5. Why Are Black Holes Hot

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 5. Why Are Black Holes Hot as PDF for free.

More details

  • Words: 6,210
  • Pages: 8
SERIES  ARTICLE

Snippets of Physics 5. Why are Black Holes Hot?* T Padmanabhan

T Padmanabhan works at IUCAA, Pune and is interested in all areas of theoretical physics, especially those which have something to do with gravity.

*

This is based on an article originally published by the author in Physics Education, Vol. 24, p.67, 2007.

Keywords Black holes, thermodynamics, relativity.

412

O n e o f th e c e le b ra te d re su lts in b la c k h o le p h y sic s is th a t b la c k h o le s h a v e a te m p e ra tu r e a n d th e y e m it a th e rm a l sp e c tru m o f ra d ia tio n . T h o u g h a r ig o ro u s d e r iv a tio n o f th is re su lt re q u ire s q u a n tu m ¯ e ld th e o ry , a ° a v o u r o f th e e sse n tia l id e a s c a n b e p r o v id e d a t a n e le m e n ta ry le v e l a s in d ic a te d h e re . In cla ssica l g en era l rela tiv ity, m a teria l ca n fa ll in to a b la ck h o le b u t n o th in g ca n co m e o u t o f it. In th e ea rly sev en ties, B ek en stein a rg u ed th a t th is a sy m m etry ca n lea d to v io la tio n o f seco n d law o f th erm o d y n a m ics u n less w e a sso cia te a n en tro p y w ith th e b la ck h o le w h ich is p ro p o rtio n a l to its a rea . T h u s b la ck h o les w ere a ttrib u ted en tro p y a n d en erg y (eq u a l to M c 2 w h ere M is th e m a ss o f th e b la ck h o le) b u t it w a s n o t clea r w h eth er th ey h av e a tem p era tu re. If a b la ck h o le h a s a n o n -zero tem p era tu re, th en it h a s to ra d ia te a th erm a l sp ectru m o f p a rticles a n d th is seem ed to v io la te th e cla ssica l n o tio n th a t `n o th in g ca n co m e o u t o f a b la ck h o le'. In th e m id -sev en ties, H aw k in g d iscov ered th a t b la ck h o les, w h en v iew ed in a q u a n tu m m ech a n ica l p ersp ectiv e, d o h av e a tem p era tu re. (F o r a b rief ta ste o f h isto ry rela ted to th is, see B ox 1 ). A b la ck h o le w h ich fo rm s d u e to co lla p se o f m a tter w ill em it { a t la te tim es { ra d ia tio n w h ich is ch a ra cterized b y th is tem p era tu re. T h e rig o ro u s d eriva tio n o f th is resu lt req u ires a fa ir k n ow led g e o f q u a n tu m ¯ eld th eo ry b u t I w ill p resen t, in th is in sta llm en t, a sim p li¯ ed d eriva tio n w h ich ca p tu res its essen ce. L et u s sta rt w ith a sim p le p ro b lem in sp ecia l rela tiv ity

