January 1986 Small-Signal
FET
Data Book
Siliconix
Siliconix Incorporated reserves the right to make changes In the circUitry or
specifications at any time without notice and assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement
Warning Regarding Lile Support Applications
Siliconix products are not sold for applications In any medical equipment Intended for use as a component of any life support system unless a specIfic written agreement pertaining to such Intended use IS excecuted between the manufacturer and Siliconix Such agreement will require the equipment manufacturer either to contract for additional reliability testing of the Slllconix parts and/or to commit to undertake such testing as a part of ItS manufactUring process In addition, such manufacturer must agree to indemnify and hold Siliconix harmless from any claims arising out of the use of the Slllconix parts In life support equipment .
Stresses listed under "Absolute Maximum Ratings" may be applied (one at a time) to devices without resulting In permanent damage This is a stress rating only and not subject to production testing. Exposure to absolute maXimum rating conditions for extended periods may effect device reliability
© 1986 Siliconix Incorporated Printed in U.S.A.
Siliconix
Introduction Design Alternatives Data Sheets Geometry Selector Guides Package Data Application Notes Worldwide Sales Offices Siliconix
_ _ _ _, _ _, _ _
7
Table of Contents Section 1. Introduction Small Signal FET ....................................................................... 1-1 Glossary of Terms and Abbreviations .................................................... 1-2 How to Use the Cross Reference ......................................................... 1-5 Cross Reference ........................................................................ 1-6 Product Information ....................................................................1-17 Hi-Rei Capabilities ......................................................................1-18 Process Option Flow Chart ..............................................................1-19 Additional Product Options for European Customers ...................................... 1-20 Die Process Information ................................................................1-21
Section 2. Design Alternatives The Source for FETs ..................... 2-1 Using JFETs as Front-End Devices for Op Amps ............................ 2-2 Compare Using JFETs as Front-End Devices ................................. 2-2 JFETs as Front-End Devices with a BiFET Op Amp ........................... 2-2 Using FETs as Analog Switches .......... 2-3 Using JFETs as Diodes ................... 2-3 FETs as Current Regulator ................ 2-4
Section 3. Data Sheets 2N3819 ................................. 3-1 2N3821 ................................. 3-2 2N3822 ................................. 3-2 2N3823 ................................. 3-2 2N3824 ................................. 3-3 2N3921 ................................. 3-4 2N3922 ................................. 3-4 2N3954 ................................. 3-5 2N3954A ................................ 3-5 2N3955 ................................. 3-5 2N3955A ................................ 3-5 2N3956 ................................. 3-6 2N3957 ................................. 3-6 2N3958 ................................. 3-6 2N3970 ................................. 3-7 2N3971 ................................. 3-7 2N3972 ................................. 3-7 2N4084 ................................. 3-4 2N4085 ................................. 3-4 2N4091 ................................. 3-8 2N4092 ................................. 3-8 2N4093 JAN TX ......................... 3-8 2N4117 ................................. 3-9 2N4117 A ................................ 3-9 2N4118 ................................. 3-9 2N4118A ................................ 3-9
2N4119 ................................. 3-9 2N4119A ................................ 3-9 2N4220 ................................3-10 2N4220A ...............................3-10 2N4221 ................................3-10 2N4221A ...............................3-10 2N4222 ................................3-10 2N4222A ...............................3-10 2 N4223 ................................3-11 2 N4224 ................................3-11 2N4338 ................................3-12 2N4339 ................................3-12 2N4340 ................................3-12 2N4341 ................................3-12 2N4391 ................................3-13 2N4392 ................................3-13 2N4393 ................................3-13 2N4416 ................................3-14 2N4416A ...............................3-14 2N4856 ................................3-15 2N4856A ...............................3-16 2N4857 ................................3-15 2N4857A ...............................3-16 2N4858 ................................3-15 2N4858A ...............................3-16 2N4859 ................................3-15 2N4859A ...............................3-16 2N4860 ................................3-15 2N4860A ...............................3-16 2N4861 JAN TX ........................3-15 2N4861A ...............................3-16 2N4867 ................................3-17 2N4867A ...............................3-17 2N4868 ................................3-17 2N4868A ...............................3-17 2N4869 ................................3-17 2N4869A ...............................3-17 2N5018 ................................3-18 2N5019 ................................3-18 2N5045 ................................3-19
Silicanix
Table of Contents (Continued) Section 3. Data Sheets (Cont'dj 2N5046 2N5047 2N5114 2N5115 2N5116 2N5196 2N5197 2N5198 2N5199 2N5432 2N5433 2N5434 2N5452 2N5453 2N5454 2N5457 2N5458 2N5459 2N5460 2N5461 2N5462 2N5463 2N5464 2N5465 2N5484 2N5485 2N5486 2N5515 2N5516 2N5517 2N5518 2N5519 2N5520 2N5521 2N5522 2N5523 2N5524 2N5545 2N5546 2N5547 2N5564 2N5565 2N5566 2N5638 2N5639 2N5640 2N5902 2N5903 2N5904 2N5905
................................3-19 ................................3-19 ................................3-20 ................................3-20 JAN TX ........................3-20 ................................3-21 ................................3-21 ................................3-21 ................................3-21 ................................3-22 ................................3-22 ................................3-22 ................................3-23 ................................3-23 ................................3-23 ................................3-24 ................................3-24 ................................3-24 ................................3-25 ................................3-25 ................................3-25 ................................3-25 ................................3-25 ................................3-25 ................................3-26 .............. " ................. 3-26 ................................3-26 ................................3-27 ................................3-27 ............................... :3-27 ................................3-27 ................................3-27 ................................3-27 ................................3-27 ................................3-27 ................................3-27 '................................3-27 ................................3-28 ................................3-28 ................................3-28 ................................3-29 ................................3-29 ................................3-29 ................................3-30 ................................3-30 ................................3-30 ................................3-31 ................................3-31 ................................3-31 ................................3-31
2N5906 ................................3-31 2N5907 ................................3-31 2N5908 ................................3-31 2N5909 ................................3-31 2N5911 ................................3-32 2N5912 ................................3-32 2N6905 ................................3-33 2N6906 ................................3-33 2N6907 ................................3-33 2N6908 ................................3-34 2N6909 ................................3-34 2N6910 ................................3-34 2N6911 ................................3-35 3N163 .................................3-36 3N164 .................................3-36 BF244A ................................3-37 BF244B ................................3-37 BF244C ................................3-37 BF245A ................................3-38 BF245B ................................3-38 BF245C ................................3-38 BF256LA ...............................3-39 BF256LB ...............................3-39 BF256LC ...............................3-39 CR022 through CR530 .................. 3-40 CRR0240 through CRR4300-2 ............ 3-41 DN5564 ................................3-43 DN5565 ................................3-43 DN5566 ................................3-43 DN5567 ................................3-44 DPAD1 .................................3-45 DPAD2 .................................3-45 DPAD5 .................................3-45 DPAD10 ................................ 3-45 DPAD20 ................................3-45 DPAD50 ................................3-45 DPAD100 ...............................3-45 FN4117 ................................3-46 FN4117A ...............................3-46 FN4118 ................................ 3-46 FN4118A ...............................3-46 FN4119 ................................3-46 FN4119A ...............................3-46 FN4392 ................................3-47 FN4393 ................................3-47 J105 ...................................3-48 J106 ...................................3-48 J107 ...................................3-48 J108 ...................................3-49 J109 ...................................3-49
Siliconix
Table of Contents (Continued) Section 3. Data Sheets (Cont'd) J110 ...................................3-49 J111 ...................................3-50 J111A ..................................3-51 J112 " .................................3-50 J112A ..................................3-51 J113 ...................................3-50 J113A ..................................3-51 J174 ...................................3-52 J175 ...................................3-52 J176 ...................................3-52 J177 ...................................3-52 J201 ...................................3-53 J202 ...................................3-53 J203 ...................................3-53 J204 ...................................3-53 J210 ...................................3-54 J211 ...................................3-54 J212 ...................................3-54 J230 ...................................3-55 J231 ...................................3-55 J232 ...................................3-55 J270 ...................................3-56 J271 ...................................3-56 J300 ...................................3-57 J304 ...................................3-58 J305 ...................................3-58 J308 ...................................3-59 J309 ...................................3-59 J310 ...................................3-59 J500 ...................................3-60 J501 ...................................3-60 J502 ...................................3-60 J503 ...................................3-60 J504 ...................................3-60 J505 ...................................3-60 J506 ...................................3-61 J507 ...................................3-61 J508 ...................................3-61 J509 ...................................3-61 J510 ...................................3-61 J511 ...................................3-61 J552 ...................................3-62 J553 ...................................3-63 J554 ...................................3-63 J555 ...................................3-63 J556 ...................................3-63 J557 ...................................3-63 JPAD5 .................................3-64 JPAD10 ................................3-64 JPAD20 .............................. , .3-64
J PAD50 ................................3-64 JPAD100 ...............................3-64 JPAD200 ...............................3-64 JPAD500 ...............................3-64 JR135V ................................3-65 JR170V ................................3-65 JR200V ................................3-65 JR220V ................................3-65 JR240V ................................3-65 M440 ..................................3-66 M441 ..................................3-66 M5911 .................................3-67 M5912 .................................3-67 MFE823 ................................3-68 MPF102 ................................3-69 MPF108 ................................3-70 MPF109 ................................3-71 MPF111 ................................3-72 MPF112 ................................3-73 P1086 ..................................3-74 P1087 ..................................3-74 PAD1 ..................................3-75 PAD2 ..................................3-75 PAD5 ..................................3-75 PAD10 .................................3-75 PAD20 .................................3-75 PAD50 .................................3-75 PAD100 ................................3-75 PN4091 ................................3-76 PN4092 ................................3-76 PN4093 ................................3-76 PN4117 ................................3-77 PN4117A ...............................3-77 PN4118 ................................3-77 PN4118A ...............................3-77 PN4119 ................................3-77 PN4119A ...............................3-77 PN4120 ................................3-77 PN4120A ...............................3-77 PN4302 ................................3-78 PN4303 ................................3-78 PN4304 ................................3-78 PN4391 ................................3-79 PN4392 ................................3-79 PN4393 ................................3-79 PN4416 ................................3-80 PN5163 ................................3-81 SD210DE ...............................3-82 SD211DE ...............................3-84 SD212DE ...............................3-82
Siliconix
Table of Contents (Continued) Section 3. Data Sheets (Cont'd) S02130E ...............................3-84 S02140E ...............................3-82 S02150E ...............................3-84 S02100 ................................3-86 S02110 ................................3-88 S02120 ................................3-88 S05000 ................................3-90 S05001 ................................3-90 S05002 ..........•.....................3-90 S05200 ................................3-95 S05400 ................................3-98 S05401 ................................3-98 S05402 ................................3-98 Si1800 ............................... 3-103 Si2400 ............................... 3-104 Si8901 ............................... 3-106 SSTlll .............................. 3-108 SST112 .............................. 3-108 SSTl13 .............................. 3-108 SST174 .............................. 3-109 SST175 .............................. 3-109 SST176 .............................. 3-109 SSTl77 .............................. 3-109 SST201 .............................. 3-110 SST202 .............................. 3-110 SST203 .............................. 3-110 SST204 .............................. 3-110 SST211 .............................. 3-111 SST213 .............................. 3-111
SST215 .............................. 3-111 SST308 .............................. SST309 .............................. SST310 .............................. SST404 .............................. SST405 .............................. SST406 .............................. SST4416 ............................. U200 ................................ U201 ................................ U202 ................................ U231 ................................ U232 ................................ U233 ................................ U234 ................................ U235 ................................ U257 ................................ U290 ................................ U291 ................................ U304 ................................ U305 ................................
3-113 3-113 3-113 3-114 3-114 3-114 3-115 3-116 3-116 3-116 3-117 3-117 3-117 3-117 3-117 3-118 3-119 3-119 3-120 3-120
U306 ................................ 3-120 U308 ................................ 3-121 U309 ................................ 3-121 U310 ................................ 3-121 U311 ................................ 3-122 U320 ................................ 3-123 U321 ................................ 3-123 U322 ................................ 3-123 U350 ..........................•..... 3-124 U401 ................................ 3-125 U402 ................................ 3-125 U403 ................................ 3-125 U404 ................................ 3-125 U405 ................................ 3-125 U406 ................................ 3-125 U410 ................................ 3-126 U411 ................................ 3-126 U412 ................................ 3-126 U421 ................................ 3-127 U422 ................................ 3-127 U423 .........................•...... 3-127 U424 ................................ 3-127 U425 ................................ 3-127 U426 ................................ 3-127 U427 ................................ 3-128 U428 ................................ 3-128 U430 ................................ 3-129 U431 ................................ 3-129 U440 ................................ 3-130 U441 ................................ 3-130 U443 ................................ 3-130 U444 ................................ 3-130 U1897 ............................... 3-131 U1898 ............................... 3-131 U1899 ............................... 3-131 VCR2N ............................... 3-132 VCR3P ............................... 3-132 VCR4N ............................... 3-132 VCR7N ............................... 3-132 VCRllN ............................. 3-134
Section 4. Geometry Useful JFET Parameter Relationships .. " .4-1 OMCA ................................. 4-2 OMCB .................................. 4-2 MBN .................................. 4-4 MRA ................................... 4-6 NCB ................................... 4-8 NCL ................................. .4-11
Siliconix
Table of Contents (Continued) Section 4. Geometry (Cont'd) NH ................................... .4-12 NIP ...................................4-15 NKL .................................. .4-17 NKM ................................. .4-18 NKO ..................................4-19 NNR ................................. .4-20 NNT ..................................4-22 NNZ ................................. .4-24 NPA ................................. .4-25 NQP ................................. .4-28 NRL ...................................4-30 NT ................................... .4-32 NVA ................................. .4-34 NZA ................................. .4-35 NZB ...................................4-35 NZF ...................................4-37 PSA .................................. .4-40 PSB ...................................4-40 PSC-B ................................ .4-42 VRMA ................................ .4-43
Section 5. Selector Guides Tips on Selecting the Right FET for Your Application ............................. 5-1 Application Selection Preferences ........ 5-2 Product Selector Guide .................. 5-3 Application Parameter Importance Guide .5-4 JFET Geometry Selector Guide .......... 5-7 Product Specifications .................. 5-10
Section 6. Package Data TO-18 TO-18 TO-52 TO-71 TO-72 TO-78 TO-92 TO-92
(2-pin) ........................... 6-1 (3-pin) ........................... 6-1 .................................. 6-1 .................................. 6-1 .................................. 6-2 .................................. 6-2 .................................. 6-2 Lead Form ........................ 6-2
TO-99 .................................. 6-2 TO-92 Taping Specifications ............. 6-3 SOT-23 ................................. 6-4 SOT143 ................................ 6-4 SOIC-8 pin ............................. 6-4 16-Lead DIP Plastic ...................... 6-5 16-Lead DIP Ceramic .................... 6-5 14-Lead SO Plastic ...................... 6-6
Section 7. Application Notes An Introduction to FETs ................. 7-1 FET Biasing ............................7-12 Composite Op Amp for High Performance ...................... 7-22 Applications for the Si1000 Series JFET Amplifier ..............................7-25 FETs for Video Amplifiers ............... 7-31 Audio-Frequency Noise Characteristics of Junction Fets ..........................7-39 Differential JFET Amplifier ..............7-47 Wideband UHF Amplifier with HighPerformance FETs ......................7-49 High-Performance FETs In Low-Noise VHF Oscillators .........................7-52 FETs in Balanced Mixers ................7-55 A New Current Limiter Extends Protection to 240V ......................7-65 The FET Constant Current Source .......7-71 Build a Precision Constant Current Source ......................... 7-73 FETs as Voltage-Controlled Resistors ....7-75 FETs as Analog Switches ...............7-84 DMOS FET Analog Switches and Switch Arrays .................................7-92 A High Performance Video Switch Using the SD5002 ........................... 7-100 A High Quality Audio Crosspoint Switch .................... 7-105
Section 8. Worldwide Sales Offices .... 8-1
Siliccnix
Introduction __
Siliconix
-;>
Small Signal FEY Present Position: Siliconix specializes in offering a broad product line of Nand P Channel JFETs, N-Channel OMOS and N & P-Channel MOS products. Our packaging capabilities range from hermetically sealed metal cans, plastic TO-92 and surface mount packages to side braze type packages for switch arrays. These proucts are geared to offer design alternatives to our customers. We specialize in ultra low leakage, low noise, high gain/slew rate, low ROS(on), and high speed switching. Future Product Plans: Expanding the already broad FET product line will focus on the following new product areas: o High current, high voltage current regulator IF 10-100 rnA BV'" 100V o Series of depletion mode lateral OMOS devices for use in high gain amplification. o Surface mount additions will include SOT143 (4 leaded SO package) and S08 (8 leads).
Silicanix
1-1
ut
Glossary of Terms and Abbreviations --...o 1. Upper case letters indicate DC voltages and currents . --a 2. Lower case letters indicate AC voltages and currents. C
f
.a .a
c:c
"'a
c
a ut
.E ..a>-
~ 'too o ut ut
o
ij
3. Subscripts can refer to the terminals used in the measurements, I.e., VG bol, i.e., tf = Fall Time, tr = Rise Time .
=
H
Siliconix
Gate Voltage; or simply help define the sym-
4. Triple subscripts are used for terminal references only. The first subSCript IS the object terminal. The second subSCript IS the common terminal. The third gives the condition of the remaining termlnal(s). S = Short, 0 = open and X = neither open nor short (refer to the test conditions). Example: BVGSS = Breakdown Voltage from gate to source with the drain shorted to the source. btg
= Common-Gate Forward Susceptance
Cgs
= Gate- Source Capacitance
bts
= Common-Source Forward Susceptance
Ciss
= Common-Source Input Capacitance
bigs
= Common-Gate Input Susceptance
Coss
= Common-Source Output Capacitance
biss
= Common-Source Input Susceptance
Crss
= Common-Source Reverse Transfer CapacI-
bOgS
= Common-Gate Output Susceptance
boss
= Common-Source Output Susceptance
brg
= Common-Gate Reverse Susceptance
b rs
= Common-Source Reverse Susceptance
BVOGO
= Drain-Gate Breakdown Voltage with
tance
Source Open
Csb
= Source-Body Capacitance
Csd
= Source-Drain Capacitance
Csgo
= Source-Gate Capacitance
0
= Drain
eN
= Equivalent Short-Circuit Input Noise Voltage
BVOSS
= Drain-Source Breakdown Voltage with Gate Shorted
BVSDX
= Drain-Source Breakdown I(0ltage
fm
= Figure of Merit
G
= Gate
91g
= Common-Gate Forward TransconductancE
91s
= Common-Source Forward Transconduc-
Tied to Reference Voltage BVG1SS
= Gate 1-to-Sou rce Breakdown Voltage
with Gate Shorted
tance BVG2SS
= Gate 2-to-Sou rce Breakdown Voltage
with Gate Shorted
gfso
= Common·Source
tance @VGS BVGSS
Forward Transconduc·
=0
= Gate-Source Breakdown Voltage with
9fs1/9fs2
Gate Shorted
= Common-Source Forward Transconduc-
tance Ratio BVSDS
= Source-Drain Breakdown Voltage with
Gate Shorted BVSGO
= Source-Gate Breakdown Voltage with
Cli9
= Common-Gate Input Conductance
9is
= Common-Source Input Conductance
909
= Common- Gate
90S
= Common-Source Output Conductance
90ss
= Common-Source Output Conductance @
Source Open Cdb
= Drain-Body Capacitance
Cd90
= Drain-Gate Capacitance
Cgb
= Gate-Body Capacitance
Cgd
= Gate-Drain Capacitance
1-2
VGS gos1-gos2
Siliconix
=
Output Conductance
0
= Differential Output Conductance
Glossary of Terms and Abbreviations (Cont'd) = Common-Gate Power Gain =
Common-Source Power Gain
10(off)
=
Oraln Cutoff Current
10(on)
= Drain ON Current
lOGO
= Drain-Gate Leakage
lOSS
=
Saturation Orain Current with Gate Shorted
IOSS1/IOSS2 = Saturation Orain Current Ratio =
Forward Current
Re (Vig)
=
Common-Gate Input Conductance
Re (Vis)
= Common-Gate Output Conductance
Common-Source Output Conductance
Re (Vos)
=
Re (V rg )
= Common-Gate Reverse Transconductance
Re (V rs )
=
S
= Source
td
=
Delay Time
Id(off)
=
Turn-Off Delay Time
Id(on)
=
Turn-On Delay Time
Common-Source Reverse Transconductance = Common-Source Input Resistance
= Fall Time
= Gate Operating Current
=
Junction Temperature
=
Gate-to-Gate Leakage Current
=
Differential Gate Operating Currents
loff
= Turn-Off Time
=
Gate-to-Body Leakage Current with Gate Shorted
ton
= Turn-On Time
= Lead Temperature = Gate Forward Current = Gate Reverse Current with Gate Shorted = Storage Temperature
Tstg IG1SS
= Gate 1-to-Source Leakage Current with = Body Voltage
Gate Shorted =
IG2SSR
Gate 2-to-Source Leakage Current with Gate Shorted
VBB
= Body Supply Voltage
Vo
= Drain Voltage
=
Gate 1-to-Source Reverse Leakage Current
VOO
= Drain Supply Voltage
=
Gate 2-to-Source Reverse Leakage Current
VDS(on)
= Orain-Source ON Voltage
=
Equivalent Open-Circuit NOise Current
Ip
= Pinch-Off Current
NF
=
NOise Figure
=
Continuous Power Dissipation
=
Peak Operatl ng Voltage
= Gate Voltage
= Gate Supply Voltage =
IVGS1-VGS21
= Differential Gate-Source Voltage =
POV
Ll.IVgs1-Vgs21
= Drain-Source ON Resistance
Ll. T
Gate-Source Voltage
Oifferentlal Gate-Source Voltage
= Differential Gate-Source Voltage Change with Temperature
VGS(f)
= Gate-Source Forward Voltage
= Common-Gate Forward Transconductance
VGS(th)
=
Common-Source Forward Transconductance
VGS(off)
= Gate Source Cutoff Voltage
rOS(on)
=
Re (Yfg) Re (Yfs)
=
Static Drain-Source ON Resistance
Siliconix
Gate Threshold Voltage
1-3
'" Glossary of Terms and Abbreviations (Cont'd) g
..
