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = ( Due to Class A = ( Due to FPLL = ( Due to SIDL = (

447.9 0.0 61.6 932.1

+ + + +

10.7 0.0 1.5 22.4

) ) ) )

x x x x

1.3 0.0 4.3 0.5

= = = =

587.1 0.0 268.1 429.5

kN.m kN.m kN.m kN.m

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 62.0 m and @ cg of Foundation Level S.No.

1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

15.0

16.0

Item

Volume (m^3)

Unit Wt. (kN/m^3)

P (kN)

eL (m)

ML (kNm)

3816.7 932.1 61.6

1.2 1.2 1.2

4580.0 1118.5 73.9

895.8 0.0

1.2 1.2

1075.0 0.0

24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 3.0

16.2 219.7 182.7 86.1 15.1 426.2 -100.9 15.1 58.8 22.8

1.2 0.4 0.2 1.4 1.4 0.8 0.8 -1.5 -0.9 -1.4

19.4 87.9 32.0 122.7 20.6 319.6 -75.6 -22.7 -53.9 -30.8

18.0 18.0

3622.7 -264.8

-1.5 -1.5

-5434.0 397.1

338.6

2.1

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

0.7 9.2 7.6 3.6 0.6 17.8 -4.2 0.6 2.5 3.8

2.0 Nos. Total Load and moments at Abutment Shaft Bottom Backfill behind Abutment On Rectangular Portion (Above HFL) 201.3 On Rectangular Portion (Below HFL) -14.7 Front Fill on Well cap

18.8

6648.0

18.0

Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill ) 17.0 18.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb Total Loads and Moment at Well Foundation

Loads and moments upto RL

10344.5

71.8 20.5 32.2 0.0 207.2 0.0 0.0 0.0 0.0 0.0

22.5 22.5 22.5 12.0 22.5 12.0 14.0 12.0 10.0 10.0

=

17807.2

+

Moment, ML

=

2941

+

149.0

=

= MR

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2940.5

17956.1 kN

Total Active Earth Press. Moment.

Resultant Moment

1614.4 461.3 724.5 0.0 4662.5 0.0 0.0 0.0 0.0 0.0 17807.2

710.7 2940.5

62.0 m

Vertical Load

Moment, MT

7266.7

587 =

51217

+

Due to Horiz. Force at bearing Level

+

0

9486

+

64425 ^2

268

1285 ^2

+ =

64425

52

+

430

+

729.5

kN.m =

1284.7 kN.m

64438

Moment due to Tilt & Shift Total Loads upto Well Cap Top Level

Mts .=

(

10344.5

+

SHIFT

TILT

149 x ( 0.150 +

Total Loads below Well Cap Top Level

14 ) + 80

(

7463

TILT

+

0

= MR

Total Resultant Moment

=

Total Moment upto RL Passive Resistance

64438

62 m

13678

4062

=

=

P A

+

M Z

4062 kNm

=

68500 kNm

68500 kNm <

Hence, Moment will Transfer to the steining

P max.

x

Mts

+

MR + Mts

=

)

68500 = =

68500 54822 kN

=

17956.1 17.3

+

54822 21

=

1039.2

+

2640

=

3679.0 kPa

+

-13678.3

14.0 160.0

Copy of Abutment_well

P min.

=

P A

-

M Z

=

17956.1 17.3

-

54822 21

=

1039.2

-

2639.8

= =

Check for safety of section

1.0 6.3

+

-1601 kPa 1.6 2.6 8.3

=

0.5

< Section is uncracked < 1.0

6.1 Hence OK

Case4 Live Load Surcharge Layer Ka = thickness Pressure (m) (kN / m^2)

Reduced Level

Deck Level

81.2

HFL

75.6

Well cap top

Force c.g. of force

Moment @ Moment @ 52.0 76.0 (kN. m) (kN. m)

5.6

6.0

10.3

347.0

78.4

9156.4

831.1

-0.4

6.0

10.3

-25.4

75.8

-603.2

5.2

2.0

6.0

10.3

123.7

75.0

2844.3

1.0

6.0

6.5

39.2

73.5

843.0

6.0

6.0

6.5

234.5

70.0

4220.7

2.0

6.0

6.5

78.5

66.0

1099.4

2.0

6.0

6.5

78.5

64.0

942.5

9.3

6.0

6.5

365.3

58.4

2322.2

1.7

6.0

6.7

68.2

52.9

58.0

76.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

End of Layer 2

65.0

End of Layer 3

0.279 Length

63.0

Well kerb top

53.7

Foundation Level

52.0 29.2

1309.5

20883.2

836.3

Case4 Active Earth Pressure(Seismic Case)(HFL Case) Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

Deck Level

81.2

HFL

75.6

Well cap top

76.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

52.0

N 

2c / N  (kN / m^2)

5.6

0.0

25.0

3.6

18.0

0.0

-0.4

0.0

25.0

3.6

10.0

0.0

2.0

0.0

25.0

3.6

10.0

0.0

1.0

0.0

25.0

3.6

10.0

0.0

6.0

0.0

25.0

3.6

8.0

0.0

2.0

0.0

25.0

3.6

8.0

0.0

2.0

0.0

25.0

3.6

9.3

0.0

9.3

0.0

25.0

3.6

10.0

0.0

1.7

0.0

25.0

3.6

10.0

0.0

29.2

yz / N  (kN / m^2) 0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 58.5 58.5 84.5 84.5 89.2

3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

Copy of Abutment_well

Reduced Level

Layer thickness

-2c / N 

yz / N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

Deck Level

81.2

HFL

75.6

Well cap top

0.0 0.0

2.0

0.0

76.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

End of Layer 2

65.0

End of Layer 3

5.6 -0.4

0.0 28.2 28.2 27.1 27.1 32.7 32.7 35.5 35.5 48.8 48.8 53.3 53.3 58.5 58.5 84.5 84.5 89.2

1.0

0.0

6.0

0.0

2.0

0.0

2.0

0.0

9.3

0.0

1.7

0.0

63.0

Well kerb top

53.7

Foundation Level

52.0

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 52.0 c

Moment @ 52.0 

(kN.m)

(kN.m)

Moment @ 76.0 c

Moment @ 76.0 

(kN.m)

(kN.m)

10.3

1.0

0.0

1.0

811.2

78.4

77.5

0.0

20644.6

0.0

1184.3

10.3

1.0

0.0

1.0

-116.2

75.8

75.8

0.0

-2762.7

0.0

24.0

10.3

1.0

0.0

1.0

612.2

75.0

75.0

0.0

14054.8

6.5

1.0

0.0

1.0

221.3

73.5

73.5

0.0

4755.2

6.5

1.0

0.0

1.0

1636.8

70.0

69.8

0.0

29205.9 5805.7

6.5

1.6

0.0

1.6

414.7

66.0

66.0

0.0

6.5

1.6

0.0

1.6

454.0

64.0

64.0

0.0

5447.1

6.5

1.6

0.0

1.6

2704.7

58.4

58.1

0.0

16428.2

6.7

1.6

0.0

1.6

613.8

52.9

52.8

0.0

517.0

29.2 Total

0.0

7352.6

7352.6

Total Active Force

0.0

94095.8

94095.8

Total Active Moment

Grand total

20883.2

836.3

114979.0

2044.6

Passive Earth Pressure(Seismic Case) Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

RSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

N 

2c * N  (kN / m^2)

2.0

0.0

25.0

5.7

8.0

0.0

2.0

0.0

25.0

5.7

9.3

0.0

9.3

0.0

25.0

5.7

10.0

0.0

1.7

0.0

25.0

5.7

10.0

0.0

yz * N  (kN / m^2) 0.0 91.8 91.8 198.5 198.5 732.7 732.7 830.2

5.7 5.7 5.7 5.7

52.0

15.0

Reduced Level

Layer thickness

2c * N 

yz * N 

Projected Length of wel

(FOS)

c

Force due to c soil

(FOS)



(kN)

RSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

2.0

0.0

2.0

0.0

9.3

0.0

1.7

0.0

0.0 91.8 91.8 198.5 198.5 732.7 732.7 830.2

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 52.0 c

Moment @ 52.0 

(kN.m)

(kN.m)

6.5

2.4

0.0

1.6

372.8

66.0

65.7

0.0

5100.3

6.5

2.4

0.0

1.6

1179.1

64.0

63.9

0.0

14020.1

6.5

1.6

0.0

1.6

17614.1

58.4

57.5

0.0

96278.9

6.7

1.6

0.0

1.6

5521.2

52.9

52.8

0.0

4595.4

52.0 15.0 Total Total Passive Force

0.0

24687.3

24687.3

0.0 Total Passive Moment

0.0

1208.3

119994.8

119994.8

1208.3

Copy of Abutment_well

Passive relief due to (-ve) surcharge

Surcharge height =

Layer thickness c  (m) (kN /m^2) (degree)

Reduced Level

RSL

67.0

End of Layer 2

65.0

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

0.3 m

N 

y z * N  (kN / m^2)

67.0 m

2.0

0.0

25.0

5.7

10.0

14.4

5.7

2.0

0.0

25.0

5.7

10.0

14.4

5.7

9.3

0.0

25.0

5.7

10.0

14.4

5.7

1.7

0.0

25.0

5.7

10.0

14.4

5.7

14.4

65.0 m

63.0 m 14.4

52.0 14.4

53.7 m

14.4

52.0 m

15.0

Reduced Level

Layer thickness

yz * N 

Projected Length of we

(FOS)

Force



(kN)

c.g. of force  (m)

Moment @ 52.0 c (kN.m)

Well cap top(MSL)

67.0

Well cap bottom

65.0

End of Layer 1

2.0

14.4

6.5

1.6

116.9

66.0

1638.1

2.0

14.4

6.5

1.6

116.9

64.0

1404.3

9.3

14.4

6.5

1.6

544.3

58.4

3460.2

1.7

14.4

6.7

1.6

101.7

52.9

86.4

63.0

Well kerb top

53.7

End Layer 2

52.0 15.0 Total Grand Total Passive Force

Check for steining : Case4 It is assumed that point of zero shear will be at a distance of Z m below from RSL.

Total Active force = 574.4

+

719.1

+

0.0

+

39.2 Z 0.0 1.6

3165.3

+

317.3 Z 1.6

+ Z

+

+

7.3 Z^2 1.6

Total Passive force = 0.0

0.0

0.0

+

0.0 Z + 2.4

+

0.0 Z 1.6

+

93.5 Z 1.6

+

149.1 Z^2 1.6

+

879.8

25567.1 Total Passive Moment

6589.0

126583.8

Passive relief due to (-ve) surcharge

Copy of Abutment_well

Eqating both active and passive earth pressure : 4458.8

+

237.5 Z

+

4.5 Z^2

=

0.0

4458.8

+

179.1 Z

+

-88.7 Z^2

=

0.0

-50.3

+

-2.0 Z

Z

=

2.0

+

Z^2

+

14.3

=

0.0

=

8.2 m

+

58.5 Z

+

93.2 Z^2

2.0 This means, Point of zero shear will be at a distance of

Live Load Surcharge upto RL

Deck Level

81.2

HFL

75.6

0.3 Length

Well cap bottom

74.0 73.0

MSL

67.0

End of Layer 2

58.8

Well kerb top

53.7 52.0

5.6

6.0

10.3

347.0

78.4

-0.4

6.0

10.3

-25.4

75.8

-429.8

2.0

6.0

10.3

123.7

75.0

1998.0

1.0

6.0

6.5

39.2

73.5

574.7

6.0

6.5

234.5

70.0

2616.9 1310.0

8.2

6.0

6.5

320.6

62.9

0.0

6.0

6.5

0.0

63.0

0.0

0.0

6.0

6.5

0.0

53.7

0.0

0.0

6.0

6.7

0.0

52.0

0.0

1039.7

Active Earth Pressure(Normal Case) upto RL Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

Deck Level

81.2

HFL

75.6

Well cap top

76.0

Well cap bottom

74.0

End Layer 1

73.0

RSL

67.0

Well kerb top Foundation Level

6782.5

6.0

22.3

End of Layer 3

Moment @ 58.8 (kN. m)

63.0

Foundation Level

End of Layer 2

Force c.g. of force

76.0

End Layer 1

End of Layer 3

58.8 m

58.8 m

Layer Ka = thickness Pressure (m) (kN / m^2)

Reduced Level

Well cap top

8.2 m from RSL i.e. at RL

12852.3

58.8 m

N 

2c / N  (kN / m^2)

5.6

0.0

25.0

2.5

18.0

0.0

-0.4

0.0

25.0

2.5

10.0

0.0

2.0

0.0

25.0

2.5

10.0

0.0

1.0

0.0

25.0

2.5

10.0

0.0

6.0

0.0

25.0

2.5

8.0

0.0

8.2

0.0

25.0

2.5

8.0

0.0

0.0

0.0

25.0

2.5

9.3

0.0

0.0

0.0

25.0

2.5

10.0

0.0

0.0

0.0

25.0

2.5

10.0

0.0

58.8 63.0 53.7 52.0 22.3

yz / N  (kN / m^2) 0.0 41.0 41.0 39.3 39.3 47.4 47.4 51.5 51.5 70.9 70.9 97.4 0.0 0.0 0.0 0.0 0.0 0.0

3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

Copy of Abutment_well

Reduced Level

Layer thickness

-2c / N 

yz / N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

Deck Level

81.2

HFL

75.6

Well cap top Well cap bottom

74.0 73.0

RSL

67.0

End of Layer 2

58.8

Well kerb top Foundation Level

0.0 0.0

2.0

0.0

76.0

End Layer 1

End of Layer 3

5.6 -0.4

0.0 41.0 41.0 39.3 39.3 47.4 47.4 51.5 51.5 70.9 70.9 97.4 0.0 0.0 0.0 0.0 0.0 0.0