RESONANCE  May 2008

SERIES  ARTICLE

Box 1. A Little History Entropy (which means, ‘inherent tendency’) is a familiar and important concept in thermodynamics. The three laws of thermodynamics (nicely summarized as ‘You can’t win’, ‘You can’t break even’ and ‘You can’t quit playing’) revolve around entropy. In particular we know that irreversible processes (like pouring cold milk on hot tea) always increase the entropy of the universe. Around 1971, John Wheeler (see Box 2) posed the following question to Jacob Bekenstein, then a graduate student at Princeton. He remarked to Jacob Bekenstein that when a process like mixing hot and cold teas takes place leading to a common temperature, it conserves the world's energy but increases the world's entropy. There is no way to erase or undo it. But let a black hole swim by and let us drop the hot tea and the cold tea into it. ‘Then is not all evidence of my crime erased forever?’, asked Wheeler. Soon Bekenstein came up with the answer. He told Wheeler that you can not remove entropy from the universe by throwing it into a black hole. Instead, he claimed, the black hole already has an entropy, and you only increase it when you drop tea into it. In fact, prior to this, Stephen Hawking had proved that in any classical interaction the surface area of a black hole’s horizon could only increase and never decrease. Bekenstein used this and claimed that the entropy of a black hole is proportional to its area. Hawking, however, did not agree with this! In fact, he felt Bekenstein had misused his discovery of the increase of the area of the event horizon. After all, Hawking had already noticed and rejected the area-entropy idea on quite solid grounds: If we attribute entropy and energy to a black hole, it will also have a non-zero temperature – but black holes cannot have a temperature, because they cannot radiate. This was indeed the stand taken by the established physicists – especially, Hawking, Bardeen and Carter – in 1972 Les Houches meeting on black holes. Over the summer of 1972, the three of them worked out the four laws of black hole mechanics which identifies mathematically the surface gravity with the temperature. But right up front, the paper makes it clear that the laws are ‘similar to, but distinct from’ those of thermodynamics and the temperature, entropy should not be thought of as ‘real’! It is a curious twist of fate that – a few years later, while still attempting to disprove Bekenstein’s ideas categorically – it was Hawking who ended up discovering that black holes do have a temperature, they do radiate and they have a real entropy as predicted by Bekenstein. And John Wheeler could not have got away pouring the tea down the black hole!

b u t a n a ly ze it in a slig h tly u n co n v en tio n a l w ay. C o n sid er a n in ertia l referen ce fra m e S a n d a n o b serv er w h o is m ov in g a t a sp eed v a lo n g th e x -a x is in th is fra m e. If h er tra jecto ry is x = v t, th en th e clo ck sh e is ca rry in g w ill sh ow th e p ro p er tim e ¿ = t= ° , w h ere ° = (1 ¡ v 2 = c 2 )¡ 1 = 2 . C o m b in in g th ese resu lts w e ca n w rite h er tra jecto ry in p a ra m etrized fo rm a s t(¿ ) = ° ¿ ;

RESONANCE  May 2008

x (¿ ) = ° v ¿ :

(1 )

413

SERIES  ARTICLE

Box 2. John A Wheeler While this issue was being processed we came to know of the sad demise of John Archibald Wheeler (1911– 2008), one of the pioneering physicists of recent times. He began his career with atomic and particle physics, and introduced important concepts like Smatrix, and helped build one of the first models of atomic nucleus along with Neils Bohr. Later he turned his attention to general relativity and helped revive the interest of physicists in this topic in 1960s, and as a matter of fact, coined the now household terms like ‘black hole’ and ‘wormhole’. He was for many years at the University of Princeton and taught many famous physicists including Richard Feynman. His book Gravitation on general relativity coauthored with his students C Misner and K Thorne is considered one of the definitive texts in the subject, and another book Spacetime Physics written along with E Taylor is one of the most original and best introductory books on relativity. – Editor

414

T h ese eq u a tio n s g iv e u s h er p o sitio n in th e sp a ce-tim e w h en h er clo ck rea d s ¿ . L et u s su p p o se th a t a m o n o ch ro m a tic p la n e w av e ex ists a t a ll p o in ts in th e in ertia l fra m e. W e rep resen t it b y th e fu n ctio n Á (t;x ) = ex p ¡ i- (t ¡ x = c). T h is is clea rly a p la n e w av e o f u n it a m p litu d e { a s y o u w ill see so o n , th a t w e d o n 't ca re a b o u t th e a m p litu d e { a n d freq u en cy - p ro p a g a tin g a lo n g th e p o sitiv e x -a x is. A t a n y g iv en x , it o scilla tes w ith tim e a s e ¡i- t , so - is th e freq u en cy a s m ea su red in S . O u r m ov in g o b serv er, o f co u rse, w ill m ea su re h o w th e Á ch a n g es w ith resp ect to her p ro p er tim e. T h is is ea sily o b ta in ed b y su b stitu tin g th e tra jecto ry t(¿ ) = ° ¿ ;x (¿ ) = ° v ¿ in to th e fu n ctio n Á (t;x ) o b ta in in g Á [¿ ] ´ Á [t(¿ );x (¿ )]: A sim p le ca lcu la tio n g iv es Á [t(¿ );x (¿ )] = Á [¿ ] = ex p [¡ i¿ - ° (1 ¡ v = c)] = " s # ¡ v = c 1 : ex p ¡ i ¿ 1 + v=c