..-a
!
.a .a C "'U C
a '"E
VG1S(off)
= Gate
1 to Source Cutoff Voltage
VG2S(off)
= Gate 2 to Source Cutoff Voltage
Vs
= Source Voltage
VSS
= Sou rce Supply Voltage
Zd
= Dynamic
Zk
= Knee AC
0.
= Current Temperature Coefficient
°J-A
= Junction to Ambient Thermal
0J-C
=Junction to Case Thermal
Impedance
.
..
~ o
t-
a '"'"o
i5
1-4
Siliconix
Impedance
Resistance
Resistance
"7
How to Use the Small-Signal FET Cross Reference The following examples illustrate how the FET Cross Reference and Index should be used:
Case (1)
Recommended replacement offered by Siliconix is identical to Industry Part Number.
Industry Part Number
Type and Classification
Recommended Replacement
2N4391
N JFET
2N4391
Case (2)
Recommended replacement offered by Siliconix is not identical to Industry Part Number.
Industry Part Number
Type and Classification
Recommended Replacement
2N3457
N JFET
2N4338
The recommended replacement may be exact, tighter or looser on electrical characteristics, and may be a different package or pin-out. Data sheets for both parts should, if possible, be reviewed for a complete comparison. Type and classification abbreviations are described as follows: BF CR CRR
(JFET Plastic) (Current Limited) (Current Limiter) o (Dual) OM N-Channel DMOS ON (Dual N-Channel Metal Can) DPAD (Dual Pico Ampere Diode) FN (N-Channel Metal Can)
ENH JPAD JR N
P PAD
SO SI
SST
Siliconix
(Enhancement-Mode Normally-Off) (Plastic Pico Ampere Diode) (Plastic High Voltage Diode) (N-Channel) (P-Channel) (Pico Ampere Diode) (N-Channel DMOS) (N-Channel FETs) (JFET in SOT-23 Plastic Package SOT-143 SOIC-8 Pin)
II1II
1-5
Small-Signal FEY Cross Reference Industry Part Number
Data Sheet Page
Geometry Page
Industry Part Number
Type and Classification
Recommended Replacement
Data Sheet Page
Geometry Page
Type and Classification
Recommended
lN5283 lN5284 lN5285 lN5286 lN5287
CL CL CL CL CL
N JFET N JFET N JFET N JFET N JFET
CR022 CR024 CR027 CR030 CR033
2N3457 2N3458 2N3459 2N3460 2N3608
N JFET N JFET N JFET N JFET PMOS ENH
2N4338 2N434l 2N434l 2N4340 3N163
lN5288 lN5289 lN5290 lN529l lN5292
CL CL CL CL CL
N JFET N JFET N JFET N JFET N JFET
CR039 CR043 CR047 CR056 CR062
2N3684 2N3685 2N3686 2N3687 2N38l9
N JFET N JFET N JFET N JFET N JFET
2N4339 2N4339 2N4340 2N434l 2N38l9
lN5293 lN5294 lN5295 lN5296 lN5297
CL N JFET CL N JFET CL N JFET CL N JFET CL N JFET
CR068 CR075 CR082 CR09l CR100
2N3820 2N382l 2N3822 2N3823 2N3824
P JFET N JFET N JFET N JFET N JFET
J270 2N382l 2N3822 2N3823 2N3824
lN5298 lN5299 lN5300 lN530l lN5302
CL CL CL CL CL
N JFET N JFET N JFET N JFET N JFET
CRll0 CR120 CR130 CR140 CR150
2N392l 2N3922 2N3954 2N3954A 2N3955
o N JFET o N JFET o N JFET o N JFET ON JFET
2N392l 2N3922 2N3954 2N3954A 2N3955
lN5303 lN5304 lN5305 lN5306 lN5307
CL N JFET CL N JFET CL N JFET CL N JFET CL N JFET
CR160 CR180 CR200 CR220 CR240
2N3955A 2N3956 2N3957 2N3958 2N3967
ON JFET ON JFET o N JFET ON JFET N JFET
2N3955A 2N3956 2N3957 2N3958 2N422l
lN5308 lN5309 lN53l0 lN53ll lN53l2
CL N JFET CL N JFET CL N JFET CL N JFET CL N JFET
CR270 CR300 CR330 CR360 CR390
2N3967A 2N3968 2N3968A 2N3969 2N3970
N JFET N JFET N JFET N JFET N JFET
2N422l 2N4339 2N4339 2N4339 2N3970
0
2N397l 2N3972 2N4084 2N4085 2i'1q091
N JFET N JFET ON JFET ON JFET i'I JFET
2N397l 2N3972 2N4084 2N4085 2i11q091
en
2N4091A 2N4092 2N4092A 2N4093 2N4093A
N JFET N JFET N JFET N JFET N JFET
2N409l 2N4092 2N4092 2N4093 2N4093
N JFET N JFET N JFET N JFET N JFET N JFET PMOS ENH N JFET N JFET N JFET
2N4l17 2N4l17A 2N4ll8 2N4ll8A 2N4ll9 2N4ll9A 3N163 2N3822 2N4220 2N4220A
Replacement
~
0 0
10
as 'lil
0
t:ii
U.
"iii c::
Ol
en
lN53l3 lN53l4 2N3066 2N3067 2N30a8
CL N JFET CL N JFET N JFET N JFET N JFET
CR430 CR470 2N4340 2N4338 2N433ii
2N3069 2N3070 2N307l 2N3084 2N3085
N JFET N JFET N JFET N JFET N JFET
2N434l 2N4339 2N4338 2N434l 2N434l
2N3086 2N3087 2N3088 2N3088A 2N3089
N JFET N JFET N JFET N JFET N JFET
2N434l 2N434l 2N4339 2N4339 2N4339
2N3089A 2N3365 2N3366 2N3367 2N3368
N JFET N JFET N JFET N JFET N JFET
2N4339 2N4340 2N4338 2N4338 2N434l
2N4l17 2N4l17A 2N4ll8 2N4ll8A 2N4ll9 2N4ll9A 2N4l20 2N4l39 2N4220 2N4220A
2N3369 2N3370 2N3436 2N3437 2N3438
N JFET N JFET N JFET N JFET N JFET
2N4340 2N4339 2N434l 2N434l 2N434l
2N422l 2N4221A 2N4222 2N4222A 2N4223
N JFET N JFET N JFET N JFET N JFET
2N422l 2N4221A 2N4222 2N4222A 2N4223
2N3452 2N3453 2N3454 2N3455 2N3456
N JFET N JFET N JFET N JFET N JFET
2N4340 2N4338 2N4338 2N4340 2N4338
2N4224 2N4267 2N4302 2N4303 2N4304
N JFET PMOS ENH N JFET NJFET NJFET
2N4224 3N163 PN4302-l8 PN4303-l8 PN4304-l8
1-6
~
E
en
CD
:E .9
Iii
Qj
a:
Siliccnix
~
0 0
10
as 'lil
t:iiU. "iii c::
Ol
~ E
en
CD
:E
.9
Iii
Qj
a:
:7
Small-Signal FET Cross Reference (Cont'd) Data Sheet Page
Geometry Page
Industry Part Number
Type and Classillcalion
Recommended
Data Sheet Page
Geometry Page
Type and Classllicatlon
Recommended Replacement
2N4338 2N4339 2N4340 2N4341 2N4352
N JFET N JFET N JFET N JFET PMOS ENH
2N4338 2N4339 2N4340 2N4341 3N163
2N5103 2N5104 2N5105 2N5114 2N5115
N JFET N JFET N JFET P JFET P JFET
2N4416 2N4416 2N4416 2N5114 2N5115
2N4382 2N4391 2N4392 2N4393 2N4416
P JFET N JFET N JFET N JFET N JFET
2N5115 2N4391 2N4392 2N4393 2N4416
2N5116 2N5158 2N5159 2N5196 2N5197
P JFET N JFET N JFET ON JFET ON JFET
2N5116 2N5434 2N5433 2N5196 2N5197
2N4416A 2N4445 2N4446 2N4447 2N4448
N JFET N JFET N JFET N JFET N JFET
2N4416A 2N5432 2N5433 2N5432 2N5433
2N5198 2N5199 2N5245 2N5246 2N5247
ON JFET ON JFET N JFET N JFET N JFE
2N519B 2N5199 PN4416 J305-18 J304-1B
2N4B56 2N4B56A 2N4856JAN 2N4856JANTX 2N4B56JANTXV
N JFET NJFET N JFET N JFET N JFET
2N4856 2N4B56A 2N4B56JAN 2N4856JANTX 2N4856JANTXV
2N524B 2N5257 2N525B 2N5259 2N535B
N JFET N JFET N JFET N JFET N JFET
2N54B6 2N5457 2N545B 2N5459 2N4340
2N4B57 2N4857A 2N4857JAN 2N4B57JANTX 2N4B57JANTXV
N JFET N JFET N JFET N JFET N JFET
2N4B57 2N4B57A 2N4B57JAN 2N4B57JANTX 2N4857TANTXV
2N5359 2N5360 2N5361 2N5362 2N5363
N JFET N JFET N JFET N JFET N JFET
2N4340 2N4339 2N4339 2N4339 2N4222A
2N4858 2N4858A 2N4858JAN 2N4858JANTX 2N4858JANTXV
N JFET NJFT N JFET N JFET N JFET
2N4858 2N4B5BA 2N4858JAN 2N4858JANTX 2N4858JANTXV
2N5364 2N5391 2N5392 2N5393 2N5394
N JFET N JFET N JFET N JFET N JFET
2N4224 2N4867A 2N486BA 2N4869A 2N4869A
Cl
2N4859 2N4859A 2N4859JAN 2N4859JANTX 2N4859JANTXV
N JFET N JFET N JFET N JFET N JFET
2N4859 2N4859A 2N4859JAN 2N4859JANTX 2N4859JANTXV
N JFET N JFET N JFET N JFET N JFET
2N4B60 2N4860A 2N4860JAN 2N4860JANTX 2N4860JANTXV
N JFET N JFET N JFET N JFET N JFET N JFET N JFET ON JFET ON JFET ON JFET
2N4869A 2N4869A J210 U312 2N5432 2N5433 2N5434 2N5452 2N5453 2N5454
i:i5
2N4860 2N4860A 2N4860JAN 2N4860JANTX 2N4860JANTXV
2N5395 2N5396 2N5397 2N5398 2N5432 2N5433 2N5434 2N5452 2N5453 2N5454
2N4B61 2N4861A 2N4861JAN 2N4861JANTX 2N4861JANTXV
N JFET N JFET N JFET N JFET N JFET
2N4861 2N4B61A 2N4861 JAN 2N4861JANTX 2N4861JANTXV
2N5457 2N545B 2N5459 2N5460 2N5461
N JFET N JFET N JFET P JFET P JFET
2N5457 2N5458 2N5459 2N5460 2N5461
2N4867 2N4867A 2N4868 2N4868A 2N4869
N JFET N JFET N JFET N JFET N JFET
2N4867 2N4867A 2N4868 2N4868A 2N4869
2N5462 2N5463 2N5464 2N5465 2N5484
P JFET P JFET P JFET P JFET N JFET
2N5462 2N5463 2N5464 2N5465 2N54B4
2N4B69A 2N4977 2N4978 2N4979 2N501B
N JFET N JFET N JFET N JFET P JFET
2N4869A 2N5432 2N5433 2N5434 2N5018
2N5485 2N5486 2N5515 2N5516 2N5517
N JFET N JFET ON JFET ON JFET o N JFET
2N54B5 2N54B6 2N5515 2N5516 2N5517
2N5019 2N5020 2N5045 2N5046 2N5047
P JFET P JFET ON JFET ON JFET ON JFET
2N5019 2N3329 2N5045 2N5046 2N5047
2N5518 2N5519 2N5520 2N5521 2N5522
ON JFET ON JFET o N JFET ON JFET o N JFET
2N5518 2N5519 2N5520 2N5521 2N5522
Induslry Pari Number
~
0 0
m ttl
1ii
Cl
ti:i u. iii c:
Cl
i:i5
iii E
en
CD
£;
.9
~
a:
Siliconix
Replacement
~
0 0
m ttl
1ii
Iiiu. iii c:
Cl
'iii
E
en CD
£;
.9
Iii
CD
a:
1-7
Small-Signal FET Cross Reference (Cont'd) Industry Part Number
Type and Classilicallon
Recommended
2N5523 2N5524 2N5545 2N5546 2N5547
ON ON ON ON ON
JFET JFET JFET JFET JFET
2N5549 2N5561 2N5562 2N5563 2N5564
Type and Classification
2N5523 2N5524 2N5545 2N5546 2N5547
3N145 3N146 3N155 3N155A 3N156
PMOS PMOS PMOS PMOS PMOS
ENH ENH ENH ENH ENH
3N163 3N163 3N163 3N163 3N163
N JFET ON JFET ON JFET o N JFET ON JFET
2N4392 U401 U402 U404 2N5564
3N156A 3N157 3N157A 3N158 3N158A
PMOS ENH PMOS ENH PMOS ENH PMOS ENH PMOS ENH
3Nl63 3N163 3N163 3N163 3N163
ON JFET
3N163 3N164 3N174 14T 142T
PMOS ENH PMOS ENH PMOS ENH N JFET N JFET
3N163 3Nl64 3N163 2N3819 PN4392
158T 159T 100S 102M 102S
N JFET N JFET N JFET N JFET N JFET
PN4302 PN4416 PN4304 2N5486 PN4302
103M 103S 104M 105M 105U
N JFET N JFET N JFET N JFET N JFET
2N5457 2N5459 2N5458 2N5459 2N4222
2N5565 2N5566 2N5592 2N5593 2N5594
NJFET N JFET N JFET
2N5565 2N5566 2N3822 2N3822 2N3822
2N5638 2N5639 2N5640 2N5647 2N5648
N JFET N JFET N JFET N JFET N JFET
2N5638 2N5639 2N5640 2N4117A 2N4117A
2N5649 2N5801 2N5802 2N5803 2N5902
N JFET N JFET N JFET N JFET o N JFET
2N4117A 2N4393 2N4393 2N4392 U421
2N5903 2N5904 2N5905 2N5906 2N5907
Data Sheet Page
Industry Part Number
Replacement
o N JFET
ON ON ON ON ON
JFET JFET JFET JFET JFET
Geometry Page
~
0 0
I:D
as 1ii
C
U422 U423 U421 U422 U423
u..
'iii
Iii iii t:
Cl
en
Recommended Replacement
106M 107M 110U 115U 120U
N JFET N JFET N JFET N JFET N JFET
2N5485 2N5486 2N4339
125U 130U 135U 155U 182:;
N JFET N JFET N JFET N JFET N JFET
2N4339 2N4341 2N4339 2N4416 2N4391
183S 1975 1985 1995 200S
N JFET N JFET N JFET N JFET N JFET
2N3823 2N4338 2N4340 2N4341 2N4392
2N4340
ON JFET ON JFET ON JFET ON JFET N JFET
U423 U423 2N5911 2N5912
2N5950 2N5951 2N5952 2N5953 2N6451
N JFET N JFET N JFET N JFET N JFET
PN4416 PN4416 J305 J305 2N4393
2N6452 2N6453 2N6454 2N6483 2N6484
N JFET N JFET N JFET ON JFET ON JFET
2N4393 2N4393 2N4393 U401 U402
200U 201S 202S 203S 204S
N JFET N JFET N JFET N JFET N JFET
2N3824 2N4391 2N4392 2N3821 2N3821
2N6585 2N6568 2N6656 2N6657 2N6658
ON JFET N JFET V MOS N ENH V MOS N ENH V MOS N ENH
U404 U290 2N6656 2N6657 2N6658
210U 231S 232S 233S 234S
N JFET ON JFET ON JFET ON JFET ON JFET
2N4416 2N3954 2N3955 2N3956 2N3957
2N6659 2N6660 2N6661 2N6905 2N6906
V MOS N ENH V MOS N ENH V MOS N ENH ON JFET ON JFET
2N6659 2N6660 2N6661 2N6905 2N6906
235S 241U 250U 251U 703U
ON JFET N JFET N JFET N JFET N JFET
2N3958 2N4869 2N4091 2N4392 2N4220
2N6907 2N6908 2N6909 2N6910 2N6911
ON JFET NJFET NJFET NJFET N JFET
2N6907 2N6908 2N6909 2N6910 2N6911
704U 705U 707U 714U 734U
N JFET N JFET N JFET N JFET NJfET_
2N4220 2N4224 2N4860 2N3822 2N4416
1-8
PN44i6
en
ill
:E
.e iii
'Iii
II:
Siliconix
Geometry Page
~
0 0
I:D
as 1ii
C
Iii
u..
iii
2N5908 2N5909 2N5911 2N5912 2N5S4S
E
Data Sheet Page
t:
Cl
en
iii E
en
CD
:E
.e
~II:
"7
Small-Signal FET Cross Reference (Cont'd) Industry Part Number
Type and Classification
Recommended
Replacement
Data Sheet Page
Geometry Page
Industry Part Number
Type and Classillcalion
Recommended Replacement
734EU 751U 752U 753U 754U
N JFET N JFET N JFET N JFET N JFET
PN4416 2N4340 2N4340 2N4341 2N4340
BC264 BC264A BC264B BC264C BC2640
N JFET N JFET N JFET N JFET N JFET
PN4304 PN4302 PN4304 PN4304 PN4416
755U 756U 1227A 1278A 1279A
N JFET N JFET N JFET N JFET N JFET
2N4341 2N4340 2N3822 2N3821 2N3821
BF244NB/C BF245NB/C BF410A BF410B BF410C
N JFET o N JFET N JFET N JFET N JFET
BF244NB/C BF245NB/C J201 J202 J203
1280A 1281A 1282A 1283A 1284A
N JFET N JFET N JFET N JFET N JFET
2N4224 2N3822 2N4341 2N4340 2N4222
BF4100 BF010 BF011 BF012 BF013
N JFET N JFET N JFET N JFET N JFET
J204 U401 U401 U402 U402
1285A 1286A 1325A 1714A 2000M
N JFET N JFET N JFET N JFET N JFET
2N3821 2N4220 2N4222 2N4340 2N3823
BF014 BF015 BF016 BFR30 BFR31
N JFET N JFET N JFET N JFET N JFET
U403 U405 U405 88T202 88T202
2001M 2078A 2079A 2080A 2081A
N JFET o N JFET o N JFET o N JFET o N JFET
2N3823 2N3955 2N3955 2N5546 2N5546
BFR45 BF821 BF521A BF567 BF568
N JFET N JFET ON JFET N JFET N JFET
2N4416 2N5199 2N5199 2N3821 2N3823
2098A 2099A 2130U 2132U 2134U
ON ON ON ON ON
JFET JFET JFET JFET JFET
2N5545 2N5546 2N5452 2N3955 2N3956
2136U 2138U 2139U 2147U 2148U
o N JFET
ON JFET ON JFET ON JFET ON JFET
2N3957 2N3958 2N3958 2N3958 2N3958
2149U A5T3821 A5T3822 A5T3823 A5T3824
ON JFET N JFET N JFET N JFET N JFET
2N3958 J305 J305 PN4416 J302-18
A192 A0830 A0831 A0832 A0833
N JFET ON JFET ON JFET o N JFET ON JFET ON JFET
..:.: 0 0
CIJ
CO
Cl
BF868P BF570 BF571 BF572 BF573
N JFET N JFET N JFET N JFET N JFET
PN4416 2N3821 2N3822 2N3823 2N3821
BF574 BF575 BF876 BF577 BF578
N JFET N JFET N JFET N JFET N JFET
2N4856 2N4857 2N4858 2N4859 2N4860
BF879 BF580 BFT46 BFW10 BFW11
N JFET N JFET N JFET N JFET N JFET
2N4861 2N4416A 85T201 2N3823 2N3822
2N4416 U421 U421 U422 U426
BFW12 BFW13 BFW54 BFW55 BFW56
N JFET N JFET N JFET N JFET N JFET
2N4220 2N4867 2N3822 2N3822 2N4869
ON JFET ON JFET o N JFET
U423 2N3921 2N3921 2N3922 2N4085
BFW61 BS010 B8012 B80212 B50213
N JFET NMOS FETS N M08 FET5 ON FET ON FET
2N4224 Si3000 5i3000 50212 80213
A0839 A0840 A0841 A0842 A03954
ON JFET ON JFET ON JFET ON JFET ON JFET
2N4085 2N5196 2N5197 2N5199 2N3954
A03954A A03955 A03956 A03957 A03958
o N JFET ON JFET o N JFET ON JFET ON JFET
2N3954A 2N3955 2N3956 2N3957 2N3958
B50214 B50215 B5R56 B5R57 B8R58 B5583 B5V22 B8V78 B5V79 B8V80
ON FET ON FET N JFET N JFET N JFET ON FET N JFET N JFET N JFET N JFET
50214 50215 55T4856 55T4857 5ST4858 5ST213 2N4416 2N4856A 2N4857A 2N4858A
A0833A A0835 A0836 A0837 A0838
o N JFET
ti:i
u.