1.0

0.0

6.0

0.0

8.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

63.0 53.7

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

(m)

Moment @ 58.8 c

Moment @ 58.8 

(kN.m)

(kN.m)

21928.1

10.3

1.0

0.0

1.0

1178.3

78.4

77.5

0.0

10.3

1.0

0.0

1.0

-168.7

75.8

75.8

0.0

-2858.9

10.3

1.0

0.0

1.0

889.3

75.0

75.0

0.0

14333.2

6.5

1.0

0.0

1.0

321.5

73.5

73.5

0.0

4708.0

6.5

1.0

0.0

1.0

2377.6

70.0

69.8

0.0

26160.8

6.5

1.6

0.0

1.6

2794.5

62.9

62.7

0.0

10819.0

6.5

1.6

0.0

1.6

0.0

63.0

0.0

0.0

0.0

6.5

1.6

0.0

1.6

0.0

53.7

0.0

0.0

0.0

6.7

1.6

0.0

1.6

0.0

52.0

0.0

0.0

0.0

52.0 22.3 Total

0.0

7392.5

7392.5

Total Active Force

0.0

75090.2

75090.2

Total Active Moment

12852.3

Grand total

Passive Earth Pressure(Seismic Case) upto RL

RSL

67.0

End of Layer 2

58.8

End of Layer 3

63.0

Well kerb top

53.7

Foundation Level

58.8 m

Layer thickness c  (m) (kg / cm^2) (degree)

Reduced Level

87942.5

N 

2c * N  (kN / m^2)

8.2

0.0

25.0

2.5

8.0

0.0

0.0

0.0

25.0

2.5

9.3

0.0

0.0

0.0

25.0

2.5

10.0

0.0

0.0

0.0

25.0

2.5

10.0

0.0

yz * N  (kN / m^2) 0.0 161.1 0.0 0.0 0.0 0.0 0.0 0.0

5.7 5.7 5.7 5.7

52.0 8.2

Reduced Level

Layer thickness

2c * N 

yz * N 

Projected Length of well

(FOS)

c

Force due to c soil

(FOS)



(kN)

RSL

67.0

End of Layer 2

58.8

End of Layer 3 Well kerb top Foundation Level

8.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

63.0 53.7 52.0

0.0 161.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Force due to

 (kN)

c.g. of force c (m)

c.g. of force  (m)

(m)

Moment @ 58.8 c

Moment @ 58.8 

(m)

(kN.m)

(kN.m)

6.5

2.4

0.0

1.6

2674.2

62.9

61.6

0.0

7284.9

6.5

2.4

0.0

1.6

0.0

63.0

0.0

0.0

0.0

6.5

1.6

0.0

1.6

0.0

53.7

0.0

0.0

0.0

6.7

1.6

0.0

1.6

0.0

52.0

0.0

0.0

0.0

8.2 Total Total Passive Force

0.0

2674.2

2674.2

0.0 Total Passive Moment

7284.9

7284.9

Copy of Abutment_well

Passive relief due to (-ve) surcharge upto RL

58.8 m

Layer thickness c  (m) (kN /m^2) (degree)

Reduced Level

RSL

67.0

End of Layer 2

58.8

End of Layer 3

Surcharge height =

N 

0.3 m

y z * N  (kN / m^2)

8.2

0.0

25.0

5.7

10.0

14.4

5.7

0.0

0.0

25.0

5.7

10.0

14.4

5.7

0.0

0.0

25.0

5.7

10.0

14.4

5.7

0.0

0.0

25.0

5.7

10.0

14.4

5.7

(FOS)

Force



(kN)

63.0

Well kerb top

53.7

Foundation Level

52.0 8.2

Reduced Level

yz * N 

Layer thickness

Projected Length of we

c.g. of force  (m)

Moment @ 58.8 c (kN.m)

RSL

67.0

End of Layer 2

58.8

End of Layer 3

8.2

14.4

6.5

1.6

477.7

62.9

1951.9

0.0

14.4

6.5

1.6

0.0

63.0

0.0

0.0

14.4

6.5

1.6

0.0

53.7

0.0

0.0

14.4

6.7

1.6

0.0

52.0

0.0

63.0

Well kerb top

53.7

Foundation Level

52.0 8.2 Total

477.7

Case 4 Calculation for Loads and Moments upto RL

= 574.4

x

574.4 kN (

78.5

+

-58.8

)

= =

574.4 11299.3 kN

Moment " MT" due to Transverse Live Load Eccentricity Due to 70 R Wheeled = Due to Class A = Due to FPLL = Due to SIDL =

(

83.5 0.0 61.6 932.1

( ( (

+ + + +

2.0 0.0 1.5 22.4

) ) ) )

x x x x

1.3 0.0 4.3 0.5

= = = =

109.4 0.0 268.1 429.5

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 58.8 m and @ cg of Foundation Level S.No. 1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Item

Volume (m^3)

Unit Wt. (kN/m^3)

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

9236.8

58.8 m

Longitudnal Horizontal Force (HL) = Governing Longitudnal Force at Bearing Level Moment at abutment base = (Due to long. Force)

1951.9

3152 Total Passive Moment

Grand Total Passive Force

0.7 9.2 7.6 3.6 0.6 17.8 -4.2 0.6 2.5 3.8

2.0 Nos. Total Load and moments at Abutment Shaft Bottom

24.0 24.0 24.0 24.0 24.0 24.0 22.5 24.0 24.0 3.0

P (kN) 3816.7 932.1 61.6

eL (m) 1.2 1.2 1.2

ML (kNm) 4580.0 1118.5 73.9

167.0 0.0

1.2 1.2

200.4 0.0

16.2 219.7 182.7 86.1 15.1 426.2 -94.6 15.1 58.8 22.8

1.2 0.4 0.2 1.4 1.4 0.8 0.8 -1.5 -0.9 -1.4

19.4 87.9 32.0 122.7 20.6 319.6 -70.9 -22.7 -53.9 -30.8

5925.5

6396.8

kN.m kN.m kN.m kN.m

x

19.7

Copy of Abutment_well

15.0

Backfill behind Abutment

16.0

On Rectangular Portion (Above HFL) On Rectangular Portion (Below HFL) Front Fill on Well cap

201.3 -14.7 18.8

18.0 10.0 10.0

3622.7 -147.1 188.1

Total Load and moments at Abutment Shaft Bottom (Including Back Fill + Front Fill ) 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0

Well Cap (Left elliptical portion) Rectangular portion Well Cap (Right elliptical portion) Intermediate Plug Well Steining Bottom Plug Well Kerb Sump in Bottom Plug Sand Fill Earth on Well Kerb

9589

71.8 20.5 32.2 0.0 261.8 0.0 0.0 0.0 0.0 0.0

22.5 22.5 22.5 12.0 22.5 12.0 14.0 12.0 10.0 10.0

Total Loads and Moment at Well Foundation

Loads and moments upto RL

-1.5 -1.5 2.1

-5434.0 220.6 394.8 1578.3

1614.4 461.3 724.5 0.0 5889.7 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18279

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1578.3

58.8 m

Vertical Load

=

18279

+

Moment, ML

=

1578

+

141

=

Total Active Earth Press. Moment.