(2 )

C lea rly, th e o b serv er sees th e w av e ch a n g in g ov er tim e w ith a freq u en cy - 0´ -

s

1 ¡ v =c : 1 + v=c

(3 )

S o a n o b serv er m ov in g w ith u n ifo rm v elo city w ill p erceiv e a m o n o ch ro m a tic w av e a s a m o n o ch ro m a tic w av e b u t w ith a D o p p ler sh ifted freq u en cy ; th is is, o f co u rse, a sta n d a rd resu lt in sp ecia l rela tiv ity d eriv ed in a slig h tly d i® eren t m a n n er. T h e rea l fu n b eg in s w h en w e u se th e sa m e p ro ced u re fo r a u n ifo rm ly accelerated o b serv er a lo n g th e x -a x is. If w e k n ow th e tra jecto ry t(¿ );x (¿ ) o f a u n ifo rm ly a ccelera ted o b serv er, in term s o f th e p ro p er tim e ¿ sh ow n b y th e clo ck sh e ca rries, th en w e ca n d eterm in e Á [t(¿ );x (¿ )] = Á [¿ ] a n d a n sw er th is q u estio n . S o w e ¯ rst n eed to

RESONANCE  May 2008

SERIES  ARTICLE

d eterm in e th e tra jecto ry t(¿ );x (¿ ) o f a u n ifo rm ly a ccelera ted o b serv er in term s o f th e p ro p er tim e ¿ . R em em b erin g th a t th e eq u a tio n o f m o tio n in sp ecia l rela tiv ity is d (m ° v )= d t = F , w e ca n w rite th e eq u a tio n o f m o tio n fo r a n o b serv er m ov in g w ith co n sta n t a ccelera tio n g a lo n g th e x -a x is a s v d p = g: d t 1 ¡ v 2 = c2

(4 )

T h is eq u a tio n is triv ia l to in teg ra te sin ce g is a co n sta n t. S o lv in g fo r v = d x = d t a n d in teg ra tin g o n ce a g a in , w e ca n g et th e tra jecto ry to b e a h y p erb o la x 2 ¡ c 2 t2 = c 4 = g 2

(5 )

w ith su ita b le ch o ices fo r in itia l co n d itio n s. W e a lso k n ow fro m sp ecia l rela tiv ity th a t w h en a sta tio n a ry clo ck reg isters a tim e in terva l d t, th e m ov in g clo ck w ill sh ow a sm a ller p ro p er tim e in terva l d ¿ = d t[1 ¡ (v 2 (t)= c 2 )]1 = 2 , w h ere v (t) is th e in sta n ta n eo u s sp eed o f th e clo ck 1 . D eterm in in g v (t) fro m (5 ), o n e ca n d eterm in e th e rela tio n b etw een th e p ro p er tim e ¿ sh ow n in a clo ck ca rried b y th e a ccelera ted o b serv er a n d t b y : µ ¶ Zt r v 2 (t0) c gt ¡1 0 ¿ = : dt 1 ¡ = sin h (6 ) 2 c g c 0

1

This formula is valid for clocks in arbitrary state of motion, including accelerated motion. I stress this because students sometimes think this result is valid only for inertial motion of the clock.

In v ertin g th is rela tio n o n e ca n ¯ n d t a s a fu n ctio n o f ¿ . U sin g (5 ) w e ca n th en ex p ress x in term s o f ¿ a n d g et th e tra jecto ry o f th e u n ifo rm ly a ccelera ted o b serv er to be ³g ¿ ´ ³g ¿ ´ c2 c x (¿ ) = : co sh ; t(¿ ) = sin h (7 ) g c g c T h is is ex a ctly in th e sa m e sp irit a s th e tra jecto ry in (1 ) fo r a n in ertia l o b serv er ex cep t th a t w e a re n ow ta lk in g a b o u t a u n ifo rm ly a ccelera ted o b serv er. Y o u sh o u ld b e a b le to ¯ ll th e g a p s in th e a lg eb ra !