(ij
c:
Cl
US
(ij
E
(J)
CD
-:5
.9
ffi 'lii
a:
Siliconix
Data Sheet Page
Geometry Page
..:.: 0 0
CIJ
CO
Cl
ti:iu. (ij
c:
Cl
US
1ij
E
(J)
CD
-:5 .9
ffi 'lii
a:
1·9
Small-Signal FET Cross Reference (Cont'd) Industry
Type and
Part Number
Classification
Recommended Replacement
Data Sheet Page
Geometry
Industry
Type and
Page
Part Number
Classification
Recommended Replacement
C413N C673 C674 C680 C680A
N JFET N JFET N JFET N JFET N JFET
2N5434 2N4341 2N4341 2N4338 2N4338
CR022 Thru CR530 Referenced Under 1N Series CRR0240-4300 DN5564-66 DN5567
CL N FET D N JFET D N JFET
CRR0240-4300 DN5564-66 DN5567
C681 C681A C682 C682A C683
N JFET N JFET N JFET N JFET N JFET
2N4338 2N4338 2N4339 2N4339 2N4339
DPAol DPAD2 DPAo5 DPAol0 DPAD20
D PAD D PAD o PAD o PAD D PAD
oPADl oPAo2 oPAD5 DPAol0 DPAD20
C683A C684 C684A C685 C685A
N JFET N JFET N JFET N JFET N JFET
2N4339 2N4220 2N4220 2N4220 2N4220
oPAD50 oPAol00 DU4339 OU4340 El00
o PAD N JFET o PAD N JFET o N JFET o N JFET N JFET
DPAD50 oPAD100 U235 U235 J203-18
C6690 C6691 C6692 CM600 CM601
N JFET N JFET N JFET N JFET N JFET
2N4341 2N4341 2N4340 2N4092 2N4091
El0l El02 El03 El05 El06
N JFET N JFET N JFET N JFET N JFET
J201-18 J202-18 Jl05-18 Jl05-18 Jl06-18
CM602 CM603 CM640 CM641 CM642
N JFET N JFET N JFET N JFET N JFET
2N4091 2N4091 2N4093 2N4093 2N4093
El07 El08 El09 Ell0 Elll
N JFET N JFET N JFET N JFET N JFET
Jl07-18 Jl08-18 Jl09-18 Jll0-18 Jill-I B
El12 El13 E174 E175 E176
N JFET N JFET P JFET P JFET P JFET
Jl12-18 J113-18 J174-18 J175-1 B J176-18
El77 E201
P JFET N JFET
Jl77-18 J201-1 B
CM643 CM644 CM645 CM646 CM647
N JFET N JFET N JFET N JFET N JFET
2N4092 2N4092 2N4092 2N4092 2N4091
CM650 CM651 CM652 CM653 Givi697
N JFET N JFET N JFET N JFET ill JFET
2N5432 2N5433 2N5432 2N5433
CM800 CMX740 CP643 CP650 CP651
N JFET N JFET N JFET N JFET N JFET
2N5434 U290 2N5434 U322 U320
CP652 CP653 CM697 CM800 CMX740
N JFET N JFET N JFET N JFET N JFET
U322 U320 2N5434 2N5434 U290
CP640 CP643 CP650 CP651 CP652
N JFET N JFET N JFET N JFET N JFET
U296 2N5434 U322 U320 U322
CP653 CM697 CM800 CMX740 CP640
N JFET N JFET N JFET N JFET N JFET
U320 2N5434 2N5434 U290 U296
CP643 CP650 CP651 CP652 CP653
N JFET N JFET N JFET N JFET N JFET
2N5434 U322 U320 U322 U320
1-10
~N~4~4
-" 0 0 Ol ctl
1il
0
tuu. iii c
Ol
i:i5
'ffi
E
(j)
ill
-=.9 ~
Qi
a:
rl')f'\'l
~I
N JFET N JFET N JFET N JFET N JFET
IrrT vi L I
u.:.ut:-
Data Sheet Page
Geometry Page
-'"
0 0 Ol
~
0 IW
U.
iii c
Ol
i:i5
iii E
(j)
I 0
Q)
E203 E204
N JFET N JFET
J203-18 J204-18
-=.9
E210 E211 E212 E230 E231
N JFET N JFET N JFET N JFET N JFET
J210 J211 J212 J230-18 J231-18
E232 E270 E271 E300 E304
N JFET P JFET P JFET N JFET N JFET
J232-18 J270-18 J271-18 J300 J304
E305 E308 E309 E310 E400
N JFET N JFET N JFET N JFET D N JFET
J305 J308 J309 J310 U410
E401 E402 E410 E411 E412
D N JFET D N JFET D N JFET o N JFET o N JFET
U411 U410 U410 U411 U412
Siliconix
I~
~
Qi
a:
]
Small-Signal FET Cross Reference (Cont'd) Data
Industry
Type and
Part Number
Classification
U410 U411 U412 U440 U441
FM3957 FM3958 FM4117 FN4117A FN4118
ON JFET o N JFET N JFET N JFET N JFET
2N3957 2N3958 FN4117 FN4117A FN4118
o N JFET ON JFET CL N JFET CL N JFET CL N JFET
U430 U431 J500 J501 J502
FN4118A FN4119 FN4119A FN4392 FN4393
N JFET N JFET N JFET N JFET N JFET
FN4118A FN4119 FN4119A FN4392 FN4393
E503 E504 E505 E506 E507
CL CL CL CL CL
J503 J504 J505 J506 J507
FT0654A FT0654B FT0654C FT06540 FT704
N JFET N JFET N JFET N JFET PMOS ENH
2N5486 2N5486 2N4221 2N4221 3N163
E508 E509 E510 E511 EPA050
Cl N JFET Cl N JFET Cl N JFET Cl N JFET DO N JFET
J508 J509 J510 J511 JPA050
GET5457 GET5458 GET5459 HDIG1030 10100
N JFET N JFET N JFET PMOS ENH o PAD N JFET
2N5457 2N5458 2N5459 3N163 OPAOI
EPA0100 EPA0200 EPA0500 ESM4091 ESM4092
DO N JFET DO N JFET DO N JFET N JFET N JFET
JPA0100 JPA0200 JPA0500 PN4091 PN4092
10101 IMF3954 IMF3954A IMF3955 IMF3955A
o PAD N JFET o N JFET ON JFET ON JFET ON JFET
OPA010 2N3954 2N3954A 2N3955 2N3955A
IMF3956 IMF3957 IMF3958 IMF6485 1Tl00
ON JFET o N JFET ON JFET ON JFET P JFET
2N3956 2N3957 2N3958 U405 2N5116
InOl In08 IT109 In700 1T1702
P JFET N JFET N JFET PMOS ENH P MOSENH
2N5114 2N5486 U310 3N163 3N16
ITE500 ITE501 ITE502 ITE503 ITE504
Cl N JFET Cl N JFET Cl N JFET Cl N JFET Cl N JFET
J500 J501 J502 J503 J504
ITE505 ITE506 ITE507 1TE3066 ITE3067
Cl N JFET Cl N JFET Cl N JFET N JFET N JFET
J505 J506 J507 J202-18 J201-1B
ITE3068 ITE4117 ITE4118 ITE4119 ITE433B
N JFET N JFET N JFET N JFET N JFET
J201-18 2N4117 2N411B 2N4119 J201-1B
ITE4339 ITE4340 ITE4341 ITE4391 ITE4392
N JFET N JFET N JFET N JFET N JFET
J201-18 J202-18 J203-1B PN4391-18 PN4392-1B
ITE4393 ITE4416 1TE4867 ITE4868 ITE4869
N JFET N JFET N JFET N JFET N JFET
PN4393-18 PN4416 J230-1B J231-18 J232-18
Industry
Type and
Recommended
Part Number
Classification
Replacement
E413 E414 E415 E420 E421
o N JFET o N JFET o N JFET o N JFET o N JFET
E430 E431 E500 E501 E502
ESM4093 ESM4302 ESM4303 ESM4304 FE100
N JFET N JFET N JFET N JFET N JFET
N JFET N JFET N JFET N JFET N JFET
PN4093 PN4302 PN4303 PN4304 2N3821
FE100A FE102 FE102A FE104 FE104A
N JFET N JFET N JFET N JFET N JFET
2N3821 2N4119 2N4119 2N4118 2N4118
FE200 I'E202 FE204 FE300 FE302
N JFET N JFET N JFET N JFET N JFET
2N3821 2N3821 2N3821 2N3822 2N3821
FE304 FE0654A FE0654B FE3819 FE5457
N JFET N JFET N JFET N JFET N JFET
2N3821 2N5486 2N5485 2N3819 2N5457
FE545B FE5459 FE54B4 FE54B5QN FE54B6
N JFET N JFET N JFET N JFET N JFET
2N5458 2N5459 2N5484 2N5485 2N54B6
FM3954 FM3954A FM3955 FM3955A FM3956
ON JFET ON JFET D N JFET o N JFET ON JFET
2N3954 2N3954A 2N3955 2N3955A 2N3956
Sheet Page
Geometry Page
"'00"
III
~
Cl
tii
u. (ij
<:
OJ
CiS (ij
E
(/)
OJ
-=.s ~ Q)
a:
Siliconix
Recommended Replacement
Data Sheet Page
Geometry Page
.><: 0 0
III <11
iii
Cl
tii
u. (ij
<:
OJ
;n
'iii
l1li
E
(/)
Q)
-=.s ... ~
a:
1-11
Small-Signal FEY Cross Reference (Cont'd) Data Sheet Page
Type and Classification
Recommended Replacement
J1406 K2l0-l8 K2ll-l8 K2l2-l8 K300-l8
ON JFET N JFET N JFET N JFET N JFET
U406 J2l0 J2ll J2l2 J2l0
Jl07-l8 Jl08 Jl08-l8 Jl09 Jl09-l8
K304-l8 K305-l8 K308-l8 K309-l8 K3l0-l8
N JFET N JFET N JFET NJFET N JFET
J304 J305 J308 J309 J3l0
N JFET N JFET N JFET N JFET N JFET
Jll0 Jll0-l8 Jlll Jlll-18 J112
KE3684 KE3685 KE3686 KE3687 KE3823
N JFET N JFET N JFET N JFET N JFET
2N434l 2N4340 2N4339 2N4338 J304-l8
Jll2-l8 Jl13 Jl13-l8 J174 J174-l8
N JFET N JFET N JFET P JFET P JFET
Jll2-l8 Jl13 Jl13-l8 J174 J174-l8
KE3970 KE3971 KE3972 KE4091 KE4092
N JFET NJFET N JFET N JFET N JFET
PN4391-l8 PN4392-l8 PN4393-18 PN439l-l8 PN4392-l8
J175 J175-l8 J176 J176-l8 Jl77
P JFET P JFET P JFET P JFET P JFET
J175 J175-l8 J176 J176-l8 J177
KE4093 KE4220 KE4221 KE4222 KE4223
N JFET N JFET N JFET N JFET N JFET
PN4393-1B 2N5457 2N5457 2N5459 J304-l8
Jl77-l8 J20l J20l-l8 J202 J202-l8
P JFET N JFET N JFET N JFET N JFET
J177-l8
KE4224 KE4391 KE4392 KE4393 KE4416
N JFET N JFET N JFET N JFET N JFET
J304-l8 PN439l-l8 PN4392-l8 PN4393-18 PN4416
J203 J203-l8 J204 J204-l8
J204 J204-18
(f)
KE4856 KE4857 KE4858 KE4859
"'IU
-E
I\C"touu
N JFET N JFET N JFET N JFET i~ JFET
PN4391-18 PN4392-l8 PN4393-18 PN4391-18
J210
N JFET N JFET N JFET N JFET N JFET
J211 J2l2 J230 J230-l8 J23l
N JFET N JFET N JFET N JFET N JFET
J2ll J212 J230 J230-18 J231
KE4861 KE51 03 KE51 04 KE5105 KK4416-18
N JFET N JFET NJFET NJFET NJFET
PN4393-18 J305 J304 J306 PN4416
J23l-l8 J232 J232-l8 J270 J270-l8
N JFET N JFET N JFET P JFET P JFET
J23l-18 J232 J232-l8 J270 J270-l8
LOF603 LOF604 LOF605 M163 M164
NJFET N JFET N JFET PMOS ENH PMOS ENH
2N4221A 2N4221A 2N4221A 3N163 3N164
J27l J271-l8 J300 J300NB/C/O J304 J305 J308 J309 J310 J401
P JFET P JFET N JFET N JFET N JFET N JFET N JFET N JFET N JFET ON JFET
J271 J27l-18 J300 J300NB/C/O J304 J305 J308 J309 J310 U401
MEM520 MEM520G MEM561 MEM561G MEM806
PMOS PMOS PMOS PMOS PMOS
3N164 3Nl64 3N163 3N163 3N163
MEM806A MFE823 MFE2000 MFE2001 MFE2004
PMOS ENH PMOS ENH NJFET N JFET N JFET
3N163 MFE823 2N4416 2N4416 2N4093
J402 J403 J9l00 J1404 J1405
ON JFET ON JFET GLNFET ON JFET ON JFET
U402 U403 J552 U404 U405
MFE2005 MFE2006 MFE2007 MFE2008 MFE2009
N JFET N JFET N JFET N JFET N JFET
2N4092 2N409l 2N4860 2N4859 2N4859
Induslry Part Number
Type and Classification
Jl05 Jl05-l8 Jl06 Jl06-l9 Jl07
N JFET N JFET N JFET N JFET N JFET
Jl05 Jl05-l8 Jl06 Jl06-l8 Jl07
Jl07-l8 Jl08 Jl08-l8 Jl09 Jl09-l8
N JFET N JFET N JFET N JFET N JFET
Jll0 JllO-l8 Jlll Jlll-18 Jll2
1-12
Recommended Replacement
Geometry Page
..l<:
0 0
III
~
0
Iii I.L 1ii c:
01
en
'ffi •., .. n
E CD
.s ~a::
Industry Part Number
1J'r-Anl"n
Silicanix
PN4392-1ii
ENH ENH ENH ENH ENH
Data Sheet Page
Geometry Page
..l<:
0 0
III
~
0
Iii
I.L
1ii c:
01
en
'ffi
E
(f)
:l)
-E
.s
lD a:: Q)
Small-Signal FEY Cross Reference (Cont'd) Industry Part Number
Type and Classification
Recommended Replacement
Data Sheet Page
Geometry
Industry
Page
Part Number
Type and Classification
Recommended Replacement
MFE2010 MFE2011 MFE2012 MFE2093 MFE2094
N JFET N JFET N JFET N JFET N JFET
2N5434 2N5433 2N5432 2N4338 2N4339
NF583 NF584 NF585 NF4302 NF4303
N JFET N JFET N JFET N JFET N JFET
2N5434 2N5433 2N4859 2N4302 2N4303
MFE2095 MK10 MMBF310 MMBF4391 MMBF4392
N JFET N JFET N JFET N JFET N JFET
2N4540 2N4416 55T310 SST113 SST112
NF4304 NF4445 NF4446 NF4447 NF4448
N JFET N JFET N JFET N JFET N JFET
2N4304 2N5432 2N5433 2N5432 2N5433
MMBF4393 MMBF4416 MMBF4860 MMBF5310 MMBF5457
N JFET N JFET N JFET N JFET N JFET
SST111 5ST4416 5ST111/112 5ST310 S5T202
NF5163 NF5457 FN5458 NF5459 NF5484
N JFET N JFET N JFET N JFET N JFET
2N5163 2N5457 2N5458 2N5459 2N5484
MMBF5460 MMBF5484 MMBF5484 MMBF5486 MMBFU310
N JFET N JFET N JFET N JFET N JFET
55T5460 5ST202 SST5484 SST5486 55T310
NF5485 NF5486 NF5555 NF5638 NF5639
N JFET N JFET N JFET N JFET N JFET
2N5485 2N5486 2N5555 2N5638 2N5639
MMF1 MMF2 MMF3 MMF4 MMF5
D N JFET D N JFET D N JFET D N JFET D N JFET
2N3921 2N3921 2N3921 2N3921 2N3921
NF5640 NF5653 NF5654 PAD1 PAD2
N JFET N JFET N JFET PAD N JFET PAD N JFET
2N5640 2N5653 2N5654 PAD1 PAD2
MMF6 MMT3823 MPF102 MPF103 MPF104
D N JFET N JFET N JFET N JFET N JFET
2N3921 2N3823 MPF102 2N5457 2N5458
PAD5 PAD10 PAD20 PAD50 PAD100
PAD PAD PAD PAD PAD
PAD5 PAD10 PAD20 PAD50 PAD100
MPF105 MPF106 MPF107 MPF108 MPF109
N JFET N JFET N JFET N JFET N JFET
2N5459 2N5485 2N5486 MPF108 MPF109
P1086 P1086-18 P1087 P1087-18 PN4091
P JFET P JFET P JFET P JFET N JFET
P1086 P1086-18 P1087 P1087-18 PN4091
MPF111 MPF112 MPF256 MPF820 MPF970
N JFET N JFET N JFET N JFET P JFET
MPF111 MPF112 J309 U310 J174
PN4092 PN4093 PN4117 PN4117A PN4118
N JFET N JFET N JFET N JFET N JFET
PN4092 PN4093 PN4117 PN4117A PN4118
MPF971 MPF4391 MPF4392 MPF4393 NF500
P JFET N JFET N JFET N JFET N JFET
J176 PN4391-18 PN4392-18 PN4393-18 2N4416
PN4118A PN4119 PN4119A PN4120 PN4120A
N JFET N JFET N JFET N JFET N JFET
PN4118A PN4119 PN4119A PN4120 PN4120A
NF501 NF506 NF510 NF511 NF520
N JFET N JFET N JFET N JFET N JFET
2N4416 2N4416 2N4393 2N4393 2N4339
PN4302 PN4302-18 PN4303 PN4303-18 PN4304
N JFET N JFET N JFET N JFET N JFET
PN4302 PN4302-18 PN4303 PN4303-18 PN4304
NF521 NF522 NF523 NF530 NF531
N JFET N JFET N JFET N JFET N JFET
2N4339 2N4339 2N4340 2N4341 2N4339
PN4304-18 PN4391 PN4391-18 PN4392 PN4392-18
N JFET N JFET N JFET N JFET N JFET
PN4304-18 PN4391 PN4391-18 PN4392 PN4392-18
NF532 NF533 NF580 NF581 NF582
N JFET N JFET N JFET N JFET N JFET
2N4341 2N4339 2N5432 2N5432 2N5433
PN4393 PN4393-18 PN4416 PN5163 PF510
N JFET N JFET N JFET N JFET P JFET
PN4393 PN4393-18 PN4416 PN5163 2N5018
-"'0 0
CO «l
1ii
0
t:u
u. (ij
c
Ol
en
'iii E en OJ
-£ .9 ~
'a:*
Siliconix
N JFET N JFET N JFET N JFET N JFET
Data
Sheet Paga
Geometry Page
-"'0 0
CO «l
1ii
0
t:u
u.