87943

+

18420 kN Due to Horiz. Force at bearing Level

11299

+

48 =

Moment, MT

=

Resultant Moment

MR

109 =

+

0

+

101774 ^2

268

807 ^2

+ =

430

+ 101774 kN.m

906

=

807 kN.m

101777

Moment due to Tilt & Shift Total Loads upto Well Cap Top Level

Mts .= (

9589.2

+

SHIFT

141.0

TILT

Total Loads below Well Cap Top Level

x ( 0.150

17.1 ) + ( 80.0

TILT

8689.9

+

0.0 =

MR

Total Resultant Moment

=

101777

Total Moment upto RL

58.8 m

Passive Resistance

=

P min.

=

=

P A

4477

MR + Mts 9237

P A

+

M Z

-

M Z

=

=

106254 kNm <

106254

+

= =

106254 97017 kN

18279 17.28

+

97017 20.77

=

1058

+

4672

=

5729 kPa 18279 17.28

-

97017 20.77

1058

-

4672

=

= = 1.1 6.3

106254 kNm

=

=

Check for safety of section

4476.8 kNm

Mts

+

Hence, Moment will Transfer to the steining

P max.

) x

-3614 kPa 3.6 4.7 8.3

=

0.7

+

< Section is uncracked < 1.0

-9236.8

6.1 Hence OK

17.1 160.0

Copy of Abutment_well

Summary of Loads and Moments at Abutment Shaft Base LWL with max. LL Normal Case

Load (kN) ML (kN.m) MT (kN.m)

6670.8 5407.2 1857.1

Seismic Case

6670.8 6507.3 1857.1

HFL with min. LL Normal Case

5965.5 5071.2 900.4

Seismic Case

5965.5 5624.0 900.4

Summary of Base Pressure at Well Foundation Level Max. Base Pressure V (kN)

Min. Base Pressure V (kN)

LWL with max. LL Normal case

587

587

HFL with min. LL Normal case

566

566

LWL with max. LL Seismic case

591

591

HFL with min. LL Seismic case

1000

141

Copy of Abutment_well

Reinforcement in abutment well steining Since steining is in compression only minimum reinfrocement shall be provided as per Cl. 708.3.4  42.25 4 a. longitudinal reinforcememt @ 0.12% of X-section area =

Steining Area =

-

20.25

=

x

=

0.12 100 20734.5115

mm

17.279 m sq

17.279

x

1000000

2

Longitudinal reinf. Shall be distributed equally on both faces of steining. Area of steel for each face =

Provide

20734.51 2

=

10367 mm

2

20.000 mm dia at each face ( Providing =

36.000 bars of

11310 mm^2

Hence OK

b. Transverse reinforcement. @ .04% by volume =

=

0.04 100

x

17.279

6911.504

x

6.5 2

x

1000000

7850.00

=

54.26

+

4.5

Kg/m of stg.

Length of one set (one inner+one outer) hoopbars 2 x 

= Using

10

x

(

mm hoopbars, wt/set=

> No of sets/m of stg= > spacing req =

1000 2.5

34.5575192

x

=

2.5

54.26 21.30601 =

> Provide Hoop bars @

300

)

=

0.62

=

34.557519 m

21.306009 Kg

nos

392.7 mm c/c on each face.

Hence OK

Design of Well Curb Volume of well kerb

=

Min. reinforcement in terms of wt.

=

Provide

21.60 m^3 72.00 kg / m^3

18.00 Nos. 72.00 Nos. of stirrups 6.00 Nos. of links = 75.00 mm = 7850.00 kg / m^3

72.00 sets Clear cover Unit wt. of steel

x

21.60

25.00 dia bar around the periphery. 12.00 dia in well kerb. 12.00 dia in one set.

=

1555.15 kg

No. of bars in top layer No. of bars in bottom layer

= =

5.00 1.00

925.0 225.0

1550.00

65.00

Bar mark

1.00 to

7.00

7.00 Dia

12.00

5.00 Dia

18.00

6.00 Dia

=

6451.00

=

Bar mark

8.00 to

Bar mark

13.00 to

=

=

3.14

x

6451.00 =

3.14

x

5575.00 =

3.14

x

5624.00

x 5575.000

3.85

x

7.00

=

546.38 kg

x

3.85

x

5.00

=

337.27 kg

3.85

x

6.00

5624.00 x

=

Total Balance to be provided in the form of stirups and ties

=

1555.15

-

1291.94

=

Check for the Percentage of remaining steel

=

263.21

/

1555.15

=

263.21 Kg 0.17 %

408.29 kg

1291.9 kg

Copy of Abutment_well

Wt. of stirrups 925 225.0

1550.0 1579.6

65.00 Stirrups Perimetre of one stirrups =

4344.63 mm

Links Average Length of one link =

462.50 mm

Total Length of all the links =

6.00

Total length of the one set of strip and link

=

Weight Per Set

0.89

=

x

x

Total no of sets required

=

263.21

Total no of sets provided

=

72.00

Total weight of all the provided sets Total wt. of reinforcement provided in curb

=

462.50

=

2775.00 mm

4344.63

+

2775.00

7119.63

=

/

6.32

6.32 x =

1291.94

=

=

41.66

72.00 = +

7119.63 mm

6.32 Kg

454.87

454.87 Kg =

1747

> Hence OK

1555 kg

Design of Return Wall

Design of Abutment Well

0.300 m

3.500 m

X

0.300 m

y

2.633 m 1

dy 1.5

X Earth pressure due to live load surcharge =

0.279

x

=

0.279

x

+

5.029 y ) dy

18.000

x

1.200

=

6.035 kN/m^2

=

5.029 y kN/m^2

Taking a strip of thickness "dy" at a depth "y" from top. Earth pressure on this strip dMx

=

(

Mx

=

(

6.035 6.035 =

+

1.125

x

=

5.029 y ) dy (

+

18.000 {

41.850

5.029 y^3

+

x

1.500

(

x

y

(

2.633

1.125 ) x (

+

-y ) } ^2 / 2

6.934 +

6.035 y^2

-31.785 y

y^2 +

-5.267 y ) 34.875 y

+

41.850 )

dy

-26.487 y^2 ) dy

1.125

x

(

5.029 y^3

+

-20.452 y^2

=

1.125

x

(

1.257 y^4

=

1.125

x

(

1.257

x

+

-6.817 y^3 2.633 ^4

x

2.633 ^2

+

+

3.090 y

+

After integrating , we get

+ =

1.125

=

1.125

1.545 x

Mx

=

63.999 kN.m

Mx

=

63.999 2.633

(

60.459

+

56.888

=

24.303 kN.m /m

12 mm and clear cover of

Available effective depth

Required Ast

=

24.303 200

41.850

-124.490

x

Adopting steel bars Dia.