RESONANCE  May 2008

415

SERIES  ARTICLE

W e ca n n ow p ro ceed ex a ctly in a n a lo g y w ith (2 ) to ¯ g u re o u t h ow th e accelerated o b serv er w ill v iew th e m o n o ch ro m a tic w av e. W e g et: ³ g ¿ ´i ch Á [t(¿ );x (¿ )] = Á [¿ ] = ex p i - ex p ¡ = ex p iµ (¿ ): g c (8 ) U n lik e th e ca se o f u n ifo rm v elo city, w e n ow ¯ n d th a t th e p h a se µ (¿ ) o f th e w av e itself is d ecrea sin g ex p o n en tia lly w ith tim e! S in ce th e in sta n ta n eo u s freq u en cy o f th e w av e is th e tim e d eriva tiv e o f th e p h a se, ! (¿ ) = ¡ d µ = d ¿ , w e ¯ n d th a t a n a ccelera ted o b serv er w ill see th e w av e w ith a n in sta n ta n eo u s freq u en cy th a t is g ettin g ex p o n en tia lly red sh ifted : ³g ¿ ´ ! (¿ ) = - ex p ¡ : (9 ) c

2

This is what an engineer would have done to analyse a time dependent signal!

S in ce th is is n o t a m o n o ch ro m a tic w av e a t a ll, th e n ex t b est th in g is to a sk fo r th e p ow er sp ectru m o f th is w av e w h ich w ill tell u s h ow it ca n b e b u ilt o u t o f m o n o ch ro m a tic w a v es o f d i® eren t freq u en cies2 . W e w ill ta k e th e p ow er sp ectru m o f th is w av e to b e P (º ) = jf (º )j2 , w h ere f (º ) is th e F o u rier tra n sfo rm o f Á (t) w ith resp ect to t: Z1 dº Á (t) = f (º )e iº t ; (1 0 ) ¡1 2 ¼ E va lu a tin g th is F o u rier tra n sfo rm is a n ice ex ercise in co m p lex a n a ly sis a n d y o u ca n d o it b y ch a n g in g to th e va ria b le - ex p [¡ (g t= c)] = z a n d a n a ly tica lly co n tin u in g to Im z . Y o u w ill th en ¯ n d th a t: f (º ) = (c= g )(- )¡iº g = c ¡ (iº c= g )e ¡ ¼ º c= 2 g ;

(1 1 )

w h ere ¡ is th e sta n d a rd G a m m a fu n ctio n . T a k in g th e m o d u lu s jf (º )j2 u sin g th e id en tity ¡ (x )¡ (¡ x ) = ¡ ¼ = x sin (¼ x ), w e g et º jf (º )j2 =

416

¯ e¯ h º

¡ 1

;

¯ ´

1 kB T

=

2¼ c : ~g

(1 2 )

RESONANCE  May 2008

SERIES  ARTICLE

T h is lea d s to th e th e rem a rka b le resu lt th a t th e p ow er, p er lo g a rith m ic b a n d in freq u en cy, is a P la n ck sp ectru m w ith tem p era tu re k B T = (~g = 2 ¼ c). T h e ch a ra cteristic w av elen g th co rresp o n d in g to th is freq u en cy is c 2 = g w h ich h a p p en s to b e a b o u t 1 lig h t y ea r fo r E a rth 's g rav ity { so th e sco p e o f ex p erim en ta l d etectio n o f th is resu lt is slim 3 . A lso n o te th a t th o u g h f (º ) in (1 1 ) d ep en d s o n - , th e p ow er sp ectru m jf (º )j2 is in d ep en d en t o f - . It d o es n o t m a tter w h a t th e freq u en cy o f th e o rig in a l w av e w a s! T h e m o ra l o f th e sto ry is sim p le: A n ex p o n en tia lly red sh ifted co m p lex w av e w ill h av e a p ow er sp ectru m w h ich is th erm a l w ith a tem p era tu re p ro p o rtio n a l to th e a ccelera tio n { w h ich ca u ses th e ex p o n en tia l red sh ift in th e ¯ rst p la ce. T h is is th e k ey to a q u a n tu m ¯ eld th eo ry resu lt, d u e to U n ru h , th a t a th erm o m eter w h ich is u n ifo rm ly a ccelera ted w ill b eh av e a s th o u g h it is im m ersed in a th erm a l b a th .