(ij
c
-
Ol
en
(ij
E
en
OJ
-£ .9 Q; Q;
a:
1-13
Small-Signal FET Cross Reference (Cont'd) Industry Part Number
Type and Classification
Recommended
Replacement
Data Sheet Page
Geometry Page
Industry Part Number
Type and Classification
Recommended Replacement
PF511 8D210DE 8D2110E 8D2120E 802130E
P JFET ON JFET ON JFET ON JFET ON JFET
2N5014 8D210DE 8D211DE 8D2120E 8D2130E
88T6909 88T6910 8U2078 8U2079 8U2098
N JFET N JFET ON JFET ON JFET ON JFET
88T6909 88T6910 U425 U425 2N5197
802140E 802150E 8il000 8il0l0 8il020
ON JFET ON JFET N JFET N JFET N JFET
8D2140E 8D2150E 2N6908 2N6909 2N6910
8U2098A 8U2098B 8U2099 8U:W99A 8U2365
ON ON ON ON ON
2N5197 2N5196 2N5197 2N5197 U401
8ill00 8i1800 8i2000 804091 804391
N JFET JFET Array N JFET N JFET N JFET
2N6911 811800 812000 88T4091 88T4391
8U2365A 8U2366 8U2366A 8U2367 8U2367A
ON JFET ON JFET ON JFET ON JFET ON JFET
U401 U402 U402 U403 U403
804416 88T111 88T112 88Tl13 88T174
N JFET N JFET NJFET N JFET P JFET
88T4416 88T111 88T112 88T113 88T174
8U2366 8U2368A 8U2369 8U2369A 8U2410
ON JFET ON JFET ON JFET o N JFET o N JFET
U404 U404 U405 U405 U424
88T175 88T176 88T177 88T201 88T202
P JFET P JFET P JFET N JFET N JFET
8ST175 88T176 88T177 88T201 88T202
8U2411 8U2412 T05911 TD5911A T05912
ON JFET o N JFET ON JFET ON JFET D N JFET
U425 U426 2N5911 2N5911 2N5912
88T203 88T204 88T211 88T213 88T215
N JFET N JFET N DM08 N OM08 N DM08
88T203 85T204 85T211 88T213 85T215
TD5912A TI514 TI825 TI826 TI827
D N JFET N JFET D N JFET D N JFET D N JFET
2N5912 2N4340 U401 U402 U404
58T308 85T309 88T31 0 88T405 85T406
N JFET N JFET N JFET D N JFET D N JFET
88T308 85T309 88T310 881405 88T406
TI841 TI858 TI859 TI573 TI874
N JFET N JFET N JFET N JFET N JFET
2N4859 J305-18 U1837 PN4391-18
88T41 0 88T411 88T412 88T4302 88T4303
D N JFET D N JFET ON JFET N JFET N JFET
85T410 58T411 88T412 85T4302 88T4303
TI875 TI888 TIX541 TIXS42 TN4117
N JFET N JFET N JFET N JFET N JFET
PN4393-18 2N5486 2N4859 PN4393-18 2N4117
88T4304 88T4391 88T4392 88T4393 88T4416
N JFET N JFET N JFET N JFET N JFET
88T4304 88T4391 85T4392 88T4393 55T4416
TN4117A TN4118 TN4118A TN4119 TN4119A
N JFET NJFET N JFET N JFET N JFET
2N4117A 2N4118 2N4118A 2N4119 2N4119A
58T4856 55T4857 55T4858 88T4859 85T4860
N JFET N JFET N JFET N JFET N JFET
58T4856 58T4857 58T4858 58T4859 58T4860
TN4338 TN4339 TN4340 TN4341 TP5114
N JFET N JFET N JFET N JFET P JFET
2N4338 2N4339 2N4340 2N4341 2N5114
58T5114 58T5115 58T5116 88T5484 55T5485
P JFET P JFET P JFET N JFET NJFET
55T5114 85T5115 5ST5116 58T5484 58T5485
TP5115 TP5116 U182 U183 U197
P JFET P JFET N JFET N JFET N JFET
2N5115 2N5116 2N4857 2N3824 2N4339
85T5486 58T5638 55T5639 55T5640 55T6908
N JFET N JFET N JFET N JFET N JFET
58T5486 58T5638 55T5639 5ST5640 55T6908
U198 U199 U200 U201 U202
N JFET N JFET N JFET N JFET N JFET
2N4340 2N4341 U200 U201 U202
1-14
.><: 0 0
[[l
as 'Iii
0
IW
u. "'iii c:
Ol
i:i5 ~
E
C/)
CD
-=.9 ffi a; a::
Siliconix
JFET JFET JFET JFET JFET
PN4~92-1B
Data
Sheet Page
Geometry Page
.><:
a 0
[[l
~
0
I-
w u. "'iii c:
Ol
i:i5 ~
E
C/)
CD
£i
.9
....
~
a::
Small-Signal FET Cross Reference (Cont'd) Industry
Type and
Recommended
Part Number
Classification
Replacement
Data Sheet Page
Geometry Page
Industry
Type and
Part Number
Classification
Recommended Replacement
Data
Sheet Page
Geometry Page
U221 U222 U231 U232 U233
N JFET N JFET D N JFET D N JFET o N JFET
2N4391 2N4391 U231 U232 U233
U428 U430 U431 U440 U441
D N JFET D N JFET D N JFET D N JFET ON JFET
U428 U430 U431 U440 U441
U234 U235 U240 U241 U242
D N JFET D N JFET N JFET N JFET N JFET
U234 U235 2N5432 2N5433 2N5432
U443 U444 U508 U1177 U1178
D N JFET D N JFET N JFET N JFET N JFET
U443 U444 CR030 2N4220A 2N3821
U243 U254 U255 U256 U257
N JFET N JFET N JFET N JFET D N JFET
2N5433 2N4859 2N4860 2N4861 U257
U1179 U1180 U1181 U1182 U1277
N JFET N JFET N JFET N JFET N JFET
2N3821 2N4221A 2N4220A 2N3821 2N4339
U273 U273A U274 U274A U275
N JFET N JFET N JFET N JFET N JFET
2N4118A 2N4118A 2N4119A 2N4119A 2N4119A
U1278 U1279 U1280 U1281 U1282
N JFET N JFET N JFET N JFET N JFET
2N4339 2N4340 2N4339 2N3822 2N4341
U275A U280 U281 U282 U283
N JFET D N JFET D N JFET D N JFET D N JFET
2N4119A U231 U231 U232 U232
U1283 U1284 U1285 U1288 U1287
N JFET N JFET N JFET N JFET N JFET
2N4340 2N4341 2N4220 2N4341 2N4092
U284 U285 U290 U291 U295
D N JFET D N JFET N JFET N JFET N JFET
U233 U234 U290 U291 U295
U1322 U1323 U1324 U1325 U1420
N JFET N JFET N JFET N JFET N JFET
2N4221A 2N4221A 2N4220A 2N4222 2N3821
Cl IW LL
U1421 U1422 U1714 U1637E U1897
N JFET N JFET N JFET N JFET N JFET
2N3822 2N3822 2N4340 U1837 U1897
Ci5
U1897·18 U1897E U1898 U1898·18 . U1898E
N JFET N JFET N JFET N JFET N JFET
U1897·18 U1897·18 U1898 U1898·18 U1898·18
-" 0 0
II)
1il
Cl
Ii:iLL (ij <:
OJ
Ci5
U296 U300 U301 U304 U305
N JFET P JFET P JFET P JFET P JFET
U296 2N5114 2N5115 U304 U305
U306 U308 U309 U310 U311
P JFET N JFET N JFET N JFET N JFET
U306 U308 U309 U310 U311
U320 U321 U322 U350 U401
N JFET N JFET N JFET QUAD JFET D N JFET
U290 U291 U290 U350 U401
U1899 U1899·18 U1899E U1994E U2047E
N JFET N JFET N JFET N JFET N JFET
U1899 U1899·18 U1899·18 U1994 PN4416
U402 U403 U404 U405 U406
D N JFET D N JFET D N JFET D N JFET D N JFET
U402 U403 U404 U405 U406
U3000 U3001 U3002 U3011 U3012
N JFET N JFET N JFET N JFET N JFET
2N4341 2N4339 2N1338 2N4340 2N4338
U410 U411 U412 U421 U422
D N JFET D N JFET D N JFET D N JFET D N JFET
U410 U411 U412 U421 U422
UC20 UC100 UC110 UC115 UC120
N JFET N JFET N JFET N JFET N JFET
2N4341 2N4339 2N4339 2N4340 2N3686
U423 U424 U425 U426 U427
D N JFET D N JFET D N JFET D N JFET D N JFET
U423 U424 U425 U426 U427
UC130 UC155 UC200 UC201 UC210
N JFET N JFET N JFET N JFET N JFET
2N4341 2N4416 2N3824 2N3824 2N4416
(ij
E
en
Q)
£ .9
~II:
Siliconix
-" 0 0
II)
1il
(ij <:
--
OJ
(ij
E
en
Q)
£ .9 ....
'*
II:
1-15
Small-Signal FEY Cross Reference (Cont'd) Industry Part Number
Type and Classification
Recommended Replacement
Data Sheet Page
Geometry Page
Industry Part Number
Type and Classification
Recommended Replacement
UC220 UC240 UC241 UC250 UC251
N JFET N JFET N JFET N JFET NJFET
2N3822 2N4869 2N4869 2N4091 2N4392
UC1764 UC2130 UC2132 UC2134 UC2136
PMOS ENH D N JFET D N JFET ON JFET D N JFET
3N163 2N5452 2N3955 2N3966 2N3957
UC401 UC450 UC451 UC588 UC703
P JFET P JFET P JFET N JFET N JFET
2N5116 2N5114 2N5116 2N4417 2N4220
UC2138 UC2139 UC2147 UC2148 UC2149
D N JFET D N JFET D N JFET D N JFET D N JFET
2N3958 2N3958 2N3958 2N3958 2N3958
UC704 UC705 UC707 UC714 UC714E
N JFET N JFET N JFET N JFET N JFET
2N4220 2N4224 2N4860 2N3822 J203-18
VCR2N VCR3P VCR4N VCR5P VCR6P
N JFET P JFET N JFET P JFET P JFET
VCR2N VCR3P VCR4N VCR5P 2N5116
UC734 UC734E UC751 UC752 UC753
N JFET N JFET N JFET N JFET N JFET
2N4416 PN4416 2N4340 2N4340 2N4341
VCR7N VCRllN WK5457 WK5458 WK5459
N JFET N JFET N JFET NJFET N JFET
VCR7N VCRllN 2N5457 2N5458 2N5459
UC754 UC755 UC756 UC807 UC1700
N JFET N JFET N JFET N JFET PMOS ENH
2N4340 2N4341 2N4340 2N4860 3N163
Data Sheet Page
Geometry Page
.lI::
.lI::
m ca iii
m ca iii
tu LL
tuLL
0 0
0 0
c
c
CO
c: Ol Ci5
CO
'ffi
en
E
'ffi E en
-=.9
-=.9
c: Ol Ci5
CD
Iii
~
'lii 0:
1-16
0:
Siliconix
FEY Product Information Siliconix FET products are divided into three basic categories:
•
•
All the part numbers described In this catalog are standard products. A summary list of the prefixes used is shown below in the Device Identification Table. Ordering any of the stand· ard products is easily done by referring to the data sheet part number. For example, a 2N4391 is simply ordered by that number: "2N4391." It will also appear In that form on the price lists, published separately.
Standard Products
Examples of Modified Standard Products are: Electrical Specials
Devices with either tightened, relaxed and/or special electrical specifications selected from a standard product.
Mechanical Specials
Devices with standard or modified electrical specifications mounted in non·standard pack· ages or modified (lead formed) standard packages. Modifications and/or additions to stand· ard marking are also considered mechanical specials.
High Reliability Specials
Siliconix has a number of standard High-Reliability screening options that can be ordered as standard products. High-Rei process option details will be found in the introductory section of this data book. In addition, Siliconix offers certain JEDEC-registered FETs with JAN, JANTX, or JANTXV processing. Refer to any current Siliconix OEM price list for details on specific part numbers. If existing screening processes do not meet individual customer requirements, Siliconix can provide special additional inspections and controls to meet the stringent demands.
In all of the above cases (with the exception of JAN, JANTX, or JANTXV parts), a special part number is assigned which defines the part either by reference to customer's print(s) or by associated special requirements. Each special product is proprietary to the customer, and is not made available to other customers.
•
Are designed to meet customer requirements not realizable by selection from standard parts; usually. these products require special engineering development. The proprietary reo lationship described above also applies to custom products.
Custom Products
Inquiries for SPECIAL DEVICES may be directed to the nearest field sales office or to: FET Marketing Department, Si/iconix incorporated, 2201 Laurelwood Road, Santa Clara, California 95054, Telephone: (408) 988-8000.
-
FETs/Part Number Prefixes and Suffixes
XXXX
PrefiX
XXX
BF CR CRR OM ON FN DPAD J JR
European TranSistor Standard 51 Standard N-Channel Current Regulator 51 Standard N-Channel Current Regulator 5. Special DMOS FET SI Dual N·Channel JFET 51 N-Channel JFET 51 Standard Dual JFET Diode 51 Standard TO-92 Cased FET 5, Standard Current Limiter Diode TO-92 Cased FET 51 Standard JFET Diode 51 Standard JFET Diode
JPAO PAO
SDeClal TO-92 Casea FET
PF
S. P·Channel Spec.al 51 Standard TO·92 Cased FET 51 Standard aMOS FET N-Channel JFET CirCUit
PN SO 51
JFET In SOT -23 Plastic Package
SST SI Standard FET 51 Standard N· and P·Channel Voltage Controlled Resistors
U
VCR
JEDEC·Reglstered DeVice
2N 3N
Suffix -05 -18 -TR
JEDEC
I
Registered DeVice
I
Std TO-92 Pkg. Lead Formed to TO·S Pm Circle Std TO-92 Pkg. With Center Lead Formed Toward Flat In Tape and Reel available on TO-92 FETs
TO-1B Pin Circle
See Section #6 for tape & reel.
PROCESS omON Mil-STD 750 Method = -2 Contact Factory
Siliconix
1-17
Siliconix Hi-Rei Capabilities Hi-Rei Specials for Ultra-Reliability Requirements Siliconix is poised to fulfill the most demanding needs for high-reliability small-signal FETs. The Company's dedicated Program Management can efficiently coordinate requirements for multiple customer locations/divisions. From scheduling and clearing orders to coordinating shipments, Siliconix has you covered. When you place your hi-rei order with Siliconix, you can count on screening to military standards on all hermetically sealed parts-per customer specifications-at all manufacturing facilities. Siliconix also offers Lockheed Monitored Line parts. This means on-line process monitoring by a resident team of reliability/quality engineers. With approval from the U.S. Air Force, this service can be used by any aerospace company and govemment agency. Process Option Flow for Standard Devices The process option flow chart shows the standard screening option provided by Siliconix for discrete FET transistors. -2 and oS-Denotes the screening process for military temperature range parts including Group A sample at high, low and room temperatures. -3-ls the screening for standard hermetic packages. -4-ls the screening for standard plastiC packages. Siliconix offers the option, to our customers, of performing Group B & C as part of the purchase order. Requirements or submission of generic data in accordance with the reliability and quality manual generiC family description.
1-18
Siliconix
FEY Process Option Flow Chart Industrial Process
Military Process Metal Can (Option -2)
~tablhzatlon
Stabilization Bake Method t031 48 hours @ 200°C
Standard (Hennetic Package)
Non-Compliant, Non-Jan Integrated Circuits (Option -5) Preseal Inspection MIL-STD-BB3 Method 2010 Condition B
Standard (Plastic Package)' -4
-3
Preseal Inspection
5i11conlx Visual #5201
Bake
MIL-STD-BB3 Method 100B Condition C
Stabilization Method 1031 24 hour @ 150°C
Temperature Cycle
MI L-STO-BB3 Method 1010
Temperature Cycle Method 1051, Condition C 20 Cycles, 15 MIn_ _65°C to +200°C @ Temperature Extremes
r:---
Condition C
---, LTPD = 20
Temperature Cycle Method 1051, Condition C _65°C to +200°C @ Temperature Extremes, 20 Cycles, 15 Min.
Centrifuge
MI L-STD-BB3 Method 2001 Condition E Y1 Axis
I
I
I I
Hermetlclty (Fine Leak) MI L-STD-B83 Method 1014 Condition A or B
I I
Hermeticlty (Gross Leak) MIL-STD-BB3 Method 1014
Fine Leak Method 1071, Condilion H or G Maximum Leak Rate, 5 x 10-B
Condition C Electrical Test per Data Sheet
I
~--l---
Burn-In
MIL-STD-883 Method 1015
Electrical Test 100% at 25~C per Data Sheet
I I I
DC@2S'C Gross Leak Method 1071, Condition C
II
l1li
--'
Electrical Tesl
Electrical Test
to Static Parameters
to Static Parameters @ 25°C
@ 2S"C
Quality Conformance Electrical Test Quality Conformance
25°C Sialic LTPD:5. 25°C 1 KHz Dynamic LTPD:l0 External Visual LTPD:5 On Selected Parameters:
Per QAP 1030
per QAP 1030
Quality Conformance
External Visual
2S"C Stallc AQL .4% External Visual LTPD = 10
Quality Conlonnance 25°C SIalic AQL .4% External Visual LTPD= 10
On Selected Parameters:
On Selected Parameters:
Per QAP 1030
Per QAP 1030
Method 2009' , 2.5% AQL
NOTES: *For current regulators only:
Method 1039, Condition B 168 hours@ 125"C ±10% of rated power@ temp. With max VF of 20% POV.
Siliconix
NOTES' • For TO-92 matenal
burn-In IS available. Contact sales or factory
1-19
Small-Signal FETs Additional Product Options for European Customers CECC 50000
CECC 50 000 is a European system of continuous product assessment intended to produce electronic components of assessed quality to specifications and procedures which conform to internationally recognized standards. Components produced under the system are accepted by all participating countries without further testing being necessary. At this time, member countries of the CECC are Belgium, Denmark, Germany, France, Ireland, Italy, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. Under this assessment scheme, devices are manufactured on an approved line to nationally approved specifications written in accordance with CECC rules. The manufacturer must comply with defined standards relating to organization, facilities and quality control procedures. Specific device types are individually qualified against a fixed detail specification which has been approved by the British Standards Institute acting as the national supervising agency on behalf of CECCo The CECC 50 000 scheme is administered in the UK by the BSI, and UK generated specifications are prefixed with the letters BS. A number of popular standard device types are now qualified and the following detail specifications are available:
Type Number
BS Specification
2N3970/1/2 2N4091/2/3 2N4391/2/3 2N4856/7/8 2N4859/60/61 2N4856A/7 A/8A 2N4859A/60A/61 A 2N3821/2 2N3824 2N4220/1/2 2N4220/1A/2A
BS CECC 50012-001 BS CECC 50012·002 BS CECC 50012·004 BS CECC 50012·005 BS CECC 50012·005 BS CECC 50012·006 BS CECC 50012·006 BS CECC 50012·007 BS CECC 50012·008 BS CECC 50012·009 BS CECC 50012·009
Each of the approved types IS now available with additional screening options. including high temperature reverse bia!l burn·in, of elthe; 48,7201166 hours duration. Screening details are appended to the detail specification and conform to appendix VI of the European Standard CECC 50 0000 ISSUE 3. Product is released with a BS CECC certificate of conformity and will have been submitted to: 1. Group A sample inspection (lot by lot) quality assessment tests, assuring product conforms to electrical specification. 2. Group B sample inspection (lot by lot) reliability tests, including package related tests and 168 hours electrical endurance, to identify potential early failures. 3. Group C sample inspection (periodic-3 monthly) long term reliability tests including 1000 hours of high temperature storage and electrical endurance. Data from the inspection tests is available to the customer in the form of CTRs (certified test records). Manufacturing of BS CECC product is carried out at the Siliconix UK facility located in Morriston, Swansea SA6 6NE, South Wales In addition to BS CECC approved product, the Siliconix UK facility can provide internationally recognized high·reliability screening options on standard products. These include Mil-750 and custom screening options. JAN, JANTX or JANTXV processing for certain JEDEC-registered FETs can also be supplied. For additional information and details of new/pending approvals inquiries may be directed to the nearest sales office.
1-20
Siliconix
a -CD
Die Process Information Siliconix is a large volume supplier of die to the hybrid industry. Both military and industrial grades are available. Screening includes 100% DC electrical probe and 100% visual inspection of each die.
"'a
a
Physical Data •
Physical layout and dimensions are presented in the die topography section.
•
Each die is passivated with approximately 8,000 angstroms of non·crystalline glass.
•
All die are gold backed. Gold backing is approximately 1,500 angstroms thick.
•
Die metallization is deposited aluminum approximately 12,000 angstroms thick.
•
Standard thickness 0.008 ± 0.002 in inches.