+ +

+

1.545 y^2

+

-6.817

x

x

2.633

10.714

+

41.850 y 2.633 ^3

+

110.204 )

50.000 mm.

=

300

-50.000

=

244.000 mm

x x

1000000 0.878

-6.000

= x

567.22 mm^2 / m

244.000

Provide

12.000 mm dia bar @

150.000 mm c/c horizontally on earth face. ( Provided steel =

Provide

10.000 mm dia bar @

150.000 mm c/c horizontally on other face. ( Provided steel =

753.98 mm^2/m ) 523.60 mm^2/m )

Provide

10.000 mm dia bar @

150.000 mm c/c vertically on both faces. ( Provided steel =

523.60 mm^2/m )

This return will also bend in a vertical plane due to its self wt. Mx

=

0.500

x

(

0.300

+

Mx

=

0.500

x

(

2.933 )

x

Moment due to railing

=

Moment due to railing kerb

=

Total moment at vertical plane

2.633 )

x

32.407

3.500

x

=

47.530 kN.m

0.300

3.500

x

3.000

x

1.750

=

18.375 kN.m

0.300

x

0.450

x

3.500

x

24.000

+

19.845

=

155007.23

=

47.530

+

18.375

=

x

x

1.750

24.000

=

x

1.286

19.845 kN.m

85.750 kN.m

Check for effective depth 85750000.00 d ^2

=

1.844

=

d

x

300.000

8.58E+07 1.844

=

x

393.710 mm

Adopting steel bars Dia.

x

300.000 <

20 mm and clear cover of

d ^2

2633.33 (Hence |OK) 50.000 mm.

provide reinforcement at top in two layers Available effective depth

Required Ast

Check : 0.200 100.000

=

This steel should not be less than x

2633.33

Governing steel at top of cantilever return

Kangsabati

85.750 200

x

=

2633.33

=

2538.33 mm

-50.000

x x

1000000 0.878

-20.000

-25.000

= x

192.4 mm^2

2538.33

0.200 % of bt.d as per 305.16 of IRC : 21. 300.00

=

1580.00 mm^2

=

1580.0 mm^2

Provide

6.000 bars of

20.000 mm dia at top face in two layers. ( Providing =

1885.0 mm^2

Provide

3.000 bars of

12.000 mm dia at bottom in sloping face. ( Providing =

339.3 mm^2

93/1 on NH - 6

Copy of Abutment_well

Design of Dirt Wall Dirt wall will be designed as a vertical cantilever. Surcharge Pressure 0.279 x

18.00

x

1.20

=

6.04 kN/m^2

6.04

2.98 m

14.97 kN/m^2

Earth Pressure Diagram Intensity for = rectangular portion

0.279

x

=

6.04

Intensity for = triangular portion

0.28

F1

18.00

x

1.20

=

x

2.98

x

10.25

=

x

18.00

x

2.98

=

14.97 kN/m^2

2.98

x

10.25

F2

=

0.50

x

14.97

x

Total F

=

184.19

+

228.51

=

412.69 kN

Moment @ RL

184.19 kN

=

228.51 kN

78.213 m (at dirt wall base)

M1

=

184.19

x

1.49

=

274.21 kN.m

M2

=

228.51

x

1.25

=

285.76 kN.m

=

559.96 kN.m

Total M (at dirt wall base) HL

6.04 kN/m^2

=

412.69 kN

Total moment at the base of dirt wall

ML

=

=

559.96 kN.m

=

559.96 10.25

Thickness of dirtwall

=

0.30 m

Adorting clear cover on either face

=

50.00 mm

=

(Centre of pr. considered at an elevation of 0.42m of the ht. of the abutment shaft as per cl. 217.1 of IRC:6

559.96 kN.m

54.63 kN.m/m

(a) Vertical steel on earth face Adopting steel bars Dia.

=

Available effective depth

=

300.00

=

240.00 mm

Rquired effctive depth

Required Ast

=

=

20.00 mm -50.00

-10.00

54.63 1.84

x x

1.00E+06 1000.00

54.63 200.00

x x

1.00E+06 0.88

=

172.12 mm

<

240.00 OK

= x

1296.3 mm^2/m

240.00

Increasing this by 50% to resist the increased tensile forces due to non linear stress pattern above the bracket.( as suggested by note 8 of enclosure to Ministry of Surface Transport (India) Circular no. RW/NH - 34015 / 2 / 86 - S & R dated 22.6.94) Required Ast

=

1.50

x

1296.28

=

1944.43 mm^2/m

Minimum steel

=

0.06 100.00

x

300.00

x

1000.00

=

1944.4 mm^/m

Governing vertical steel at earth face Provide

16.00 mm dia bar @

100.00 mm c/c as vertical steel at earth face. ( Provided steel =

=

180.00 mm^2/m

2010.6 mm^2/m )

Copy of Abutment_well (b) Distribution steel on earth face Adopting distribution steel bars Dia.

=

Available effective depth

=

300.00

=

0.30

x

=

16.39 200.00

x x

1.00E+06 0.88

x

229.00

x

300.00

x

1000.00

0.30 M Required Ast

10.00 mm -50.00

-16.00 54.63

-5.00

=

=

16.39 kN.m/m

229.00 mm

=

407.57 mm^2/m

=

180.00 mm^2/m

0.06% of cross section

Minimum steel

Governing vertical steel at earth face Provide

10.00 mm dia bar @

=

0.06 100.00

=

407.57 mm^/m

150.00 mm c/c as vertical steel at earth face. ( Provided steel =

523.60 mm^2/m )

(c) Vertical steel on other face 0.12 % of cross section

Minimum Reinforcement

Provide

12.00 mm dia bar @

=

0.12 100.00

x

300.00

x

1000.00

=

150.00 mm c/c as vertical steel at earth face. ( Provided steel =

360.00 mm^2/m

753.98 mm^2/m )

(d) Distribution steel on other face Adopting distribution steel bars Dia.

=

10.00 mm 0.06% of cross section

Minimum distribution steel

Provide

10.00 mm dia bar @

=

0.06 100.00

x

300.00

x

1000.00

150.00 mm c/c as vertical steel at earth face. ( Provided steel =

=

180.00 mm^2/m

523.60 mm^2/m )

Copy of Abutment_well

SUMMARY OF LOADS AND MOMENTS AT THE BASE OF ABUTMENT SHAFT S.No.