3

Incidentally, this gives a relation between earth’s gravity and its orbital period around the sun; one of the cosmic coincidences which does not seem to have any deep significance.

T h ere a re tw o issu es I h av e g lo ssed ov er to g et th e co rrect resu lt. F irst, I d e¯ n ed th e F o u rier tra n sfo rm in (1 0 ) w ith e iº t w h ile th e freq u en cy o f th e o rig in a l w av e w a s e ¡i- t . S o o n e is a ctu a lly ta lk in g a b o u t th e n eg a tiv e freq u en cy co m p o n en t o f a w av e w h ich h a s a p o sitiv e freq u en cy in th e in ertia l fra m e. S eco n d { a n d clo sely rela ted issu e { is th a t I h av e b een w o rk in g w ith co m p lex w av e m o d es, n o t ju st th e rea l p a rts o f th em . B o th th ese ca n b e ju sti¯ ed b y a m o re rig o ro u s a n a ly sis w h en th ese m o d es a ctu a lly d escrib e th e va cu u m ° u ctu a tio n s in th e in ertia l fra m e ra th er th a n so m e rea l w a v e. B u t th e essen tia l id ea { a n d ev en th e essen tia l m a th s { is ca p tu red b y th is a n a ly sis. S o w h a t a b o u t th e tem p era tu re o f b la ck h o les? W ell, b la ck h o les p ro d u ce a n ex p o n en tia l red sh ift o n th e w av es w h ich p ro p a g a te fro m clo se to th e g rav ita tio n a l ra d iu s to in ¯ n ity. T o m a k e th e co n n ectio n w e n eed to reca ll tw o resu lts fro m a p rev io u s a rticle o f th is series4 : F irst,

RESONANCE  May 2008

4

T Padmanabhan, Schwarzschild Metric at a Discounted Price, Resonance, Vol.13, No.4, p.312, 2008.

417

SERIES  ARTICLE

A thermometer which is uniformly accelerated will behave as though it is immersed in a thermal bath.

th e lin e elem en t o f a b la ck h o le is µ ¶ 2G M 2 c 2 d t2 ¡ ds = 1 ¡ c2 r

µ ¶¡ 1 ¡ 2 ¢ 2G M 2 2 2 2 r ¡ r µ µ Á : 1¡ d d + sin d c2 r

(1 3 )

S eco n d , if ! (r) is th e freq u en cy o f ra d ia tio n em itted b y a b o d y o f ra d iu s r a n d ! 1 is th e freq u en cy w ith w h ich th is ra d ia tio n is o b serv ed a t la rg e d ista n ces, th en ! 1 = ! (r )(1 ¡ 2 G M = c 2 r )1 = 2 . C o n sid er n ow a w av e p a ck et o f ra d ia tio n em itted fro m a ra d ia l d ista n ce r e a t tim e te a n d o b serv ed a t a la rg e d ista n ce r a t tim e t. T h e tra jecto ry o f th e w av e p a ck et is, o f co u rse, g iv en b y d s 2 = 0 in (1 3 ) w h ich , w h en w e u se d µ = d Á = 0 , is ea sy to in teg ra te. W e g et µ ¶ 2G M 1 ¡ 2 G M = c2 r c(t ¡ te ) = r ¡ r e + ln c2 1 ¡ 2 G M = c2 r e µ ¶ !e 4G M = r ¡ re + ln (1 4 ) c2 ! (r ) fo r r e & 2 G M = c 2 ; r À 2 G M = c 2 . T h is g iv es th e freq u en cy o f ra d ia tio n m ea su red b y a n o b serv er a t in ¯ n ity to b e ex p o n en tia lly red sh ifted : ! (t) / ex p ¡ (c 3 t= 4 G M ) ´ K ex p ¡ (g t= c);