".,.CD 1ft
-0' ~
.,
Die Screening Criteria
.. 3
• Probe Test Capability - Siliconix performs three classes of electrical tests. The first category is a group of tests that may be performed on a 100 percent basis in wafer form. Examples are pinch-off voltage VGS(off) and breakdown voltage BVGSS'
a _.
o
A second group consists of tests such as very low leakage IGSS where 100 percent testing is impractical, but sample testing may be performed. Generally, test time is the factor that renders these tests impractical on a 100 percent basis
~
Finally, there are those tests that cannot be performed unless a sample group of units are assembled for evaluation. Capacitance and differential voltage drift are two examples (On request only). The adjacent table summarizes our wafer probe test capability and serves as a guide line to your design needs. Actual testing condition and procedure may vary. For specific parameters and test conditions, refer to the appropriate data sheet.
TEST PARAMETER
100% Wafer Sort Capability
Sample Wafer Sort Capability
Limit Range
Limit Range
Condition Range
Condo
Min.
Max.
Max.
Min.
IGSS, IGSO, lOGO
VGS
o 01V
200V
'DOpA
10,uA
IOSX, ISOX, lOSS, ISOS
VGS VDS
001V 001V
,oov
'DOpA
lOOmA
IG
ID VDG
10,uA 001V
'OOmA
'DOpA
10,uA
YGS(lh), Yp, YGS
ID VDS
'DOpA 001V
,OOV
BYGSS, BYGOD, BYGSO
IG
'DOpA
,oov
lOOmA
001V
'OOV
1O/-IA
001V
200V 100V
BVDSX. BVSOX
ID
'DOpA
lOOmA
OW
YOS (on)
ID
lO,uA
lOOmA
'mV
'OY
rOS (on)
ID
lOIlA
lOOmA
lohm
10M ohm
gfs
VGS VDS
OO,V o 01V
'OOV
10,umho
100 mmho
(constant lD)
ID VDS
001V
l00mA lQOV
10 jJmho
100 mmho
iii (constant VGS)
VGS VDS
0 0 10 Hz
30V 'OOV '00 KHz
(constant VGS)
gfs
Freq
ID
iii (constant 10)
IYGS1 - YGS21 CapaCitance high
Frequency
10/JA
Min.
Max.
Sample Test In Package Form Limit Range
Min.
05pA
3nv
7Hz
'.A OV 10 Hz
30 rnA
3nv
'oov
Freq
1Hz
VDG ID
001V '.A
'OOV lOrnA
VDS VGS ID
OV OV OA
'oov
VDS
100 KHz
01mV
Max. 05pA
300 nv
JRZ 300 nv
7HZ
20mV
100mV
'OOV
o,pF
lOOmA
'OOOpF
g ••1/gls2 IDSS1/10SS2 g0581-g0552
TESTS PERFORMED AFTER SAMPLE IS ASSEMBLED FOR EVALUATION
CMRR, A IYgs1-YGS21/A T QC Inspecllon
·065 AOL
, 5 AOL
'5 AOL
• all In die form not after Customer Assembly
• Visual Criteria - Die are supplied with 100% visual sort to the criteria of MIL·STD·750 method 2072.
Siliconix
1-21
..
c .-o
a E
. -..,.,.
Die Process Information (Cont'd)
~
c
G)
u
e
Assembly •
Chips supplied
In
waffle packs normally do not require cleaning. Wafers should be cleaned after sawing or scribing,
and fracturing. •
Chips should be handled with a vacuum pick·up with protected tip or with tweezers gripping the chip on its sides.
D.
•
G) .Q
When handling MOSFET chips, particularly non-gate protected types, steps must be taken to prevent damage by static discharge. In some extreme cases, handling precautions may be necessary for junction FET chips.
•
Chips can be die attached either eutectically or by conductive epoxy when lower temperatures are necessary. Gold silicon eutectic occurs at temperatures between 385°C and 425°C.
•
Bonding of wires from chip pa'ds to posts can be achieved by thermocompresslon gold Wire or ultrasonic aluminum wire bonded.
Options • • •
SEM - Scanning electron microscope examinatIOn and control In accordance with MI L-STD·883 Method 2018 can be ordered on chips and wafers. Wafer qualification to unprobed parameters - sample testing of purchased chips to demonstrate capability to perform at data sheet temperature extremes by use of L TPD techniques can be provided. Hot probe - Siliconix has a chip processor/distributor with hot probe capability available.
Chip Packaging • Chips are packaged as individual die In the flat waffle carner Illustrated In Figure 1 The carner has a cavity size adequate to allow ease of loading/unloading and also prevents die from rotating within the cavity • Standard carrier 20 x 20 (400 die)-U.S. 10 x 10 (100 die)-Europe only Chip and Wafer Processing
~Z::IERTOP
~ OC<;o'''ple
,,,,.,,,,,I.dlor 'pe' hoi '.'\'~9
NOTE CARR1ER TOP & BOTTOM SECURED BY CLIPS
FIgure 1
Ordering Information •
Identify standard part number and add CHP as suffix, i.e., 2N4416CHP for correct chip PIN.
•
Special electrical selections available-contact local sales office.
1-22
Siliconix
7
Silicanix
H
Siliconix
$;I;con;x-
This guide identifies the major tradeoffs The Source of using a discrete approach vs. an IC. tor FETs Most designers are familiar with biFET op amps, analog switches, diodes and current regulators. Siliconix offers performance alternatives that can enhance your overall circuit in achieving higher performance standards without compromises.
If you need subnano-second switching; very low noise at > > megohm input impedance; subpicoamp leakage; simple, two-leaded current sources and limiters; differential amplifiers with > > 100 volt/microsecond slewing while achieving picoamp input current; and protection diodes-Siliconix is the source. Siliconix offers awide variety of packages: the hermetically sealed metal can; plastic TO-92; surface-mount SOT-23, SOT-143, and SOIC; and also die/chip products. Our products include n- and
Siliconix
p-channel JFETs, enhancement-mode MOSFETs, and n-channel enhancementmode DMOS FETs - the broadest FET line in the world. Siliconix has specialized in offering highperformance products for high-performance designs. Our specialty has been to fill the gap which exists between the best ICs available in the industry and discrete devices. Siliconix began manufacturing smallsignal Field Effects Transistors 20 years ago. Our emphasis has been, and will continue to be, ultrahigh-performance devices. Our product line is the broadest FET line in the world, and our commitment to this technology has never waivered. Our manufacturing capacity ensures timely delivery on even the large volume run-rates.
FET:f 8JV $;';COII;I
2-1
Using JFETs
as'rontend dertlces tor
a"AmllS
By using alow-leakage, low-noise and high-gain dual JFET with a relatively inexpensive, general-purpose biFET op amp, overall circuit performance is far superior than by using the best biFET op amp available. With present technology, the biFET-op amp approach has
Check out the Overall Circuit Performance circuit performance: NOise (10 Hz) Leakage Slew Rale
certain compromises - either on low-leakage, low noise or high gain (slew rates). One or two of these performance characteristics will be compromised with the biFET. By using aFET as a"front-end" device, all three can be achieved.
UsingOPA-lll Circuit
Using U403 with OP-15 Circuit
33nVI-v'HZ 1 pA 2.9VI"S
20nV/-v'HZ 1pA 12V1"S
< 10 nVI..(RZ
U401-6, 2N6905-B, 2N5564-6 U421-6 2N5911-12 2N5564-6
Specific Device Performance Characteristics Low Noise (en) Low Leakage (IG) High Gain I (gfs) High Slew Rates
< 1 pA > 7500 "mhos thru 450 MHz > 50 VI".5
Com"are
+15V
Using JfElS
as front-End
OPA·III
GUARD
De,,'ces
,'...
I
BiFETOpAmp
3~
'\
~ lO~F 7 :J; TANT
v+
I
\, ~ CASE OUT 6 V-
~ [::/4
5M
1'2 l 10~F
2K
TANT
~
-15v lOOK IDS
...
__
_
JfElSas
• ___A
nuRI-eRD
De"i. with a BifET
+15V
10K
...
+15V'"
10K -5V
a" Am"
Y21 GUARD
10~F
I Y2 U403
lTANT
500~
416 lOOK
5M
2-2
lOS
Siliconix
2K
Using FETs as Analog Switches
JFETs and DMOS FETs offer flat oN-resistance, plus low ON-resistance in addition to ultrahigh-speed switching. Siliconix DMOS devices operate as high as
500 MHz.
C.pmpare the discrete approach to the IC Device Technology approach where Slllcomx - DMOS SD210-15 performance makes the SD5000-2 difference:
Switching time
CMOS CD4016
FETS
as Analog
Switches Selector Guide
Using JFETs as Diodes Compare traditional diodes to the Siliconix line of PAD - Pico Amp Diodes:
Device SD210·15 SD5000 Jill J112 J113 2N4391 2N4392 2N4393 Jl05 Jl06 Jl07 J10B Jl09 Jll0
ros(on)
Ins
45 ohms
SOns
50 ohms
Technology
SWitchingt(on)
ros(on)
DMOS DMOS JFET JFET JFET JFET JFET JFET JFET JFET JFET JFET JFET JFET
1ns 1ns 7ns 7ns 7ns 15ns 15ns 15ns 15ns 15n5 15ns 4ns 4ns 4ns
45 ohms 45 ohms 30 ohms 500hms 1000hms 30 ohms 60 ohms l000hms 30hms 6 ohms Bohms Bohms 120hms lBohms
JFETs make ultralow-Ieakage diodes by using the gate and the drain of the device.
Devicel Technology
Capacitance
Breakdown Voltage
Leakage
2ns
1.5pF
75 V
7-10nA
lN457 lN484
300ns
1.5pF
70V
100pA
JFETS PAD-l
250ns
20pF
45V
1pA
Blpolar5 as diodes (lowest leakage)
200ns
30pF
30·60 V
1N914 (gold doped) lN4148
Switching Time (recovery time)
-
4-5pA
If speed IS critical. then the gold-doped diodes are the first choice If leakage IS important- choose the SllIcomx PAD-l series
Siliconix
2-3
JFETs as low leakage Diolle Selector 6uille
Leakage IR
Breakdown BVR Reverse Breakdown VoHage
Capacitance cR
Device Number
Type Package
1 pA 2 pA 5 pA 10 pA 20 pA 50 pA 100 pA
-45 -45 -45 -35 -35 -35 -3S
V V V V V V V
0.8pF 0.8pF 0.8pF 2.0pF 2.0pF 2.0pF 2.0pF
DPAD1* DPAD2* DPADS* DPAD10' DPAD20' DPADSO' DPAD100'
Modified TO-78 Modified TO-71 Modified TO-71 Modified TO-71 Modified TO-71 Modified TO-71 Modified TO-71
5 pA 10 pA 20 pA 50 pA 100 pA 200 pA 500 pA
-35 -35 -35 -35 -35 -35 -35
V V V V V V V
2.0pF 2.0pF 2.0pF 2.0pF 2.0pF 2.0pF 20pF
JPAD5 JPAD10 JPAD20 JPAD50 JPAD100 JPAD200 JPAD500
2-Leaded 2-Leaded 2-Leaded 2-Leaded 2-Leaded 2-Leaded 2-Leaded
TO-92 TO-92 TO-92 TO-92 TO-92 TO-92 TO-92
1 pA 2 pA 5 pA 10 pA 20 pA 50 pA 100 pA
-45 -45 -45 -35 -35 -35 -35
V V V V V V V
o8pF o8pF
PADl PAD2 PAD5 PAOlO PAD20 PAD50 PAD100
3-Leaded 3-Leaded 3-Leaded 3-Leaded 3-Leaded 3-Leaded 3-Leaded
TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18
08pF 2.0pF 2.0pF 20pF 20pF
• D = Dual Diode
FETS as Current
Regulators
Current Regulator Selector 6uille
2-4
Siliconix offers simple, two-leaded temperaturecompensated current regulators. The inherent design of the JFET produces devices where the current is insensitive to temperature changes and with atemperature coefficient better than 30.00ppm per degree c. The
breakdown voltage of the devices are rated at 100 V, and they provide excellent constant current down to 1-2 V. The devices are selected in the 10% ranges from 100 ~A to 5.6 rnA for use in precise instrumentation.
Part Number
IF(mln)
TOLERANCE %
CR022 CR024 CR027 CR030 CR033 CR039 CR043 CR047 CR056 CR062 CR068 CR075 CR082 CR091 CR100 CRll0 CRl20 CRl30 CRl40 CRl50 CRl60 CR180 CR200 CR220 CR240 CR270 CR300 CR330 CR360 CR390 CR430 CR470 CR530
198 flA 216 ~A 243 ~A 270 flA 297 flA 351 flA 387 ~A 423 ~A 504 ~A 558 ~A 612 ~A 675 ~A 738 ~A 819 ~A 900 ~A 990 ~A 1.09mA 1.17mA 1.26mA 1.35mA 1.44mA 1.62mA 180mA 1.98mA 2.16mA 2.43mA 2.70mA 2.97mA 3.24mA 3.51 mA 3.87mA 4.23mA 4.nmA
10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Siliconix
BV 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V
Package jail 2-leaded devices) TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO·18 TO-18 TO·18 TO-18 to-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18
Data Sheets _
Siliconix
n-channel JFET designed for • • •
H Siliconix
------
Performance Curves NH NRL See SecHon 4
General Purpose Amplifiers • Analog Switching •
BENEFITS • Low Cost III Specified at 100 MHz o Automatic Insertion Package
iNOT RECOMMENDED FOR NEW DESIGNS.
"ABSOLUTE MAXIMUM RATINGS (25°C)
Drain-Gate Voltage ............................ 25 V Drain-Source Voltage .......................... 25 V Reverse Gate-Source Voltage ................. -25 V Gate Current ................................ 10 rnA Continuous Device Dissipation at (or Below) 25°C Free Air Temperature (Note 1) ................................. 200 mW Storage Temperature Range ........ -55°C to +150°C Lead Temperature (1/16" from Case for 10 seconds) .......... . 260°C
Plastic
TO-92 See Section 6
"D
'4:
G,
C
•
C
Bottom View
•
G
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1
12
BVGSS
Gate-Source Breakdown Voltage
IGSS
Gate Reverse Current
loSS
Saturation Drain Current
I~
I
I~
C
VGS
Gate-5ource Voltage
6
VGS(off)
Gate-Source Cutoff Voltage
7
IYfs l
8
9
10
-
D V N A M I C
11
IYo.1 Ciss Crss IYfsi
Common-Source Forward
Transfer Admittance
V
Test Conditions IG =-lI'A, VOS =0
nA
-2
I'A
2
20
mA
-0_5
-7_5
V
VOS = 15 V,ID = 200 I'A
-8
V
VDS=15V,ID=2nA
2000
Admittance Common Source Input
Capacitance Common Source Reverse
Transfer Capacitance Common Source Forward
Unit
-2
Common Source Output
Transfer Admittance
Max
-25
S
I- T 3 A I- T
1-
Min
6500
I'mho
50
I'mho
8
pF
4
pF
1600
I'mho
* JEDEC registered data
VGS = -15 V, VDS = 0
TA = 100'C
VOS = 15 V, VGS = 0 (Note 2)
VDS = 15 V, VGS =0 (Note 2)
f = 1 kHz
VDS=15V,VGS=0
f = 1 MHz
VDS=15V,VGS=0
f=100MHz
NH NRL
NOTES:
1- Derate linearly to 125°C (free air temperature at a rate of 2 mW/"C)_ 2. Pulse tested pulse width = 100 ms, duty cvcle" 10%_
Siliconix
3-1
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NRL See Section 4
Amplifiers • Small-Signal • Oscillators
BENEFITS Operates from High Supply • Voltages BVGSS>50V
*ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) Gate Current Total Device Dissipation at (or below) 25°C Free-Air Temperature (Note 2) Storage Temperature Range Lead Temperature (1/16" from case for 10 seconds)
TO-72 See Section 6
-50 V 10 mA 300mW -65 to +200°C
'4:
300°C
G
~
c
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CharacterIStiC
, -2"3
.. -
5
S
IGSS
Gate Reverse Current
T A T I
BVGSS
Gate Source Breakdown Voltage
VGS(off)
Gate·Source Cutoff Voltage
C
VGS
Gate Source VoltaQe
2N3822
2N382' M,n
M.x
M,"
-0 ,
-05
nA
-0 ,
-0 ,
-05
pA
-50 -4
-30
7
-
8
Saturation Dram Current (Note 3)
9"
Common Source FOIward Tran';tconductance (Note 3)
IVIsI
-
Common Source Forward
Transadmlttance
Vas = 15 V.IO = 200pA
-70
05
25
2
10
4
20
4500
30gp
6500
3,5OD
6,500
3000
3.200
9
0
90s
10
20
35
N A M
C ISS
Common Source Input Capacitance
6
6
6
11
1 C
Crss
Common Source Reverse Transfer Capacitance
2
2
2
NF
NOIse Figure
5
5
6
200
200
200
-
12
VOS'" 15V,IO= 4OO IJ A rnA
Vas = 15V, VGS=D f = 1 kHz
,umho
10
Y
t"l00MHz VOS=15V,VGS=O
pF
dB
VOS=15V,VGS"'0, Rgen::: 1 meg, BW = 5 Hz
f = 10 Hz Equivalent Short Circuit Input
en
NOise Voltage
nV
v1'i1
VOS'" 15V,VGS=O,BW=5Hz
NRL
* JEDEC Registered Data.
,
NOTES:
Due to symmetrical geometry, these umts may be operated With source and drain leads Interchanged 2. Derate linearly to 175°C free-air temperature at rate of 2 mWfC. 3 These parameters are measured dUring a 2 msec Interval 100 msec after d-c power IS applied,
3-2
f:: 1 kHz
f::: 1 MHz
~
13
I I '50°C
VOS=15V.l0"'50IlA
Common Source Output Conductance (Note 3)
-
-30 V, Vas = 0
VOS=15V,lo=05nA
-4
1500 1500
=:
V
-2 -1
lOSS
VGS
IG=-lp.A,VOS=D
-8
-6
-10 6
Test Conditions
Max
-0 ,
-50
-05
2N3823 Unit
M,n
Max
Siliconix
n-channel JFET designed for • • •
H
Siliconix
Performance Curves NRL See Sedion 4
High Speed Commutators Choppers
III III
BENEFITS I nsertion Loss • Lowrds{on) < 250 n Ii)
High Off-Isolation I D{off) < 0_1 nA
*ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) Gate Current Total Device Dissipation at (or below) 25°C Free-Air Temperature (Note 2) Storage Temperature Range Lead Temperature (1/16" from case for 10 seconds)
TO·72 See Section 6
-50V 10mA 300mW -65 to +200° C
'4:
300°C
G
0
~
s
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Mm
Characteristic
1...2. S 2
T A 3 T I- I C 4
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
ID(off)
Drain Cutoff Current
'ds(on)
Drain-Source ON Resistance
C ISS Crss
Max
Umt
-0.1
nA
-0.1
IJA
Test Conditions VGS = -30 V. VDS = 0
150°C
1-
5
D
I- V 6
17
N A M I C
-50
V
IG = -lIJA. VDS = 0
0.1
nA
0.1
IJA
250
n
VGS = 0 V. ID = 0
Common-Source Input Capacitance
6
pF
VDS = 15 V. VGS = 0
Common-Source Reverse Transfer Capacitance
3
pF
VGS = -8 V. VDS = 0
VDS = 15 V. VGS = -8 V
150°C f = 1 kHz
f= 1 MHz
NRL
• JEDEC registered data. NOTES: 1. Due to symmetrical geometry. these units may be operated with source and drain leads Interchanged. 2. Derate linearly to 17SoC free-air temperature at rate of 2 rnWfC
Silicanix
3-3
monolithic dual n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NNR See Section 4
• DiHerential Amplifiers
BENEFITS Minimum System Error and Calibra• tion 5 mV Offset Maximum (2N3921) Amplifier Design • Simplifies Low Output Conductance TO-71 See Section 6
*ABSOLUTE MAXIMUM RATINGS (25°C)
G1
Gate-Drain or Gate-Source Voltage ..............• -50 V Gate Current ............................... 50 rnA Total Device Dissipation (Derate 1.7 mW;oC to 200°C) ..•............ 300mW Storage Temperature Range •............. -65 to +200°C
~~ 81
S2
'2
o G, 0 3
5
02
0 6 0 G2
., 2
0,
G2
7
0' 0
.0 '•
G,
Bottom View
l~
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Min
Characteristic
.2.
