Aaaa

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Aaaa as PDF for free.

More details

  • Words: 2,477
  • Pages: 6
Plant cells are eukaryotic cells that differ in several key respects from the cells of other eukaryotic organisms. Their distinctive features include: •

A large central vacuole, a water-filled volume enclosed by a membrane known as the tonoplast[1][2] maintains the cell's turgor, controls movement of molecules between the cytosol and sap, stores useful material and digests waste proteins and organelles.



A cell wall composed of cellulose and hemicellulose, pectin and in many cases lignin, and secreted by the protoplast on the outside of the cell membrane. This contrasts with the cell walls of fungi (which are made of chitin), and of bacteria, which are made of peptidoglycan.



Specialised cell-cell communication pathways known as plasmodesmata[3], pores in the primary cell wall through which the plasmalemma and endoplasmic reticulum[4] of adjacent cells are continuous.



Plastids, notably the chloroplasts which contain chlorophyll and the biochemical systems for light harvesting and photosynthesis, but also amyloplasts specialized for starch storage, elaioplasts specialized for fat storage and chromoplasts specialized for synthesis and storage of pigments. As in mitochondria, which have a genome encoding 37 genes[5] plastids have their own genomes of about 100-120 unique genes[6] and probably arose as prokaryotic endosymbionts living in the cells of an early eukaryotic ancestor of the land plants and algae.[7]



Cell division by construction of a phragmoplast as a template for building a cell plate late in cytokinesis is characteristic of land plants and a few groups of algae, notably the Charophytes[8] and the Order Trentepohliales[9]



The sperm of Bryophytes have flagellae similar to those in animals,[10][11] but higher plants, (including Gymnosperms and flowering plants) lack the flagellae and centrioles[12] that are present in animal cells.

Cell types •

Parenchyma cells are living cells that have diverse functions ranging from storage and support to photosynthesis and phloem loading (transfer cells). Apart from the xylem and phloem in its vascular bundles, leaves are mainly composed of parenchyma cells. Some parenchyma cells, as in the epidermis, are specialized for light penetration and focusing or regulation of gas exchange, but others are among the least specialized cells in plant tissue, and may remain totipotent, capable

of dividing to produce new populations of undifferentiated cells, throughout their lives. Parenchyma cells have thin, permeable primary walls enabling the transport of small molecules between them, and their cytoplasm is responsible for a wide range of biochemical functions such as nectar secretion, or the manufacture of secondary products that discourage herbivory. Parenchyma cells which contain many chloroplasts and are concerned primarily with photosynthesis are called chlorenchyma cells. Others, such as the majority of the parenchyma cells in potato tubers and the seed cotyledons of legumes have a storage function. •

Collenchyma cells - Like parenchyma, collenchyma cells are alive at maturity and have only a primary wall. These cells mature from meristem derivatives that initially resemble parenchyma, but differences quickly become apparent. Plastids do not develop and the secretory apparatus (ER and Golgi) proliferates to secrete additional primary wall. The wall is most commonly thickest at the corners, where three or more cells come in contact and thinnest where only two cells come in contact, though other arrangements of the wall thickening are possible[13].

Pectin and hemicellulose are the dominant constituents of collenchyma cell walls of dicotyledon angiosperms which may contain as little as 20% of cellulose in Petasites[14]. Collenchyma cells are typically quite elongated, and may divide transversly to give a septate appearance. The role of this cell type is to support the plant in axes still growing in length, and to confer flexibility and tensile strength on tissues. The primary wall lacks lignin that would make it tough and rigid, so this cell type provides what could be called plastic support. Support that can hold a young stem or petiole into the air, but in cells that can be stretched as the cells around them elongate. Stretchable support (without elastic snap-back) is a good way to describe what collenchyma does. Parts of the strings in celery are collenchyma. •

Sclerenchyma cells - Sclerenchyma cells (from the Greek skleros, hard) are hard and tough cells with a function in mechanical support. They are of two broad types - sclereids or stone cells and fibres. The cells develop an extensive secondary cell wall that is laid down on the inside of the primary cell wall. The secondary wall is impregnated with lignin, making it hard and impermeable to water. Thus, these cells cannot survive for long as they cannot exchange sufficient material to maintain active metabolism. Sclerenchyma cells are typically dead at functional maturity, and the cytoplasm is missing, leaving an empty central cavity.