(1 5 )

w h ere K is a co n sta n t (w h ich tu rn s o u t to b e u n im p o rta n t) a n d w e h av e in tro d u ced th e q u a n tity g = c 4 = 4 G M = G M = (2 G M = c 2 )2

(1 6 )

w h ich g iv es th e g rav ita tio n a l a ccelera tio n G M = r 2 a t th e S ch w a rzsch ild ra d iu s r = 2 G M = c 2 a n d is ca lled th e su rface gravity. O n ce y o u h av e th e ex p o n en tia l red sh ift, th e rest o f th e a n a ly sis p ro ceed s a s b efo re. A n o b serv er d etectin g th e ex p o n en tia lly red sh ifted ra d ia tio n

418

RESONANCE  May 2008

SERIES  ARTICLE

a t la te tim es (t ! 1 ), o rig in a tin g fro m a reg io n clo se to r = 2 G M = c 2 , w ill a ttrib u te to th is ra d ia tio n a P la n ck ia n p ow er sp ectru m g iv en b y (1 2 ) w h ich b eco m es: kB T =

~g ~c 3 : = 2¼ c 8¼ G M

(1 7 )

T h is resu lt lies a t th e fo u n d a tio n o f a sso cia tin g a tem p era tu re w ith a b la ck h o le.

Suggested Reading [1] T Padmanabhan, An Invitation to Astrophysics, World Scientific, Chapter 5, 2006. [2] K S Thorne, Black holes and time warps, W W Norton, pp.422–435, 1994. [3] J A Wheeler, A journey into gravity and spacetime, Freeman, p.221, 1990.

O n ce a g a in , th e ex tra (n o n triv ia l) issu es a re rela ted to th e q u estio n o f w h a t is th e o rig in o f th e co m p lex w av e m o d e in th e ca se o f a b la ck h o le. T h e a n sw er is th e sa m e a s in th e ca se o f a n a ccelera ted o b serv er w e d iscu ssed ea rlier w ith o n e in terestin g tw ist. T h in k o f a sp h erica l b o d y su rro u n d ed b y va cu u m . In q u a n tu m th eo ry, th is va cu u m w ill h av e a p a ttern o f ° u ctu a tio n s w h ich ca n b e d escrib ed in term s o f co m p lex w av e m o d es. S u p p o se th e b o d y n ow co lla p ses to fo rm a b la ck h o le. T h e co lla p se u p sets th e d elica te b a la n ce b etw een th e w av e m o d es in th e va cu u m a n d m a n ifests { at la te tim es { a s th erm a l ra d ia tio n p ro p a g a tin g to in ¯ n ity. G iv en th e ex p ressio n in (1 7 ) fo r th e tem p era tu re T (M ) o f th e b la ck h o le a n d th e en erg y (M c 2 ), o n e ca n fo rm a lly in teg ra te th e rela tio n d S = d E = T to o b ta in th e en tro p y o f th e b la ck h o le: µ ¶2 µ ¶¡ 1 ZM S G ~ d ( M¹ c 2 ) 2G M 1 4 ¼ r H2 ¼ ; = = = kB c2 c3 4 L 2P T ( M¹ ) 0 (1 8 ) 2

w h ere r H = 2 G M = c is th e h o rizo n ra d iu s o f th e b la ck h o le a n d L P = (G ~= c 3 )1 = 2 is th e so -ca lled P la n ck len g th . T h e en tro p y (w h ich sh o u ld b e d im en sio n less in sen sib le u n its w ith k B = 1 ) is ju st o n e q u a rter o f th e a rea o f th e h o rizo n in u n its o f P la n ck len g th . G ettin g th is fa cto r 1 = 4 is a h o ly g ra il in m o d els fo r q u a n tu m g rav ity { b u t th a t is a n o th er sto ry.

RESONANCE  May 2008

Address for Correspondence T Padmanabhan IUCAA, Post Bag 4 Pune University Campus Ganeshkhind Pune 411 007, India. Email: [email protected] [email protected]

419

Related Documents

Black Holes
May 2020 12
Black Holes
May 2020 7
Black Holes
May 2020 9
Black Holes
May 2020 12