IGSS
Gate Reverse Current
BVOGO
Drain-Gate Breakdown Voltage
4"T -::-A
VGS(offl VGS
Gate-Source Cutoff Voltage Gate-5ource Voltage
-"-c
IG
Gate Operatmg Current
2
~s
~: b •
...l... 8 9
lOSS 9fs 100 gos l1 V CISS C rss 13M 9fs 1 gos
12": 14 _c 15
NF
16
1-
M A T 1- C 18 H
17
IlA
1
Common-Source Output Conductance Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance Common-Source Output Conductance
2N3921
0.95
Max
2N3922 Min
Max
Ilmho
5
5
10
25
1.0
0.95
1.0
d8
2N4OB4 Min
0.95
VOG = 10V,I0 = 700ilA
100·C
VOS = 10V, VGS = 0
VOS=10V,VGS=1J
2
Min
I 100·C
10 = lilA. IS = 0 VOS-l0V.10-lnA VOS - 10V,I0 = lOOIlA
pF
20
Spot NOise Figure
VGS=-30V. VOS=O
"mho
1500
Common-Source Forward Transconductance
Test Conditions
pA nA mA
10 7500 35 18 6
1500
Common-Source Forward Transconductance (Note 1)
Transconductance Ratio (Note 3)
V
-2.7 -250
• JEOEC registered data. NOTES: 1. Pulse test duration = 2 ms. 2. Measured at end points, TA and TB. 3. Assumes smaller value 10 numerator.
3-4
-1
-25
IVGS1-VGS2 1' aIVGS1-VGS2 1 Gate-Source Differential Voltage Change with Temperature aT (Note 21 91,1
nA
-3 -0.2
Differential Gate-Source Voltage
-gfs2
-1 50
Saturation Drain Current (Note 1)
Characteristic
Unit
Max
Max
VOG = 10V.10 = 700llA VOS=10V,VGS
2N4085 Min
Max
Unit
15
15
mV
10
25
"vfc
1.0
-
1.0
0.95
0
1= I kHz
1 = 1 kHz f= 1 kHz, RG= 1 meg
Test Conditions
O·C VOG=10V, TA= 10 = 700llA TB = 100·C f = I kHz
NNR
Siliconix
monolithic dual n-channel JFETs designed for • • •
H
Siliconix Performance Curves NQP See Section 4 BENEFITS Accuracy & Stability • HighOffset Less Than 5 mV (2N3954, 54A)
and Medium Frequency • Low Differential Amplifiers Input • High Impedance Amplifiers
Drift Less Than 5 fJ.VrC (2N3954A) Range • WideIG Dynamic Specified @ V DS =20 V • LowCissCapacitance <4 pF TO·71 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C) Any Case-To-Lead Voltage ...•.....•• " .•...•.. ±100 V Gate-Drain or Gate-Source Voltage •••••..•...••.• -50 V Gate Current. . . • . • . • . . • • . • • • • • • • • • . • . . . . . .• 50 mA Total Device Dissipation at (Each Side) ..••......... 250 mW 85°C Case Temperature (Both Sides) ............ 500 mW Power Derating (Each Side) •••••.•...••••• 2.86 mWrC (Both Sides) ••••.•••..••••• 4.3 mWrC Storage Temperature Range •••••..••.••• -65 to+200oC Lead Temperature (1/16" from case for 10 seconds) ••• 300°C
G,
~~ 8,
G2
82
'2
G~
G' 30 0 506 °2 0,2 0 ,0 07 02
5,
[
0,
'1
Bottom View
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CharacterIStic
1
2'
13 14 I5 IS 17" IS
IGSS
Gate Reverse Current
BVGSS
Gate·Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Forward Voltage
s VGS(olll T A T VGS(II I C VGS
l"i
110
IG
Gate Operating Current
lOSS
Saturation Dram Current
gls 1-+1IE. 0 13 y gas 1- N 14 A CISS I-M 15 I Crss
-c
Gate-Source Voltage
Common-Source Forward Transconductance Common-Source Output Conductance
2N3954 Min Max -100 -600 -50
2N3954A M,n Max -100 -500 -50
-10
-1.0
-4.5
2.0 -42 -05 -4.0 -50 -250 05 50 1000 3000 1000 35
-05 05 1000 1000
2N3955 Max -100 -500 -50
Min
2N3955A Max -100 -500 -50
Min
Unit
VGS - -30 V, VOS=O VOS 0, IG =-I)1A VOS 20V, 10 = 1 nA V VOS= 0, !G..= 1 rnA VOS=20V pA VOS 20 V, nA 10 = 200)1A VOS-20V, rnA VGS=O
-4.5
-1.0 -45
-1.0
20 -4.2 -40 -50 -250 50 3000 35
20 -42 -0.5 -40 -50 -250 05 50 1000 3000 1000 35
20 -4.2 0.5 -40 -50 -250 05 5.0 1000 3000 1000 .u mho VOS=20V, 35 VGS=O 40
-45
Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance
40
40
4.0
12
12
12
1.2
pF
16
Cdgo
Drain-Gate Capacitance
1.5
1.5
1.5
1.5
17
NF
Common Source Spot NOise Figure
05
0.5
05
05
dB
10
10
10
10
nA
-
Differential Gate 18 IIG1- IG21 Current 1- M Saturation Dram Current 19 A IOSS1/10SS2 Rat'o (Note 11 -T Differential Gate-Source 20 C IVGS1-VGS21 Voltage _H Gate-Source Differential 21 I Voltage Change with 22"N t.IVGS1-VGS21 Temperature _G Transconductance RatiO 23 !lisl/9Is2 (Note II
0.95
1.0
095
50 08 1.0 097
10
1.0
0.95
5.0 0.4 0.5 097
Test Conditions
pA nA
10
1.0
095
10.0 2.0 2.5 097
1.0
0.95
1.0
-
5.0 1.2 1.5
mV
10
-
ITA-125C
10 50llA 10 200)1A TA-125C 1 1 kHz 1 200 MHz 1= 1 kHz
IEII
1= 1 MHz VOG 10V, IS= 0 VOS 20V, VGS =0, RG = 10 Mn VOS 20V, 10 = 200)1A, VOS - 20 V VGS=O
1= 100 Hz T = 125°C
VOS~20V,
T = 25°C to -55°C
10=2001lA
T-25 Cto 125 C 1= 1 kHz
* JEDEC registered data
NOTE:
NQP
1. Assumes smaller value in numerator.
Siliconix
3-5
.monolithic dual
H
Siliconix Performance Curves NQP See Section 4
n-channel JFETs designed for • • •
• •
BENEFITS Range • WideI G Dynamic Specified @ V DS = 20 V
Low and Medium Frequency DiHerential Amplifiers High Input Impedance Amplifiers
• LowCissCapacitance <4 pF TO·71 Sea Section 6
*ABSOLUTE MAXIMUM RATINGS (25°C) Any Lead-To-Case Voltage .................... ±100 V Gate:Orail1 OJ Gate·~ource Voltage ............•.. -50 V Gate Current ............................. " 50 rnA Total Device Dissipation at (Each Side) ............. 250 mW 85°C Case Temperature (Both Sides) ............ 500 mW Power Derating (Each Side) ................ 2.86 mWrC (Both Sides) .........•...... 4.3 mWrC Storage Temperature Range .............. -65 to +250°C Lead Temperature (1/16" from case for 10seconds) ... 300°C
G,
~~ 8,
G2
S2
Sz Dz G, 30 0'06
0,
20
,0
l
07 G2
S,
Bottom View
0,
Gz
"
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1
2" --=3
4_ T5 5 A aT _I 7 C
8
-9 10 i~ I...E... 13 D I-V 14 N
I-~
15 I I-C 16
117
18 I- M 19 A I-T 20 C H
'211 1_ N 22 G
'23"
Gate Reverse Current
BVGSS
Gate-Source tsreakdown Voltage
-50
VGS(off)
Gate-Source Cutoff Voltage
-10
VGS(f)
Gate-Source Forward Voltage
VGS
Gate-Source Voltage
IG
Gate Operating Current
lOSS
Saturation Drain Current
IVI,I
Min
-0.5
0.5
Max
-500 -50
-4.5
2N3958 MIn
-100
-500
-1.0
Max
pA
-500
nA
-50 -4.5
-1.0
-4.5
2.0
2.0
-4.2
-4.2
-4.2
-0.5
-4.0
-0.5
pA
-250
-250
-250
nA rnA
5.0
0.5
5.0
1000 3000
1000
3000
Transconductance
1000
1000
1000
35
35
= 150'C
VOS =OV,IG = 1 rnA
VOS= 20V,I0 = 200!,A
-50
1000 3000
Conductance
IT
VOS=20V,10=50!,A
-4.0
-50
0.5
VGS=-30V, VDS=O
VOS=20V,IO= 1 nA V
-50
5.0
Test Conditions
VDS=OV,IG=-l!,A
2.0
-4.0
Unit
-100
Common-Source Forward
Common-Source Output
9o,
2N3957
Max -100
IGSS
VOS=20V,10=200!,A
I T •. =125C ,
VO'S = 20 V, VGS = 0 f= 1 kHz 1= 200 MHz
!,rnho
1= 1 kHz
35 VDS = 20 V, VGS = 0
CISS
Common-Source Input Capacitance
4.0
40
40
Crss
Common-Source Reverse Transfer Capacitance
1.2
1.2
1.2
Cdgo
Drain-Gate Capacitance
1.5
1.5
1.5
NF
Common-Source Spot NOise Figure
0.5
0.5
0.5
dB
VOS = 20 V, VGS = OV, RG = 10M!),
1=100Hz
IiGJ-iG21
Differential Gate Reverse Current
10
10
10
nA
VOS = 20 V, 10 = 200!,A
T = 125'C
IOSS1/ IOSS2
Saturation Drain Current Ratio (Note 1)
1.0
-
VDS=20V, VGS=O
IvGS1-VGS2
Differential Gate-Source Voltage
1
1= 1 MHz
0.95
Gate-Source Voltage aIVGS1-VGS2 1 Differential Change With Temperature Transconductance Ratio (Note 1)
9f,l/91,2
*JEDEC registered data NOTE: 1. Assumes smaller value
3-6
2N3956 Moo
In
0.95
1.0
0.90
1.0
0.85
15
20
25
4.0
6.0
8.0
5.0
7.5
10.0
10
0.90
1.0
0.85
1.0
pF VDG=10V,.IS=0
rnV
VDS = 20V,ID = 200!,A
T = 25'C to -55'C T = 25'C to 125'C 1= 1 kHz
NQP
numerator.
Silicanix
n-channel JFETs· designed for • • •
H
Siliconix
Performance Curves NCB See Section 4
Switches • Analog Choppers • Amplifiers •
BENEFITS I nsertion Loss • Low rOS(on) < 30 n (2N3970) Off-Isolation • Good IO(off) < 250 pA
TO·18 See Section 6
*ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate·Drain or Gate·Source Voltage ......... -40 V Gate Current ................................ 50 mA Total Device Dissipation at 25°C ~ase Temperature Derate Linearly at the Rate of 10 mWrC ........... 1.8 W Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 60 seconds) ............... 300°C
.~:
G.C
s
D
*ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) Characteristic 1
2' '3
-
BVGSS
Gate Reverse Breakdown Voltage
lOGO
Dram Reverse Current
2N3970 M,n -40
4
~
s
T 6 A I- T 7 I 1- C
2N3972
2N3971
Max
Min
Max
Min
Max
250
250
250
pA
500
500
500
nA
250
250
250
pA
500
500
500
nA
VOG = 20V, IS = 0
12
D V N
150°C
10(0ff)
Drain Cutoff Current
VGS(off)
Gate-Source Cutoff Voltage
-4
-10
-2
-5
-0.5
-3
V
VOS=20V,10=lnA
lOSS
Saturation Drain Current (Pulsewidth 300 p.s, duty cycle'; 3%)
50
150
25
75
5
30
mA
VOS = 20V, VGS = 0
VOS(on)
Drain-Source ON Voltage
V
VGS=O
rOS(on)
Static Drain-Source ON ReSistance
30
60
100
12
VGS=O.lo=lmA
rds(on)
Drain-Source ON Resistance
30
60
100
12
CISS
Common-Source Input Capacitance
25
25
25
Crss
Common-Source Reverse Transfer Capacitance
6
6
6
td(on)
Turn-On Oelay T,me
10
15
40
tr
RlseT.me
10
15
40
toft
Turn-Off Time
30
60
100
VOS=20V,VGS=-12V
I 10=
15 1
111
14
IG = -1 p.A, VOS = 0
2
ITo
I-
Test Conditions
V
8
1'9
113
Unit
-40
-40
I
150°C
IEII
5mA
10 = 10mA
110=2OmA
f = 1 kHz
VGS-O,IO=O VOS = 20 V, VGS = 0
pF
f= 1 MHz VOS=O,VGS=-12V VOO = 10 V, VGS(on) = 0
15
1m 1-
17
S
w
ns
2N3970 2N3971 2N3972
RL VGS(oft) 10(on) 20mA 45012 -10V lOmA 85012 - 5 V 5mA 16K12 - 3 V
VDD
~DD'VDSlDN'
• JEOEC regIStered data.
IO(ONj
VIN
S RC; .. son..
Siliconix
VOUT
NCB INPUT PULSE RISE TIME 025n. fALL TlME075ns PULSE WIOTH lOOn. PULSE RATE 550 pps
SAMPLING SCOPE RlSETlME04nl INPUT RESISTANCE 10 M INPUT CAPACITANCE 1 5pF
3-7
H
n-channel JFETs designed for . . .
Siliconix
Performance Curves NCB
See Section 4 BENEFITS
• • • •
Analog Switches Commutators Choppers Integrator Reset Switch
• Low I nsertion Loss High Accuracy in Test Systems rDS(on) < 30 n (2N4091) • High 'Off-Isolation ID(off) < 200 pA • High Speed trise < 10 ns (2N4091) • Short Sample and Hold Aperture Time Crss <5 pF
*ABSOLUTE MAXIMUM RATINGS (25°C)
Q
TO-18 See Section 6
Reverse Gate-Drain or Gate-Source Voltage ......... -40 V Gate Current ............................... 10 rnA Total Device Dissipation at 25°C Case Temperature (Derate 10 mWrC) ....•.................... 1.8 W Storage Temperature Range .............. -55 to +200°C Lead Temperature (1/16" from case for 60 seconds) .............. 300°C
.~:
D
S
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
l~r-
BVGSS
Gate-Source Breakdown Voltage
'DGO
Dram Reverse Current
2N4091
Min
2N4092
Max
-40
Mon
2N4093
Max
Min
-40
Max
-40
200
200
400
400
Unit
200
pA
400
nA
4
200
pA
5
400
nA
rr-
IS
r-
...!.... ~ ~ 10
-
S T A T I C
11
-
IDloff)
400
VGSloff) IDSS
Saturation Dram Current INote 1)
30
-10
-7
-1 8
15
V
VDS=20V,ID= 1 nA
mA
VDS = 20V, VGS = 0
02
13 :i4
0.2 80
n
VGS=O,ID=lmA
50
80
n
VGS - O,ID = 0
16
16
5
5
5
Turn-ON Delay Time
15
15
20
Rise Time
10
20
40
Turn-OFF Time
40
60
BO
'DSlon)
Static Drain-Source ON Resistance
30
50
16
D
'dslon)
Olraln-Source ON Resistance
30
CISS
Common-Source Input Capacitance
16
y
N
Crss
Common-Source Reverse Transfer Capacitance
19 tdlon) I- S 20 W tr toff
* JEDEC registered data
i= 1 MHz VDS= 0, VGS = -20 V VDD = 3 V, VGSlon) = 0
ns
2N4091 2N4092 2N4093
~ D S
Siliconix
'Dlon) 6.6mA 4 2.5
INPUT PULSE
RL
VIN
i= 1 kHz
VDS = 20V, VGS = 0
pF
VGSloff) -12V -8 -6
RL 425n 700 1120
NCB
VDD
NOTE: 1. Pulsewidth = 300 Ils, duty cycle';; 3%.
3-8
150°C
riD = S.6mA
121
150°C
ID =2 5 mA mA
VGS=O
Dram-Source ON Voltage
150°C
I ID =4
V
VDSlon)
0.2
-15
18
-5
VGS = - 8 V
VGS=-12V
nA -2
12
I~
VDS = 20 V
pt\
400 -5
150°C
VGS=- SV
nA
200 Gate-Source Cutoff Voltage
IG = -lilA, VDS = 0 VGS = -20 V, IS = 0
pA
200
Dram Cutoff Current
Test Conditions
V
RISE TIME VOUT
SAMPLING SCOPE
< 1 ns
;~t~ET~~~T~ ~
=~
PULSE DUTY CYCLE 10% PULSE GENERATOR IMPEDANCE son
RISETIME04ns INPUT RESISTANCE 10 M INPUT CAPACITANCE 1 7 pf
n-channel JFETs designed for •
H
Siliconix
Performance Curves NT See Section 4
• •
Input • Ultra-High Impedance Amplifiers
BENEFITS • Low Power loSS < 90 p.A (2N4117) • Minimum Circuit Loading IGSS < 1 pA (2N4117A Series)
Electrometers pH Meters Smoke Detectors Intrusion Alarms
TO-72 See Section 6
*ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) .....•.. -40 V Gate-Current ............................... 50mA Total Device Dissipation (Derate 2 mWrC to 175°C) ................ 300mW Storage Temperature Range ............ _. -65 to +175°C Lead Temperature (1/16" from case for 10 seconds). " ........... 255°C
"4:
G
~
0
~ s
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 2N4117/A FN4117/A
Characteristic
Min
Gate Reverse Current
1
::2 3
-4 5 -6 -
IGSS
S T A T I
C
7
-
IGSS
2N4117 Senes Only FN4117 Gate Reverse Current 2N4117A Series Only FN4117A
-10
-10
-10
pA
-25
-25
-25
nA
-1
-1
-1
pA
-2.5
-2.5
-25
nA
-0.6
-1.8
-1
-3
-2
-6
Saturation Dram Current
0.03 0.09 0.015
008
0.24
0.20
060
210
80
250
100
330
(Note 2)
FN4117A
Common-Source Forward Transconductance (Note 2)
9 N
gas
Conductance
Ciss
Common-Source Input Capabltance
-c 11
Unit
C rss
Common-Source Output
Common-Source Reverse Transfer Capacitance
-40
-40
-40 V
70
Test Conditions
Max
Gate·Source Cutoff Voltage
gls
I
Min
VGS(off) IDSS
A M
Max
Gate-5ource Breakdown Voltage
y
10
Min
2N4119 2N4119A
BVGSS
D
8
Max
2N4118 2N4118A
VGS = -20 V. VDS = 0
VGS = -20 V. VDS = 0
5
10
3
3
3
1.5
1.5
1.5
150°C
IG=-lI'A.VDS=O VDS = 10 V. ID = 1 nA
mA
VDS= 10V.VGS=0
f
I'mho 3
150°C
~
1 kHz
VDS=1OV.VGS=0 pF
1= 1 MHz
NT
*JEDEC registered data. NOTES:
1. Due to symmetrical geometry. these Units may be operated with source and drain leads Interchanged. 2. This parameter IS measured dUring a 2 ms Interval 100 ms after power is applied. (Not a JEDEC condition.)
Siliconix
3-9
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NRUNPA See Section 4
Small-Signal Amplifiers • VHF Amplifiers • Oscillators • Mixers •
BENEFITS • High Gain Low Receiver NOise Figure
•
*ABSOLUTE MAXIMUM RATINGS (25°C)
TO-72 See Section 6
Gate-Drain or Gate-5ource Voltage (Note 1) ______ .. -30 V Gate Current ............................... 10 mA Drain Current 15 mA Total Device Dissipation at (or below) 25°C Free-Air Temperature ...................... , , " 300 mW Derate Linearly to 175°e Free-Air Temperature at Rate of2 mWre Storage Temperature Range, , . , , , . , , , , , . , -65 to +200o e Lead Temperature (1/16" from case for 10 seconds), , , , , , , .. , . , , . 3000 e
..............................
'4:
G
~
g
D
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
2N4220, 2N4220A
Min 1
2'
-J
-4' 5
-
S T A T I C
6 7
8 9 -
IGSS
Gate Reverse Current
~vGSS
Gate-Source Breakaown Voilage
VGS(otf)
Gate-Source Cutoff Voltage
VGS
Gate-Source Voltage
lOSS
Saturation Drain Current (Note 21
9fs
0
V N A M 10 I
IVlsl
Common-Source Forward
Transconductance (Note 2) Common-Source Forward
Transadmlttance Common-Source Output
2N4221, 2N4221A
Min
Max
2N4222, 2N4222A
Max
Min
-0.1
-0.1
-0.1
nA
-0.1
-0.1
-0.1
IlA
-30
-3D
-8 -2
-6
(2001 (2001
(5001
(5001
6
5
15
5000
2500
6000
-2.5
(501
(501
05
3
2
1000 4000
2000
-1
750
750
10
20
40
CISS
6
6
6
11
Crss
Common-Source Reverse Transfer Capacitance
2
2
2
12
NF
NOISe F,gure, Only 2N4220A, 2N4221A,2N4222A
2.5
2.5
2.5
-c
-
Conductance (Note 2)
V (IlAI mA
*JEDEC registered data.