Functions for sclereid cells (hard cells that give leaves or fruits a gritty texture) include discouraging herbivory, by damaging digestive passages in small insect larval stages, and physical protection (a solid tissue of hard sclereid cells form the pit wall in a peach and many other fruits). Functions of fibres include provision of load-bearing support and tensile strength to the leaves and stems of herbaceous plants.[13] Sclerenchyma fibres are not involved in conduction, either of water and nutrients (as in the xylem) or of carbon compounds (as in the phloem), but it is likely that they may have evolved as modifications of xylem and phloem initials in early land plants.

Tissue types

cells of Arabidopsis epidermis The major classes of cells differentiate from undifferentiated meristematic cells (analogous to the stem cells of animals) to form the tissue structures of roots, stems, leaves, flowers and reproductive structures. Xylem cells[15] are elongated cells with lignified secondary thickening of the cell walls. Xylem cells are specialised for conduction of water, and first appeared in plants during their transition to land in the Silurian period more than 425 million years ago (see Cooksonia). The possession of xylem defines the vascular plants or Tracheophytes. Xylem tracheids are pointed, elongated xylem cells, the simplest of which have continuous primary cell walls and lignified secondary wall thickenings in the form of rings, hoops or reticulate networks. More complex tracheids with valve-like perforations called bordered pits characterise the gymnosperms. The ferns and other pteridophytes and the gymnosperms only have xylem tracheids, while the angiosperms also have xylem vessels. Vessel members are hollow xylem cells aligned end-to-end, without end walls that are assembled into long continuous tubes. The bryophytes lack true xylem cells, but their sporophytes have a water conducting tissue known as the hydrome that is composed of elongated cells of simpler construction. Phloem is a specialised tissue for food conduction in higher plants. Phloem consists of two cell types, the sieve tubes and the intimately-associated companion cells. The sieve tube elements lack nuclei and ribosomes, and their metabolism and functions are regulated by the adjacent nucleate companion cells. Sieve tubes are joined end to end with perforate end-plates between known as sieve plates, which allow transport of photosynthate between the sieve elements. The companion cells, connected to the sieve tubes via plasmodesmata, are responsible for loading the phloem with sugars. The bryophytes lack phloem, but moss sporophytes have a simpler tissue with analogous function known as the leptome. Plant epidermal cells are specialised parenchyma cells covering the external surfaces of leaves, stems and roots. The epidermal cells of aerial organs arise from the superficial layer of cells known as the tunica (L1 and L2 layers) that covers the plant shoot apex[13], whereas the cortex and vascular tissues arise from innermost layer of the shoot apex known as the corpus (L3 layer). The epidermis of roots originates from the layer of cells immediately beneath the root cap. The epidermis of all aerial organs, but not roots, is covered with a cuticle made of waxes and the polyester cutin. Several cell types may be present in the epidermis. Notable among these are the stomatal guard cells, glandular and clothing hairs or trichomes, and the root hairs of primary roots. In the shoot epidermis of most plants, only the guard cells have chloroplasts. The epidermal cells of the primary shoot are thought to be the only plant cells with the biochemical capacity to synthesize cutin.[16]

The following is a glossary of animal cell terms: cell membrane - the thin layer of protein and fat that surrounds the cell. The cell membrane is semipermeable, allowing some substances to pass into the cell and blocking others. centrosome - (also called the "microtubule organizing center") a small body located near the nucleus - it has a dense center and radiating tubules. The centrosomes is where microtubules are made. During cell division (mitosis), the centrosome divides and the two parts move to opposite sides of the dividing cell. The centriole is the dense center of the centrosome. cytoplasm - the jellylike material outside the cell nucleus in which the organelles are located. Golgi body - (also called the Golgi apparatus or golgi complex) a flattened, layered, sac-like organelle that looks like a stack of pancakes and is located near the nucleus. It produces the membranes that surround the lysosomes. The Golgi body packages proteins and carbohydrates into membrane-bound vesicles for "export" from the cell. lysosome - (also called cell vesicles) round organelles surrounded by a membrane and containing digestive enzymes. This is where the digestion of cell nutrients takes place. mitochondrion - spherical to rod-shaped organelles with a double membrane. The inner membrane is infolded many times, forming a series of projections (called cristae). The mitochondrion converts the energy stored in glucose into ATP (adenosine triphosphate) for the cell. nuclear membrane - the membrane that surrounds the nucleus. nucleolus - an organelle within the nucleus - it is where ribosomal RNA is produced. Some cells have more than one nucleolus. nucleus - spherical body containing many organelles, including the nucleolus. The nucleus controls many of the functions of the cell (by controlling protein synthesis) and contains DNA (in chromosomes). The nucleus is surrounded by the nuclear membrane. ribosome - small organelles composed of RNA-rich cytoplasmic granules that are sites of protein synthesis. rough endoplasmic reticulum - (rough ER) a vast system of interconnected, membranous, infolded and convoluted sacks that are located in the cell's cytoplasm (the ER is continuous with the outer nuclear membrane). Rough ER is covered with ribosomes that give it a rough appearance. Rough ER transports materials through the cell and produces proteins in sacks called cisternae (which are sent to the Golgi body, or inserted into the cell membrane).