Case

P (kN)

Ml (kN-m)

Mt (kN-m)

A) 1.00 2.00

Normal Case LWL Condition with Maximum Live Load HFL Condition with Minimum Live Load

6670.85 5965.47

5407.23 5071.16

1857.09 900.42

B) 3.00 4.00

Seismic Case(Longitudinal) LWL Condition with Maximum Live Load HFL Condition with Minimum Live Load

6670.85 5965.47

6507.26 5624.01

1857.09 900.42

Check For Cracked / Uncracked Section Length of the Section Width of the Section Gross Area of Section (Ag)

= = = =

1025.00 cm 100.00 cm 1025.00 1.03E+05 cm^2

Gross M.O.I. of Section ( Igxx )

=

8.54E+07

cm^4

Gross M.O.I. of Section ( Igyy )

=

8.97E+09

cm^4

x

100.00

Y

X

X 100.00 cm

Y 1025.00 cm Abutment Section Transformed Sectional Properties of Section Adopting Modular ratio , m = (Both in Tension as well in Compression) Dia. of Bars No. of Bars on each longer face of abutment(tension face) = Dia. of Bars No. of Bars on each longer face of abutment(compression face) = No. of Bars on each Shorter face of Abutment(both face) = Total bars in Section = Steel Area As = % of Steel = Effective Cover = Y 251.33 cm^2

10.00 2.00 cm 80.00 1.60 cm 80.00 6.00

128 128 167

172.00 436.30 cm^2 0.43 % 7.00 cm

12.06 cm^2 X

43.00 cm X 505.50 cm Y

Asx = 251.33 cm^2 Asy = 12.06 Area of concrete , Ac = Ag - As = 102500.00 -436.30 C.G. of Steel placed on longer face = 43.00 C.G. of Steel placed on shorter face = 505.50 Transformed Area of Section Atfm= Ac +m.As = 106426.74 Transformed M.Itxx. = Igxx+2(m-1).Asx . ax^2 = 85416666.67 + 8364678.94 = Zxx = Itxx/(d/2) = 1875626.91 cm^3 Transformed M.Iyy. = Igyy+2*(m-1).As . ay^2 Ityy = 8974088541.7 + 55487597.6 = Zyy = Iyy/(d/2) = 17618685.15 cm^3 Permissible Stresses Minimum Gross Moment of Inertia ,

Imin.

Area of Section = Hence Least radius of Gyration,r =

=

cm^2 =

1.02E+05 cm^2

cm cm cm^2 93781345.60 cm^4

9029576139.3 cm^4

8.54E+07 cm^4 1.03E+05 cm^2 Imin/Ag =

0.29 m

Copy of Abutment_well

Effective Length of Abutment Shaft (Refer Notes :(2) and (3) at Page 42 of IRC:21-1987) Abutment Shaft Height ,L= Effective length , leff. Slenderness ratio (leff./r)= Type of Member

2.22 m Service Condition (1.75 x L) = 13.47 (<50) ===>Short Column

3.89 m

Stress reduction Coefficient (Refer cl: 306.4.3of IRC:21)  1.00 Permissible Stresses (kg/cm^2) for M35 Grade of Concrete  cbc 116.67 Kg/cm^2  co 87.50 Kg/cm^2 Basic tensile Stress -6.70 Kg/cm^2 Permissible Stresses (kg/cm^2) for S415 Grade of Steel  st -2000.00 Kg/cm^2

Check for Cracked/ Uncracked Section of Abutment Shaft Normal Case Max. L.L. Min. L.L. LWL Case HFL Case

Item

S. No.

Seismic Case Max. L.L. Min. L.L. LWL Case HFL Case

(1). (2) (3)

Loads and Moments P (t) Mx (tm) My (tm)

667.08 540.72 185.71

(4) (5) (6) (7)

Actual Stresses (kg/cm^2)  co,cal (P/Atfm)  x cbc,cal (Mx/Zxx)  y cbc,cal (My/Zyy)  cbc,cal = (5)+(6)

6.27 28.83 1.05 29.88

5.61 27.04 0.51 27.55

6.27 34.69 1.05 35.75

5.61 29.98 0.51 30.50

Permissible stresses (kg/cm^2)  co  cbc

87.50 116.67

87.50 116.67

131.25 175.00

131.25 175.00

Check for Minimum Steel Area (cm^2) Conc. Area Required for Direct Stress= (1)/(8)  % of area required 0 .008 x (10)  % of Ag = 0.003 x Ag Governing Minimum Steel (cm^2) Provided Steel Area (cm^2) Remark

7623.82 60.99 307.50 307.50 436.30 (OK)

6817.69 54.54 307.50 307.50 436.30 (OK)

5082.55 40.66 307.50 307.50 436.30 (OK)

4545.12 36.36 307.50 307.50 436.30 (OK)

Check for safety of Section  co,cal +  co

0.33 < 1 (OK)

0.30 < 1 (OK)

0.25 < 1 (OK)

0.22 < 1 (OK)

 

(10) (11) (12) (13) (14) (15)

(15)

 cbc,cal  cbc

596.55 507.12 90.04

667.08 650.73 185.71

596.55 562.40 90.04

Check for Cracked/Uncracked Section (Stresses are in kg/cm^2) (17) (18)

 co,cal  cbc,cal Permissible Basic tensile stress in Concrete.

-23.61 -6.70

-21.94 -6.70

-29.48 -10.05

-24.89 -10.05

(19)

Section is to be designed as

Cracked

Cracked

Cracked

Cracked

Note:- The design for cracked section in the succeeding pages has been carried out as per computer programme, which is based on "Behaviour of columns and walls" in the book entitled " Reinforced Concrete Structural Elements " by P. Purushothaman . Provision Of Binders and Ties As per clause 306.3.2 the diameter of transverse reinforcement of any type should not be less than one quarter the diameter of the largest longitudinal bar in the column and in no case less than 8 mm The diameter of the main longitudinal bar is 20 mm, hence required dia of transverse reinforcement is 10 mm However provide 10 mm dia binders and ties. As per clause 306.3.3 of IRC: 21- 1987 the pitch of transverse reinforcement should not exceed (i) (ii) (iii)

300.00 mm The least lateral dimension of the column 12 times the dia of the smallest longitudinal bar Provide # 10 mm dia binders and 10 mm dia ties @ 175 mm

= =

1000.00 240.00

mm mm

Copy of Abutment_well

Design of Abutment Cap (M-35) As the cap is fully supported on the abutment. Minimum thickness of the cap required as per cl. 716.2.1 of IRC : 78- 1983 is 225 mm. 900.0 mm. However the thickness of abutment cap is kep Assuming a cap thickness of

225.0 mm

Volume of abutment cap

=

225.0

x

1350.0

x

10250.0

=

3113437500 mm^3

As per cl 716.2.1 of IRC : 78 - 1983 Quantity of steel

= =

1.0 % of volume x

1.0 100.0

Quantity of steel to be provided at top

=

15567188 mm^3

Quantity of steel to be provided at bottom

=

15567188 mm^3

=

3113437500

31134375 mm^3

Top Face (a) Longitudnal steel Quantity of steel to be provided in longitudnal direction Assuming a clear cover of