150·C
VOS= 15V,IO=0.1 nA VOS=15V,IO=( I VOS=15V,VGS=0 1= 1 kHz 1= 100 MHz VOS = 15 V, VGS = 0
pF
dB
1=1 kHz
1= 1 MHz
VOS-15V,VGS=0 Rgen = 1 meg
1= 100 Hz
NRL/NPA
NOTES: 1. Due to symmetrical geometry. these umts may be operated with source and drain leads interchanged. 2. These parameters are measured dUring a 2 msec Interval 100 msec after d-c power IS applied.
3-10
V
I
=-lOp.A, \/OS= IJ
ILmho
Common-Source Input Capacitance
90 s
VGS=-15V,VOS=0
!G
-5
-0.5
750
-30 -6
-4
Test Conditions
Uniu
Max
Siliconix
n-channel JFETs designed for • • •
H Siliconix
------
Performance Curves NRL/NH See Section 4
• VHF Amplifiers • Mixers
BENEFITS
• LowNFNoise = 3 dB Typical @200 MHz • EasyC Tuning < 2 pF rss
*ABSOLUTE MAXIMUM RATINGS (25°C)
:::t MIlf
TO-72
Sae Section 6
Gate-Drain or Gate-Source Voltage (Note 1) __ ...... -30 V Gate Current ............................... 10 mA Drain Current .............................. 20mA Total Device Dissipation at (or below) 25°C Free-Air Temperature (Note 2) .............. 300 mW Storage Temperature Range .............. '-65 to +200°C Lead Temperature ( 1/16" from case for 10 seconds) .............. 300°C
I.!
'4:
G
~
~
0
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
2N4223 Mm
1
~
-
3 4
5
S T A T I C
IGSS
Gate Reverse Current
6VGSS
Gate-Source Breakdown Voltage
VGS(ott)
Gate-Source Cutoff Voltage
VGS
Gate-Source Voltage
-
7
lOSS
Saturation Drain Current (Note 3)
gt,
Common-Source Forward Transconductance (Note 3)
CISS
Common-Source Input CapacItance (Output Shorted I
0 8
!-
y
N
9 10
C rss H
IVIsI
!- I 11
-
12
G H
1"'13
F R E
1-
Q
14
Mm
-0.25 -0.25
6
2N4224
Max
nA
-0.5
IlA
-0.1
-6
-0.1
-6
(025)
(0.5)
(0.5)
-10
-7
a
-1.0
-7.5
V
(0.3)
(0.21
(02)
(rnA)
3
18
2
20
3000
7000
2000
7500
rnA
VOS = 15 v, 10 = ( )
VOS=15V,VGS=0
t = 1 kHz
Ilmho
6
VOS=15V,VGS=0
t= 1 MHz
pF
2
2 2700
150°C
IG=-lO IlA,VOS=O
V (nA)
(03)
6
Test Conditions
VGS=-20V,VOS=0 V
(0.251
Transfer Capacitance Transadmmance
-0.5
-~O
-30
Common-Source Reverse
Common-Source Forward
Unit
Max
1700
9 155
Common-Source Input Conductance (Output Shorted)
800
800
goss
Common-Source Output Conductance (Input Shorted)
200
200
Gp ,
Small Signal Power Gain
NF
NOise Figure
J,lmho VOS=ISV,VGS=O
f = 200 MHz
10 dB 5
* JEDEC registered data.
VOS=15V,VGS=O, Rgen = 1 K
NRl./NH
NOTES:
1. Due to symmetncal geometry, these units may be operated With source and drain leads Interchanged. 2. Derate linearly to 175Q C free-air temperature at rate of 2 mWfC 3. These parameters are measured dUring a 2 msec Interval 100 msec after d-c power IS applied.
Siliconix
3-11
--
n-channel JFETs designed for • • •
H
Siliconix
Performance CUIVeS NPA
See SectIon 4
• Small-Signal Amplifiers • Choppers • Voltage-Controlled Resistors
• LowNFNoise < 1 dB at 1 kHz Operation from Low Power Supply • Voltages
*ABSOLUTE MAXIMUM RATINGS (25°C)
Off-Isolation as a Switch • HighID(off) < 50 pA
BENEFITS
< 1 V (2N4338)
VGS(off)
Biasing Design with Tightly • Simple Specified Parameter Tolerances 3:1 lOSS. Vp. gfs Ranges
Gate-Drain or Gate-Source Voltage (Note 1) ........ -SO V Gate Current ............................... SOmA Total Device Dissipation (Note 2) .............. 300 mW Storage Temperature Range .............. -65 to +200°C Maximum Operating Temperature ............... 17So C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C
TO·1S See Section 6
"4:
G,C
Ii
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise specified) Characteristic
[....!.
IGSS
2
[-
2N4338
Min
Gate Reverse Current Gate-Source Breakdown Voltage
3 S BVGSS _T A Gate-Source Cutoff 4 T VGS(off) Voltaqe
2N4339
Max
Min
2N4340
Ma.
Min
2N4341
Ma.
Min
Ma.
-0.1
-0.1
-0.1
-0.1
nA
-0 I
-0.1
-0.1
-0.1
IlA
-so
-50
-50
Test Conditions
Unit
VGS=-30V,VOS=0
-50
,150'C
IG=-1IlA,VOS=0 V
-03
-I
-0,6
-18
-I
-3
-2
-6
VOS = IS V, 10 = 0.1 IlA
~I
5
C
10(off)
Dram Cutoff Current
lOSS
Saturation Dram Current (Note 3)
6 7
-
8
Qfs 90S
-0 9 V rds(on) _A N 10 A Ciss _M I II C Crss
-
12
NF
Common-Source Forward
Transconductance (Note 3) Common-SouTce Output Conductance Dram-Source ON
Resistance Common-Source Input
0.05
0.05
0.05
0.07
nA
VOS= 15V
(-5)
(-5)
(-5)
(-10)
(V)
VGS= (
mA
VOS = 15 V, VGS = 0
02
0.6
O.S
1.5
1.2
3.6
3
9
600
1800
800
2400
1300
3000
2000
4000 Ilmho VOS= 15V, VGS=O
5
IS
30
60
2500
1700
1500
800
7
7
7
7
Common-Source Reverse Transfer Capacitance
3
3
3
3
NOise Figure
I
I
I
I
Capacitance
f= I kHz ohm
pF
dB
VOS=O, VGS=O
VOS = 15 V, VGS = 0
f= I MHz
VOS = IS V, VGS = 0 Rgen = I meg, BW = 200 Hz f = I kHz
NPA
* JEOEC registered data NOTES: 1. Due to symmetrical geometry. these units may be operated with source and drain leads interchanged. 2. Derate linearly to 175°C free·alr temperature at rate of 2 mwtC 3 These parameters are measured during a 2 msec Interval 125 msec (I DSSl and 625 msec (9fs) after d-c power IS applied. (Not a JEDEC conditIOn.)
3-12
)
SilicDnix
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NCB See Section 4 BENEFITS Low Insertion Loss, High Accuracy in • Test Systems rOS(on) < 30 n
Switches • Analog • Commutators • Choppers • Integrator Reset Switch
(2N4391) • No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver High Off-Isolation IO(off) < 100 pA High Speed tON < 20 ns
• •
*ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Drain or Gate-Source Voltage ......... -40 V Gate Curre~t ................................ 50 mA Total Device Dissipation at 25°C Case Temperature (Derate 10 mWrC) .......................... 1.8 W Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 60 seconds) ............... 300°C
1
2" -3
-4
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
2N4391 Mon
2N4392
Max
Mon
2N4393
Max
M,n
-100
-100
-100
pA
-200
-200
-200
nA
100
pA
200
nA
-40
-40
-40
"5
~ -:; "8 ~
-10
11
S T A T I
c
-
12
10(011)
Dram Cutoff Current
pA
200
nA
VGS= -5 V VOS = 20 V
Gate-Source Forward Voltage
VGS(off)
Gate-Source Cutoff Voltage
-4
-10
-2
-5
-05
-3
lOSS
Saturation Dram Current (Note 1)
50
150
25
75
5
30
1
1
1
0.4
VGS=-12V
V
Dram Source ON Voltage
'OS(on)
StatIc Dram-Source ON ReSistance
30
60
100
0 V N
rds(on)
Dram-Source ON ReSistance
30
60
100
CISS
Common-Source Input Capacitance
14
14
14
Crss
Common-Source Reverse Transfer Capacitance
td(on)
Turn-ON Delay Time
15
t,
3.5 3.5
110 -6mA
1'0 -12 mA VGS = 0, 10 = 1 mA
n n
Rise Time Turn-OFF Delay Time
5
5
5
20
35
50
25
tl
Fall Time
15
20
30
pF
I VGS - I VGS--
15
5 V 1= 1 MHz
7V -12 V
VOO = 10 V, VGS(on) - 0 ns
2N4391 2N4392 2N4393
'O(on) 12mA 6 3
VDD 51 n
* JEDEC registered data
NOTE. 1 Pulse test required, pulse width'" 300 /lS, duty cycle ~ 3%.
1000pF PULSE o--i
': i:Kl! VIN SCOPE 51 n ~
Siliconix
1 kHz
VOS=20V,VGS=0
VGS
ldloff)
I
VGS-O, 10-0
3.5 15
150°C
110 = 3 mA VGS=O
VOS=O
~ 23 S "24w
150°C
VOS=20V,VGS=0
04
17
150°C
VOS=20V,10=1 nA
mA
V
VOS(on)
VGS = -7 V
IG = 1 mA, VOS = 0
0.4
14 15 16 ~ 20 21
IG = -1 !lAo VOS = 0
nA
VGS(I)
S
I I150°C
VGS=-20V.VOS=0
pA
100 200
D
Test Conditions
V
100
13
18
Umt
Max
.fl\
.~:
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
Q
TO·1S See Section 6
NCB
lOOOpF f--VOUT
D
1'"1 5m
~
RL
VGS(off) -12V -7 -5
~
RL=(~J-5tn Dlon)
SAMPLI NG SCOPE RISE 'NPUT TIME
RISE :rIME 04 ns INPUT RESISTANCE 50 n
3-13
n-channel JFETs
H
Siliconix
designed for • • •
Performance Curves NH See Sedion 4
VHF Amplifiers • Mixers •
BENEFITS
• LowNFNoise = 3 dB Typical at 400 MHz Wide Band • High 9fs/Ciss Ratio TO-72
*ABSOLUTE MAXIMUM RATINGS (25°C)
See Section 6
Gate-Drain or Gate-Source Voltage, 2N4416 ........ -30 V Gate-Drain or Gate-Source Voltage, 2N4416A ...... -35 V Gate Current ............................... 10 mA Total Device Dissipation (Derate 1.7 mWrC) ..... 300 mW Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 60 seconds) .............. 300°C
~
o~:
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Min
Characteristic 1 IGSS
2"
Gate Reverse Current
-s T 3 A _T I 4 C
BVGSS
Gate-Source Cutoff Voltage
5
IDSS
Saturation Drain Current (N~te 1)
6 gfs I- D 7 Y gos I- N B A C rss I-M 9 I C ISS
110
c
Coss
11
H
13 F -R 14 E _Q
U 15 E _N 16 C -y 17
-0.1
p.A
Test Conditions VGS = -20 V, VDS = 0 V
IG = -1 p.A, VDS = 0 V
2N4416A 2N4416
V
VDS= 15V,ID= 1 nA
-2.5
-6
5
15
45UU
75UU
p.mho
50
p.mho
Common-Source Output Conductance
150·C 2N4416
V -6
2N4416A
rnA f = 1 kHz VDS= 15V, VGS=OV
Common-Source Reverse Transfer Capacitance
4
Common-Source Output Capacitance
2
9iss
Common-Source Input Conductance
blsS
Common-Source Input Susceptance
pF
0.8
Common-Source Input Capacitance
100 MHz Moo Max
f= 1 MHz pF
400 MHz Min Max
Unit
100
1000
p.mho
2500
10,000
p.mho
goss
Common·Source Output Conductance
75
100
p.mho
boss
Common·Source Output Susceptance
1000
4000
p.mho
gfs
Common·Source Forward Transconductance
Gps
Common·Source Power Gain
NF
NOise Figure
Test Conditions
VOS=15V,VGS=OV
p.mho
4000 18
10 2
4
dB
VOS=15V,ID=5mA
dB
VDS = 15 V,ID = 5 rnA, RG = lK r! NH
• JEDEC RegIStered data NOTES: 1. Pulse test duratton = 300 p.s
3-14
nA
-35
Common-Source Forward Transconductance
Characteristic
1"'"'i2 I -~
Unit
-0.1
-30
Gate-Source Breakdown Voltage
VGS(off)
'-
Max
Silicanix
n-channel JFETs designed for • • •
H
Siliconix
------
Performance Curves NCB See Section 4
Analog Switches • Commutators • Choppers • Integrator Reset Switch •
BENEFITS Low Insertion Loss and High Accuracy in Test Systems rOS(on) < 25 n (2N4856, 59) High Off-Isolation 10(off) < 250 pA High Speed tON < 9 ns
• • •
*ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Drain or Gate Source Voltage, 2N4856-58 __ ................................ -40V TO-18 s•• S.ction 6 Reverse Gate-Drain or Gate-Source Voltage, -30V 2N4859-61 Gate Current ................................. 50 mA Total Device Dissipation at 25°C Case Temperature (Derate 10 mWrC) ........................... 1.8W Storage Temperature Range ........... -65 to +200°C Lead Temperature (1" from case for 10 seconds) ................ 300°C *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) •••
0.0
•••
0.'.0
•••••
0.0
•••••
0.0
••••
o~:
2N4B56
Characteristic
i ,
1 BVGSS
1f""2
Gate-Source Breakdown Voltage
I:----J r--
5 S .......,. T
IGSS
-30
Gate Reverse Current 2N4859-61
Drain Cutoff CUrrent
9
VGS(ofil
Gate-Source Cutoff Voltage
-4
IDSS
Saturation Dram Current INote 1)
50
VOSlonl
Drain-Source ON Voltage
12
13
D
-~ 14
17
~
V
-30
IG = -1 /lA, VOS = 0
-250
-250
-250
pA
VGS~-20V,
-500
-500
-500
nA
VDS =0
150°C
-250
-250
-250
pA
-500
-500
-500
nA
VGS = -15 V, VDS=O
150°C
250
250
250
pA
500
nA
VDS = 15 V, VGS=-10V
150°C
-4
V
Vos=15V,lo=05nA
80
mA
050 (51
V (mAl
500 -10
500 -2 20
075 (201
-6
-08
100
8
050 (101
f::: 1 kHz
pF
VDS ~ 0, VGS=-10V
f::; 1 MHz
25
40
60
18
18
18
C'SS
Common·Source Reverse Transfer Capacitance
8
8
8
6 (201 HOI
6 (101
[-61
10 151 HI
ns (mAl IVI
10 (51 HI
ns (mAl IVI
100 (51 HI
ns (mAl IVI
"
toff
Turn-OFF Time
4 (101
3 1201 HOI
[-61
25 (201 HOI
1-61
50 (101
Vaa
NOTE1 Pulse test required, pulsewldth::; 100 IJ.S, dutY cycle';;;; 10%
..
~.~ '. DRL=~
.. JEDEC registered data VIN
VOUT RG S
.on
Silicanix
I
n
Drain-Source ON ReSistance Common-Source Input Capacitance
Rise Time
VDS~15V,VGS=0
VGS = 0, ID = ( VGS = 0, ID ~O
'dslen)
Turn-ON Delay Time
S
Test Conditions
Umt
C ISS
15 S tdlonl W -I T 16 C
-~
-40
-40
-30
ID(olll
11
2N4861 Max Mon
-40
A
-
2N4B58
2N4B60 M,n Max
2N4856-58
7 T --'- I 8 C
10
2N4857
2N4B59-61 2N4856-5B
~
-2,
2N4B59 Mon Max
a
VDD~10V,
VGSlon) = 0, IDlon) '" ( I, VGSloff) = ( I
RL =
\464 n, 2N4856, 59 953 n, 2N4857, 60 1910 n, 2N4858, 61
NCB SAMPLING SCOPE
INPUT PULSE RISE TIME 025 ns FALL TIME 0 75 ns PULSE WIDTH 100 ns PULSE DUTY CYCLE
RISE TIME 0 75 nI INPUT RESISTANCE 1 M INPUT CAPACITANCE 2 5 pF
< 10%
3-15
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NCB See Section 4
Switches • Analog • Commutators • Choppers • Integrator Reset Switch
BENEFITS Insertion Loss and High Accuracy • Low in Test Systems rOS(on)
< 25 n
(2N4856A,59A)
Off-Isolation • High10(off) < 250 pA Sample and Hold Aperture Time • Short Crss < 4 pF • HightONSpeed < 8 ns
*ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Drain or Gate-Source Voltage, 2N4856A-58A ............................ -40 V Reverse Gate-Drain or Gate-Source Voltage, 2N4859A-61A ............................ -30 V Gate Current .............................. 50mA Total Device Dissipation at 25°C Case Temperature (Derate 10 mW;oC) ........................ 1.8W Storage Temperature Range ............ -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ............. 300°C
TO·18 See Section 6
.~:
~
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1
I~
8VGSS
Gate-Source Breakdown 2N4856A·58A Voltage 2N4859A-61A
2N4856A
2N4857A
2N4858A
2N4859A Moo Mox
2N4860A Moo Ma.
2N4861A M,n Ma.
-40
-40
-40
-30
-30
-30
I----:J 2N4856A-58A
1----;
l-S
S I-T 6 A
IGSS
Gate Reverse Current 2N4859A-61 A
I~T
1---:-
8 19
! C
1---;0 111 12
IOIOffl
Dia,;; Cutoff C... mmt
Gate-Source Cutoff Voltage
-4
lOSS
Saturation Dram Current (Note 1)
50
VOSlon)
Dram-Source ON Voltage
rds(on)
0 Y CISS I- N 14 C,,,
113
15 S tdlon) W -I T 16 C t,
toff
pA
-500
-500
-500
nA
-250
-250
-250
pA
-500
-500
-500
nA
VGS = -15 V, VOS =0
250
250
250
pA
VOS=15V,
500
-10
500
nA
-2
--6
-{)8
-4
V
20
100
8
80
mA
075 120)
V 050 15) ImA)
050 110)
VGS=-10V
150"C
150"C ~~-~~~-
VOS-15V,IO-05nA
VOS=15V,VGS=0 VGS=O,IO=I
)
f = 1 kHz
pF
VOS = 0, VGS=-10V
f= 1 MHz
60
10
10
4
35
35
5 120) (-101
6 1101 1--61
8 151 1-41
(mA)
Rise Time
3 120) (-101
4 110) 1--61
8 15) 1-41
ns ImA) (VI
Turn-OFF TIme
20 120) (-101
40 110) (--61
80 15) 1-4)
ns ImA) IVI
-~--
150"C
n
40
10
Turn-ON Delav Time
VGS = -20 V. VOS =0
VGS 0, 10 =0
25
-I
~
-250
Drain-Source ON ReSistance
Common-Source Reverse Transfer Capacitance
IG =-1 ~A. VOS =0
-250
Common-Source Input Capacitance
H
17
V
-250
500
VGSloffi
Test CondltlDns
Umt
ns IVI VOO=10V, VGS(onl = 0, 10(on) = ( ),
RL =
VGSloff) = II
{ 464 n, 2N4856A, 59A 953 n, 2N4857A, 60A 1910 n, 2N4858A, 61 A
NCB *JEOEC regIstered data
NOTE: 1 Pulse test requIred, pulsewldth
VDD R =
100 jJ.S, duty cVcle" 10%
_ VCo-VoS(oNI
L-~
D V,N
VOUT RG S
.on ~
3-16
~
Silicanix
INPUT PULSE RISE TIME 0 25 ns FALL TIME 0 75 n5 PULSE WIDTH 100 ns PULSE DUTY CYCLE < 10%
SAMPLING SCOPE RISE TIME 0 75 ns INPUT RESISTANCE 1 M INPUT CAPACITANCE 2 5 pF
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NPA
See Section 4
and Sub-Audio • Audio Amplifiers
BENEFITS Ultra Low Noise eri = 8 nVf.JHz Typical at 10 Hz en = 2 nV Typical at 1 kHz
•
1v'Hi
TO-72 See Section 6
*A,BSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Souce Voltage (Note 1) ... -40 V Gate Current or Drain Current ............... 50 mA Total Device Dissipation (Derate 1.7 mW/°C) ...................... 300 mW Storage Temperature Range ........ -65°C to +200°C Lead Temperature (1/16" from case for 60 seconds) ........... 300°C
"4:
G
~
~
s
*ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) Characteristic
2N4867 2N4867A
Min 1
-2 -
2. 4
-
5
S T A T I
C
6 7
0
y 9 N
-
-10 11
12
BVGSS
Gate-Source Breakdown Voltage
VGS(oll)
Gate-Source Cutoff Voltage
lOSS
90S
-
Gate Reverse Current
91s
8
IGSS
C rss
C1SS
A M I
C
en
-13 14
Saturation Drain Current
(Note 2) Common-Source Forward
Transconductance (Note 2) Common-Source Output
Conductance Common-Source Reverse Transfer Capacitance Common-Source Input Capacitance
Sh~rt
Circuit EqUivalent Input
NOise Voltage
2N4868 2N4868A
Max
Min
2N4869 2N4869A
Max
Min
-0.25
-0.25
-0.25
nA
-0.25
-025
-025
p.A
-40
-40
Test Conditions
Umt
Max
-40
V
-0.7
-2
-1
-3
-1 8
-5
0.4
1.2
1
3
2.5
75
700
2000
1000
3000
1300
4000
VGS=-30V.VOS=0
I 1150'C
IG = -1 MA, VOS = 0 VOS=20V,IO=1MA
rnA
VOS = 20 V, VGS = 0
.u mho 1.5
4
10
5
5
5
1=1 kHz VOS=20V,VGS=0
pF 25
25
25
20
20
20
10
10
10
nV
10
10
10
vHz
5
5
5
1
1
1
1=1 MHz
2N4867 Senes VOS= 10V, VGS = 0
Spot NOise Figure
2N4867 Senes 2N4867 A Senes
dB
1= 10 Hz
2N4867 A Senes
VOS= 10V, VGS=O NF
-
20 K, 2N4867 Senes Rgen = 5 K, 2N4867 A Senes
1=1 kHz
. 1=1 kHz
NPA
"* JEDEC registered data. NOTES:
1. Due to symmetrical geometry. these Units may be operated with source and drain leads Interchanged. 2. Pulse test duration = 2 ms.