smooth endoplasmic reticulum - (smooth ER) a vast system of interconnected, membranous, infolded and convoluted tubes that are located in the cell's cytoplasm (the ER is continuous with the outer nuclear membrane). The space within the ER is called the ER lumen. Smooth ER transports materials through the cell. It contains enzymes and produces and digests lipids (fats) and membrane proteins; smooth ER buds off from rough ER, moving the newly-made proteins and lipids to the Golgi body, lysosomes, and membranes. vacuole - fluid-filled, membrane-surrounded cavities inside a cell. The vacuole fills with food being digested and waste material that is on its way out of the cell.

HUMAN CELL Cells are the smallest structures capable of basic life processes, such as taking in nutrients, expelling waste, and reproducing. All living things are composed of cells. Some microscopic organisms, such as bacteria and protozoa, are unicellular, meaning they consist of a single cell. Plants, animals, and fungi are multicellular; that is, they are composed of a great many cells working in concert. But whether it makes up an entire bacterium or is just one of millions in a human being, the cell is a marvel of design and efficiency. Cells carry out thousands of biochemical reactions each minute and reproduce new cells that perpetuate life. Cells vary considerably in size. The smallest cell, a type of bacterium known as a mycoplasma, measures 0.0001 mm (0.000004 in) in diameter; 10,000 mycoplasmas in a row are only as wide as the diameter of a human hair. Among the largest cells are the nerve cells that run down a giraffe's neck; these cells can exceed 3 m (9.7 ft) in length. Human cells also display a variety of sizes, from small red blood cells that measure 0.00076 mm (0.00003 in) to liver cells that may be ten times larger. About 10,000 average-sized human cells can fit on the head of a pin. Along with their differences in size, cells present an array of shapes. Some, such as the bacterium Escherichia coli, resemble rods. The paramecium, a type of protozoan, is slipper shaped; and the amoeba, another protozoan, has an irregular form that changes shape as it moves around. Plant cells typically resemble boxes or cubes. In humans, the outermost layers of skin cells are flat, while muscle cells are

long and thin. Some nerve cells, with their elongated, tentacle-like extensions, suggest an octopus. In multicellular organisms, shape is typically tailored to the cell's job. For example, flat skin cells pack tightly into a layer that protects the underlying tissues from invasion by bacteria. Long, thin muscle cells contract readily to move bones. The numerous extensions from a nerve cell enable it to connect to several other nerve cells in order to send and receive messages rapidly and efficiently. By itself, each cell is a model of independence and self-containment. Like some miniature, walled city in perpetual rush hour, the cell constantly bustles with traffic, shuttling essential molecules from place to place to carry out the business of living. Despite their individuality, however, cells also display a remarkable ability to join, communicate, and coordinate with other cells. The human body, for example, consists of an estimated 20 to 30 trillion cells. Dozens of different kinds of cells are organized into specialized groups called tissues. Tendons and bones, for example, are composed of connective tissue, whereas skin and mucous membranes are built from epithelial tissue. Different tissue types are assembled into organs, which are structures specialized to perform particular functions. Examples of organs include the heart, stomach, and brain. Organs, in turn, are organized into systems such as the circulatory, digestive, or nervous systems. All together, these assembled organ systems form the human body. The components of cells are molecules, nonliving structures formed by the union of atoms. Small molecules serve as building blocks for larger molecules. Proteins, nucleic acids, carbohydrates, and lipids, which include fats and oils, are the four major molecules that underlie cell structure and also participate in cell functions. For example, a tightly organized arrangement of lipids, proteins, and protein-sugar compounds forms the plasma membrane, or outer boundary, of certain cells. The organelles, membrane-bound compartments in cells, are built largely from proteins. Biochemical reactions in cells are guided by enzymes, specialized proteins that speed up chemical reactions. The nucleic acid deoxyribonucleic acid (DNA) contains the hereditary information for cells, and another nucleic acid, ribonucleic acid(RNA), works with DNA to build the thousands of proteins the cell needs.

Related Documents

Aaaa
October 2019 80
Aaaa
May 2020 32
Aaaa
May 2020 37
Aaaa
October 2019 49
Aaaa
August 2019 50
Aaaa
November 2019 50