=

=

Length of bar

=

10250.0

Area of steel required in longitudnal direction

=

7783594 10150.0

Provide

10.0 bar of

7783593.8 mm^3

50.0 mm -100.0

=

10150.0 mm

=

766.9 mm^2

16.0 mm dia bar as longitudnal steel on top face of abutment cap. ( Provided steel =

2010.6 mm^2

(b) Transverse steel Quantity of steel to be provided in transverse direction

=

7783593.8 mm^3

Quantity of steel required

=

7783593.8 10.2

Adopting

16.0 mm dia bar and clear cover

=

766856.5 mm^3/m

50.0 mm

Length of each stirrups

=

Volume of each stirrup

=

No. of stirrups required in per m length

=

Required spacing

=

Provide

150.0 mm c/c stirrups throughout in length of abutment cap. ( Provided steel =

16.0 mm dia bar @

1350.0  4.0

-100.0

=

x

1250.0 mm 16.0 ^2

3.1 ( 1000.0 4.0

x

say

4.0 )

=

250.0 mm

1250.0

=

251327 mm^3

1340.4 mm^2/m )

Same steel will be provided at bottom also

Provide

10.0 bar of

Provide

16.0 mm dia bar @

16.0 mm dia bar as longitudnal steel on bottom face of abutment cap. ( Provided steel

2010.6 mm^2

150.0 mm c/c stirrups throughout in length of the abutment cap. ( Provided steel =

1340.4 mm^2/m )

Copy of Abutment_well

Design of Abutment Well cap Outer dia of well Inner dia of well

= =

6.50 m 4.50 m

Grade of conc. of well cap = Depth of well cap

M 35.00 2.00 m

=

The well cap has been designed as partillay restrained at supports and following coefficients have been adopted for the design of circular well cap under uniformly distibuted load. Sagging moment at bottom

=

Hogging moment at top

=

WD^2 30.00

W = Uniformly distributed load on well cap D = Effective diameter of well

WD^2 60.00

The load transmitted by abutment is assumed to have been dispersed at 45 degree upto effective depth of well cap. Effective dia of well (Av. of inner & outer dia)

=

6.50

+

4.50

=

5.50 m

2.00

Effective depth of well cap

=

Effective dia = (Inner dia + eff. depth)

4.50

Hence,Effective dia =

5.50 m

1.89 m

Thickness of steining

+

1.00

x

1.89

=

1.00 m

=

6.39 m

Normal case........... LWL Case With Max. CWLL Calculation for Loads and Moments at abutment Shaft Bottom Longitudnal Horizontal Force (HL) = Moment at Abutment (from left span) = (Due to long. Force)

393.68

x

(

78.51

-75.99

)

=

393.68

Moment " MT" due to Transverse Live Load Eccentricity 70 R Wheeled Class A 1 lane SIDL FPLL

= = = =

918.63 0.00 61.60 932.10

x x x x

1.28 0.00 4.25 0.45

= = = =

1175.84 0.00 261.80 419.45

kN.m kN.m kN.m kN.m

x

2.52

=

993.0 kN

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L Axis At RL @ 75.99 m and @ cg of Pier Shaft S.No.

Item

1.00 2.00 3.00 4.00

Volume (m^3)

Unit Wt. (kN/m^3)

Dead load SIDL FPLL Reaction from CWLL (Max.) 70 R Wheeled class A 1 Lane

5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00

Thickening of slab Dirt wall Abutment Cap(Uniform portion) Uniform portion of corbel Triangluar portion of corbel Abutment Shaft (Above HFL) Abutment Shaft (Below HFL) Return Wall (Uniform Portion) Return Wall (Tapered Portion) Railing over cantilever Return

0.68 9.16 7.61 3.59 0.63 17.76 -4.20 0.63 2.45 3.80

2.00

P (kN)

eL (m)

ML (kNm)

3816.70 932.10 61.60

0.450 0.450 0.450

1717.52 419.45 27.72

918.63 0.00

0.450 0.450

413.38 0.00

16.20 219.74 182.66 86.10 15.07 426.20 -100.86 15.12 58.80 22.80

0.450 -0.350 0.18 0.00 0.62 0.00 0.00 -2.25 -1.67 -2.10

7.29 -76.91 31.96 0.00 9.29 0.00 0.00 -34.02 -98.00 -47.88

24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 3.00

15.00

6670.85

2369.80

Loads and moments at Abutment Shaft Bottom Vertical Load

=

6670.85 kN

Moment, ML

=

2369.80

+

Moment, MT

=

1175.84

+

Due to Horz. force

At X =

Y ^2 5.13 ^2

2.00 m

=

+

0.00

+

2

Equation of the ellipse is given by

0.00

Back fill

993.05

261.80 2

=

5407.23

+

419.45

X A2

+

Y B2

=

1.00

2.00 2 2.00 ^2

+

Y ^2 5.13 ^2

=

1.00

Y

=

kN.m

0.00 m ** on elliptical side only

Abutment width

Dispersion width

2044.38

=

1.89

+

1.00

Well cap depth

+

1.89

=

4.78 m

=

1857.09 kN.m

Copy of Abutment_well

Abutment length

Dispersion length (Elliptical side)

=

10.25

Dispersion length (Rect. side)

=

10.25 m

Dispersion area for both side

=

Backfill above well cap in

2.39

1.89

+

x

0.00

+

2.39 10.25

=

Total weight of well cap (on dispersed area)

=

Total wt. above well cap / m^2

=

=

(

5.13

= 6670.85

5.13 m

x

10.25

+

-73.99

=

236.78

+

36.71 m2

=

x

1.89

x

5.20

x

18.00

=

1810.87 kN

x

1.89

x

1.21

x

18.00

=

209.96 kN

2.03 m +

1810.87

+

209.96

) x

14.00

28.00

= =

8691.67 36.71

75.99

Total weight (including well cap) / m^2

=

-0.69 m

1.89 from the face of abutment shaft = eL of frontfill

Self wt. of well cap / m^2

5.13

x

from the face of abutment shaft = eL of backfill

Front fill above well cap in

2.00 2.00

=

28.00 kN / m^2

=

264.78 kN / m^2

8691.67 kN 236.78 kN / m^2

Transverse Analysis Length of cantilever from cL of well steining

=

Total transverse moment through abutment

=

Total transverse moment through abutment / m length

=

10.25 2.00

-5.50

=

2.38 m

1857.09 kN.m 1857.09 4.78

=

388.92 kN.m / m

To resist this moment a couple will be formed with reaction at one support upward and at other support downward

=

388.92 5.50

=

70.71 kN / m

(+ve) moment at centre due to formation of this couple

=

70.71

x

5.50 2.00

=

194.46 kNm

(-ve) moment at centre due to formation of this couple

=

-70.71

x

5.50 2.00

=

-194.46 kNm

Copy of Abutment_well

Sagging moment at center due to well cap =

264.78

x

5.50 ^2 30.00

=

266.99

kN.m

Hogging moment at center due to well cap =

264.78

x

5.50 ^2 60.00

=

-133.49

kN.m

=

-1057.98

kN.m

Transverse Hogging moment if well cap considered is inscribed square : Outer dia of well

=

6.50 m

Side of inscribed square

=

6.50 2.00

Max. projection of cantilever

=

=

10.25 2.00

Hogging moment at center due to well cap =

4.60 m

-4.60

=

2.83 m

264.78

x

2.83 ^2 2.00

Total Sagging moment at centre

=

266.99

+

194.46

=

461.45 kN.m

Total Hogging moment at centre

=

133.49

or

-1057.98

=

1057.98 kN.m

Longitudnal Analysis Total Longitudnal moment through abutment

=

5407.23 kN.m

Total Longitudnal moment transfered from backfill

=

1810.87

x

-0.69

=

-1256.29 kN.m

Total Longitudnal moment transfered from frontfill

=

209.96

x

2.03

=

426.14 kN.m

Total Longitudnal moment

=

5407.23

+

-1256.29

+

426.14

4577.08 5.13

=

893.09 kN.m / m

893.09 5.50

=

Total Longitudinal moment through abutment / m length

=

=

4577.08 kN.m

162.38 kN / m

To resist this moment a couple will be formed with reaction at one support upward and at other support downward

=

(+ve) moment at centre due to formation of this couple =

162.38

x (

5.50 2.00

-1.00

)

=

365.35 kNm

(+ve) moment at centre due to formation of this couple =

-162.38

x (

5.50 2.00

-1.00

)

=

-365.35 kNm

Copy of Abutment_well

Sagging moment at center due to well cap =

264.78

x

5.50 ^2 30.00

=

266.99

kN.m

Hogging moment at center due to well cap =

264.78

x

5.50 ^2 60.00

=

-133.49

kN.m

+

Total Sagging moment at centre

=

266.99

Total Hogging moment at centre

=

133.49

Design Sagging moment

=

632.34 kN.m

Design Hogging moment

=

1057.98 kN.m

Assume dia of bar Effect of load upto abutment shaft bottom

= =

25.00 2000.00

-75.00

Required effective depth

=

1057.98 1.84

x x

1000000.00 1000.00

Ast required

=

1057.98 200.00

x x

1000000.00 0.88

Provide

25.00 mm dia @

365.35

=

632.34 kN.m

=

133.49 kN.m

Dia of bar

-25.00

-12.50 =

= 757.46

1887.50 mm < Hence OK

1887.50 mm

= x

3192.02 mm^2 /m

1887.50

150.00 c/c in both direction at top and bottom, provided

3272.49

mm^2

Hence OK

Check for shear Total udl on well cap = 28.00 + Shear will be checked at a distance of effective depth from the face of the steining.

236.78

=

264.78 kN / m^2

Distance of section to be checked for shear(from centre)

=

0.363 m

Width of abutment

=

1.00 m The section for the check of shear is under the Abutment

Total load on well cap =

3.14

x (

5.06

+

0.13

) x

Perimeter of the dia

2.00

x

3.14

x (

2.75

+

4320.45 2.28

=

=

Load / m

Load /m due to moment

=

=

264.78

-2.39

=

)=

4320.45 kN 4320.45

2.28 m

1896.89 kN / m

70.71 kN / m

Total shear force

=

1896.89

+

Shear stress

=

1967.60 1887.50

x x

70.71 1000.00 1000.00

=

1967.60 kN

=

1.04

N / mm^2 > Shear Reinforcement Required

0.199

Copy of Abutment_well

Permissible Shear Stress : Area of tension reinforcement

=

100.00 1000.00

x x

3272.49 1887.50

Here,

Asx100/ bxd

=

0.17 For As x 100 / b x d = For As x 100 / b x d =

So,for

Asx100/ bxd

=

0.17

From IRC:21-2000, Table 12B, Permissible Shear Stress, From IRC:21-2000, Table 12C,

c K

So, permissible shear stress,

c

= = = =

Assume Shear Reinforcement provided @

=

0.199 1.00

=



 c  c

0.15 0.25

= =

0.19 0.23

0.199

(for overall depth of cap is greater than 300mm) c

K x 0.199

150.00 mm spacing along the length of well Cap.

Shear Reinforcement shall be provided to carry a shear Vs=V-c.b.d = =

1967.60

0.199

x

1.888

x

1.000

1591.32 kN

Shear Reinforcement Required

=

Provide

16.00 dia bar @

2.00 legged

-

1591.32 200.00

x x

1000.00 1887.50

x

150.00

150.00 mm along the Length of Well Cap.( Providing

=

632.31 mm^2

402.12 mm^2)

Copy of Abutment_well

Calculation of Bearing Capacity of Well Foundation Available Data Well Cap Top Level Foundation Level

= =

Diameter of well at foundation Lvl

75.990 m 52.000 m 6.650 m

= MSL

p Le

Df.

=

Well Cap Bottom Level MSL Factor of Safety

= = =

73.99 m 67.013 m 2.5

=

12.01 t/m^2

Found. Lvl.

67.013

-

52.000

=

15.013 m

Soil Parameters available at Foundation Level  c

= = = =

'  (radians)

25 degree 0.00 kN/m^2 8 kN/m^2 0.436

N  Overburden Surc q Df. )

tan(45 =

 ' x



8.000

Shape Factors :s s s

+

Nc = Nq = N 

= x

1.570

15.013

=

120.104 kN/m^2

Inclination Factors :-

( For circular base )

i i i

1.300 1.200 0.600

c = q =  =

20.72 10.66 10.88

c = q = =

1.000 1.000 1.000

Depth Factors( For circular base ) d

d

c

c



As

=

1.000

+

0.200

x

1.000

+

0.200

x

)

>

q

=

1.000

+

0.100

x

1.000

+

0.100

x

d

q

=

1.354

d



1.000

+

0.100

x

1.000

+

0.100

x



d

+

SBC

=

0.5

Df B 15.013 6.650

x

1.570

N x

1.570

N x

1.570

( As per Cl: 5.1.2.4 of IS: 6403-1984 ) ( for cohesionless Soil )

q . (Nq - 1) . sq . dq . iq

=

x

12.010

5.320 2

x

10.876

x

0.600

=

188.604

+

11.755

=

=

200.358529 2.500

q

d

FOS

(

10.6621424 -

+ (1/2) . B

=

=

x

x

1.354

Net Ultimate Bearing Capacity q

Df B 15.013 6.650

N

10 deg.

d

w'

x

1.709

=

25

d

Df B 15.013 6.650

1

)

x

sv . dv . iv . w'

1.200

x

1.354

x

1.000

x

1.354

x

1.000

x

200.359 t/m^2 =

80.143 t/m^2

0.5

Related Documents

Abutment Well
June 2020 5
Abutment-riginding.docx
December 2019 8
Well
April 2020 21
Abutment A Alor Kedemit.pdf
December 2019 6

More Documents from "ClinicaJimenez"