Siliconix
3-17
IEII
- designed p-channel JFETs for 0-
~-~~---
H
oan Z
-•
Analog Switches
Z
Commutators
C"'4
Performance Curves PSA/PSB See Section 4
• • •
C"'4
co o an
Siliconix
BENEFITS Low Insertion Loss rOS(on) < 75 n (2N5018) No Offset or Error Voltages Generated by Closed Switch Purely Resistive
• •
• • Choppers
*ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Drain or Gate-Source Voltage (Note 1) Gate Current Total Device Dissipation, Free-Air (Derate 3 mW;oC) Storage Temperature Range Lead Temperature (1/16" from case for 60 seconds)
TO-1B
See Section 6
30V .50mA 500mW -65 to +200°C
.~:
300°C
o)c
s
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 2N5018 Min Max
Characteristic 1
BVGSS
Gate-Source Breakdown Voltage
2
IGSS
Gate Reverse Current
IDloff)
Drain Cutoff Current
1I3
14
30
1- S
-10
-10
-10
-10
)lA
VGS = 7 V 12N5019)
-2 -3
nA )lA
VDG = -15 V. IS = 0
5
V
VGSloff)
Gate-Source Cutoff Voltage
10
IDSS
SaturatIon Dram Current
9
VDSlon)
Drain-Source ON Voltage
10
'DSlon)
1-
III
'dslon)
1-
0
12
n
ID=-l mA,VGS=O
Dram-Source ON Resistance
75
150
n
45
45
10
10
Common-Source Input
T
"
Rise Time
'd(off)
17 H
'f
c
Capacitance
O~lay
f = 1 kHz
ID = 0, VGS = 0 VDS=-15V,VGS=0
f = 1 MHz
pF VDS - 0, VGS - 12 V 12N5018), VGS = 7 V 12N5019)
15
15
20
75
Turn-OFF Delay Time
15
25
Fall Time
50
100
Time
* JEDEC registered data NOTE: 1. Due to symmetrical geometry these units may be operated with
VDD = -6 V, VGS(on) = 0 ns 2N5018 2N5019
VGS(off) 12 V 7V
".~
01 pF
~
5H!
910n
-3mA
1.8K n
PSA/PSB
15K
_
f-sAMPLING SCOPE ~
Siliconix
RL
ID(on) -6mA
RG
VIN;;y'f51n 12K
source and dram leads Interchanged
3-18
VDS =-20 V, VGS = 0
150
Turn-ON
1-
mA
75
'd(on)
1"16
150°C
VDS =-15 V.ID =-l)lA
Static Drain-Source ON Resistance
Common-Source Reverse Transfer Capacitance
I
-5
150°C
VGS = 0, ID = -6 mA 12N5018), ID =-3 mA 12N5019)
Crss
S
VDS = -15 V. VGS = 12 V 12N5018)
V
y
15
nA
-{).5
I- N 13 14
-10
VGS=15V,VOS=0
-{).5
G1SS
1- W
IG - 1 )lA, VOS - 0
2
Drain Reverse Current
:_A 7 T I_I 8 C
Test Conditions
V
30
IDGO
16
T
Unit
2
-2 -3
5
2N5019 Max
Min
~
5H!
INPUT PULSE
SAMPLING SCOPE
RISE TIME < 1 ns RISE TIME 0 4 ns FALL TIME < 1 ns INPUT RESISTANCE 10 Mrl PULSE WIDTH 100 ns INPUT CAPACITANCE 1 5 pF REPETITION RATE 1 MHz
monolithic dual n-channel JFETs designed for . . .
H
Siliconix
Performance Curves NQP See Sedion 4
• High Gain Differential Amplifiers
BENEFITS • Minimum System Error and Calibration 5 mV Offset Maximum (2N5045) • Low Drift 5 mV Drift Maximum (2N5045) TO-71
See Section 6
*ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage ............... -50 V Forward Gate Current. . . . . . . . . . . . . . . . . . . . . . .. 30 mA Total Dissipation (25°C Free Air Temp.) ........ 400 mW Power Derating (to 175°C) ................. 2.67 mW/oC Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ............. 300°C
52
~o 6
3 Gl O 2
D,
.,
°0
D2
P
G2
1
Bottom View
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic (Note 1)
2NS04S 2NS046 2NS047 I _ - , . - - - + - , . . - - t - - , - - - I Unit Min
Max
Min
Max
Min
1...2..
Test Conditions
Max
-1
pA
rnA
S -1 -1 1..2. T IGSS Gate Reverse Current 1_-+--0_.2",5-+--+-_0,...2_5+---+_-0"..2",5-1 nA VGS = -30 V. VDS = 0 V I~ ~ -2S0 -2S0 -2S0 T = lS0'C 4 I ~V-G-S(-Of-f-I---G-at-e~~-o-ur-ce-c-u-tO-f-f-V-ol-ta-ge-1--_0-.s~-~"'.-s1-_-0-.s~-~-.s~-_-0-s1--~-.-s1-V~-rV-D-S-=-lS-V"'."'I-D-=~o-.5""n-A~~--------1
15
C lOSS
Drain SaturatIOn Curren' Common-5ource Forward
6
Transconductance
---
O.S
8.0
O.S
80
O.S
8.0
1.5
60
1.5
6.0
1.5
60
VDS = lSV. VGS = 0 f=l kHz
I--------------_+--_-+_-+_--+-_+-~mmho
7
IVfsl
~~~~~~;:urce Forward
15
f=100MHz
1.5
1S
---S DI-----~c,...o-rn-rn-on-.".so-u-rc-e~O,...u-'p-u-t--+--1--2-S+--+--2S-+--+--2-5+-"rnho-l Y
90S
Conductance
f=l kHz
,...
---g M~I------c-o-rn-rn-o-n.-so-u-rc-e-I-np-u-t--+---+--+--+--t--+---t--;VDS=15V.VGS=OV CISS Capacitance 80 80 8.0 --- I I------~-------_+--I_-+_-+_--+--+-~ pF 40 10 C Crss ~~a~~:rnc:~~~~a~::erse 40 4.0
f=l MHz
11
NF
Spot NOise Figure
50
5.0
dS
f=10 Hz. RG=l Mn
~n
EqUivalent Short· Circuit Input NOISe Voltage
200
200
nV
12
~
f=10 Hz
13
IIGSS1-IGSS21
Differential Gate Current
10
10
-
10
nA
VGS = -15 V. VDS = 0 V
TA =100'C
14 IDSSlilDSS2 Drain Current RatiO (Note 21 0.95 10 09 1.0 08 10 VGS = 0 V. VDS = 15 V ~M~~~~~~~~~~~~-+~~~~---+-~r----~~r-~~~~~~~~~~=-".---------I ~ A IVGS1-VGS2 1 Differential Gate·Source 5 10 15 ~ ~~__________V_o_lt_ag_e____________-1____1--~51-__~~10~__-1__~1~5 rnV 17 H
5
10
VDS = 15 V
10 = 50 pA ID=200pA
VDS=15V.ID=200PA'I-=T",s_=~-=25::;o;:C_ _ _ _ 1
15
"'i8 I t.IVGS1-VGS21 g~f~~~~~r~~~~;:ail~ote31 5 10 15 TA=25'C TS=100'C "'i8 ~~9f-Sl~i9-fi-2-----T~ra-n-sc-o-nd-u-ct-a-nc-e~R~at-,o~--1-0~.9~S~--1~.01-~0~.g~--1.0~--0~.S1---1.~01--_--~~-------------r~-------------I ~ 20
~----~--~(N~o~t-e~21--~~~-----1----I--~1---~~~---1--~1---4VDS=15V.ID=200pA 10051-90521
Dlff. Output Conductance
1.0
20
3.0
.umho
f= 1 kHz
*JEDEC registered data NOTES: 1. Individual FET charactenstlcs. The terminals of the FET not under test are open-circuited for these measurements .. 2. Assumes smaller value in numerator. 3. Measured at end points, T A and TS
Siliconix
NQP
3-19
--
p-channel JFETs designed for • • •
H Siliconix
Performance Curves PSI See Section 4
• Analog Switches • Commutators • Choppers • Integrator Reset Switch
BENEFITS Series-Shunt Switching when • Simplifies Combined with 2N4393, its N-Channel Complement Insertion Loss in Switching • Low Systems rDS(on) < 75 n (2N5114) Sample and Hold Aperture Time • Short Crss <7 pF
• High Off-Isolation
ID(off) < 500 pA
*ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Drain or Gate-Source Voltage (Note 1) Gate Current Total Device Dissipation, Free-Air (Derate 3mW/oC for TA> 25°C) Storage Temperature Range Lead Temperature (1/16" from case for 10 seconds)
Q
TO-18 See Section 6
30V .50mA 500mW -65 to +200°C
[\
.~:
300°C
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)
I~ I~ 31
I~t I~T
Moo
BVGSS
Gate-Source Breakdown Voltage
IGSS
Gate Reverse Current
Dram Cutoff Current
I-J~
VGS(off)
Gate-Source Cutoff Voltage
lOSS
Saturation Drain Current (Note 2)
I~
VGS(f)
Forward Gate-Source Voltage
I-jC 10
I~ Im~ 12,
~
13 'I
15 17
30
Moo
Dram-Source ON Voltage
2N5116
Max
30
Min
V
500
500
pA
10
1.0
1.0
IlA
-50P -10
-500
pA
-1.0
IlA
5
10
3
6
1
4
-30
-90
-15
-50
-5
-25
ReSistance
-1
-1
150
n
100'
150
n
25
25
27
Common·Source Reverse Transfer Capacitance
7
7
7
'd(on)
Turn-ON Delay'Tlme
6
10
25
10
20
35
6
8
20
15
30
60
If
Fall Time
If= 1 kHz If= 1 MHz
VOS - 0, VGS = 12 V (2N5114) VGS = 7 V 12N5115), VGS = 5 V (2N5116) 2N5114 10V
VOO
VGG
ns
RL RG
.~ 15K
01pF
V,N
41-
5'1 12K , ' iSAMPLING .,n 5,n SCOPE
Siliconix
2N5115 6V
2N5116 6V
20V
12 V
8V
130n
910n
2000 n
lOOn
220n
390 n
-15 mA
-7mA
-3mA
PSB
RG
,
3-20
pF
VGS=O,IO=O
VOS--15, VGS-O
10(on)
:.JEDEC registered data NOTES: 1. Due to symmetrical geometry these Units may be operated With source and dram leads Interchanged. 2 Pulse Test PW 300 Ils, duty cycle""" 2
VGS=O,IO=-l rnA
100
Crss
H
VOS = -15 V (2N5115, 2N5116) IG = -1 rnA, VOS = 0
75
Common-Source Input Capacitance
Rise Time
VOS = -15 V, 10 = -1 nA
VGS = 0, VOS = -18 V (2N5114)
VGS = 0,10 = -15 rnA (2N5114) 10 = -7 rnA 12N5115), 10 = -3 rnA 12N5116)
75
CISS
150·C
V
-0.6
Dram-Source ON
Turn·OFF Delay Time
V
-0.8
StatiC Drain-Source ON
Id(o")
VGS = 20V, VOS= 0
VOS = -15 V, VGS = 12 V (2N5114) VGS = 7 V (2N51151, 150·C VGS = 5 V (2N5115)
rnA
-13
'OS(on)
1r
IG = lilA, VOS = 0
-1
'dslon)
ReSistance
Test Conditions
Umt
Max
30
500
-10
VOSlon)
I , T
~r
Max
-500
10(off)
,A
2N5115
2N5114
Characteristic
,
INPUT PULSE
SAMPLING SCOPE
RISE TIME < 1 ns RISE TIME 0 4 ns FALL TIME < 1 ns INPUT RESISTANCE 10 Mn PULSE WIDTH 100 ns INPUT CAPACITANCE 1 5 pF REPETITION RATE 1 MHz
monolithic dual n-channel JFETs designed for • • •
• •
BENEFITS Minimum System Error and Calibration S mV Maximum Offset (2NS196, 97) Low Drift sp'v;oc Maximum (2NS196) Simplifies Amplifier· Design Low Output Conductance
• • •
G,
., ., ~~ G, 0 32
G2
~
UI
G2
D, s~
·2
VGS =-30V. Vos =0
1-
22
Ll.IVGS1-VGS2 1 Ll.T (Note 21
Gate-Source Differential Voltage Change With Temperature
isos1-Sos2 1
IS0·C
VOS = 20 V. 10 = 1 nA VOG =20V.10 =200~A 12S·C VOS=20V,VGS=0 VOS=20V.VGS-0 VOG - 20 V. 10 =200~A VOS-20V,VGS=0 VOG - 20 V, 10 =200~A
1= 1 kHz
VOS=20V. VGS=O
1- 100 Hz, RG = 10 Mn 1=1 kHz
2NS19B Min Max
2NS199 Min Max
S
5
5
S
nA
VOG - 20 V. 12S·C 10=2001'A
Umt
Test Conditions
095
1
0.9S
1 0.9S
1
o 9S
1
-
VOS= 20V, VGS =OV
0.97
1
0.97
1 0.9S
1
o 9S
1
-
1= 1 kHz
S
S
10
IS
S
10
20
40
rnV ~vfc
1
-
1= 1 MHz
2NS197 Min Max
S
Differential Output Conductance
:8
IG=-I~A.VOS=O
2NS196 Min Max
Differential Gate Current
),
Test Conditions
VRZ
Saturation Drain Current Ratio 10SS1 (Note 11 IOSS2 Transconductance Ratio 91s1 -9"2 (Note 11 IVGS1-VGS2 1 Differential Gate-Source Voltage
'2 G,
Bottom View
IIGI-IG2 1
10
20
40
1
1
1
p.mho
VOG =20 V. TA = 2S·C ID=200~A TB = 12S·C TA - _SSDC TB = 2S·C 1=1 kHz NQP
.. JEDEC registered data.
NOTES: 1 Assumes smaller value in numerator
2 Measured at end pOints, T A and TB
Siliconix
~
Z
Z
a ,
*ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) Characteristic Min Max Umt 1 pA -2S Gate Reverse Current IGSS 1'2 -SO nA 13' S BVGSS Gate-5ource Breakdown Voltage -~O I"'i' T VGS(olll Gate-Source Cutoff Voltage -0.7 -4 V A 15 T Gate-5ource Voltage -02 -3.B I-=- I VGS -15 pA 6 C IG Gate Operating Current -IS nA 1'1 Saturation Dram Current 07 7 rnA lOSS Common-5ource Forward Transconductance 1000 4000 91s I~9 Common-Source Forward Transconductance 700 1600 91s pmho 1m 0 90S Common-Source Output Conductance 50 lli" y 90S Common-Source Output Conductance 4 I-=- N C ISS Common-Source Input Capacitance 6 I..g. A pF 13 M Common-Source Reverse Transfer Capacitance 2 I - I C'SS 14 C NF Spot NOise Figure o.s dB 1nV IS 20 Equivalent Short·CircUlt Input NOise Voltage en
-0 'I
-0
°2
° 670
UI
CO
·2
a 5
~
Z
UI
TO·71 See .Section 6
Gate-Drain or Gate-Source Voltage .••.•••••.•..•• -SO V Gate Current ...•...••.......•...•..•...•.•. SOmA Device Dissipation (Each Side), T A = 85°C (Derate 2.56 mW;oC) ......•.•....•.•..••.. 250mW Total Device Dissipation, T A = 8SoC (Derate 4.3 mW;oC) ..•......•.•••.•....••• SOOmW Storage Temperature Range •..••..•.••..• -65 to +200°C
-
UI
~
Performance Curves NQP See Section 4
*ABSOLUTE MAXIMUM RATINGS (2S0C)
16 117 I-M A lB T 1- C 19 H I-I 20 N I_G 21
Z
Siliconix
DiHerential Amplifiers FEY Input Op Amps
Characteristic
~
H
3-21
n-channel JFETs
H Siliconix
designed for • • •
Performance .Curves NIP See Section 4
ON Resistance • Low Analog Switches • Commutators • Choppers Integrator Reset Capacitors • Low • Noise Audio Amplifiers
BENEFITS Insertion Loss • LowrOS(on) < 5 n (2N5432) • Small Error in Measurement Systems VOS(on) < 50 mV (2N5432) High Off-Isolation 10(off) < 200 pA High Speed ~(on) <4ns Low Noise Audio-Frequency Amplification en < 2 nVIy'Hz at 1 kHz Typical
• • •
*ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Orain or Gate-Source Voltage ......... -25 V Gate Current. .............................. 100 mA Drain Current .............................. 400 mA Total Device Dissipation at 25°C Free-Air Temperature (Note 1) ............... 300 mW Storage Temperature Range .............. -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C
TO-52 See Saction 6
.~:
G,C
~
s
D
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1
!-
2
1"3
:~5 AT
IGSS
Gate Reverse Current
BVGSS
Gate Source Breakdown Voltage
iOloll)
Dram Cutoff Current
VGSloff)
Gate-Source Cutoff Voltage
lOSS
Saturation Dram Current INote 2)
rOSlon)
Static Dram-Source ON Resistance
VOSlon)
Dram-Source ON Voltage
2N5432 Min
7
T I C
1"8 Ig 10 1- 0 11
rds(on)
Dram-Source ON Resistance
CISS I- Y N 12 Crss
Common-Source Input Capacitance
13 114
S
115 w -16
Common-Source Reverse Transfer
Capacitance
Min
I
-200 -25
-4
Max -200
pA
-200
-200
nA
-25 200
200
pA
200
200
200
nA
-9
-3
-4
-1
100
VGS=-15V.VOS=0
V
200
-10
Test Conditions
Unit
-200
-25
150 2
2N5434
Min
Max
-200
S
16" 1-
2N5433
Max
30
vOS=5V.vGS=-iOit
V
VOS=5V.10=3nA
mA
VOS=15V.VGS=0
7
10
ohm
50
70
100
mV
5
7
10
30
30
15
15
15
Id{on)
Turn-ON Delay Time
4
4
4
Ir
Rise Time
1
1
1
Id{olf)
Turn-OF F Delay Time
II
Fan Time
6
6
6
30
30
30
150"C
IG = -1 I'A. VOS = 0
5
30
I
150"C
VGS=0.10=10mA
ohm VGS-O.IO -0
1-1 kHz
pF
VOS=0.VGS=-10V
1= 1 MHz
ns
VOO=15V. 145 n (2N5432) VGS{on) = o. RL = 143 n (2N5433) VGS(olf) = -12 V. 140 n (2N5434) 10(on) = 10 mA
NIP
• JEOEC regIStered data. NOTES: 1. Derate linearly at the rate 01 2.3 mWi"C. 2. Pulse test reqUired pulsewldth 300 I's. duty cycle';; 3%.
voo
~~.~~' o ~ RL -
VIN
VOUT RG S
son
-=-
3-22
Siliconix
-:'
INPUT PULSE RISE TIME 0 25 ns FALL TIME 075 ns PULSE WIDTH 200 ns PULSE RATE 550 pps
SAMPLING SCOPE RISE TIME 0 4 ns INPUT RESISTANCE 10 M INPUT CAPACITANCE 1 5 pF
monolithic dual n-channel JFETs
H
Siliconix
designed for • • •
Performance Curves NQP See Section 4
and Medium Frequency • Low DiHerential Amplifiers
BENEFITS Minimum System Error and Calibra• tion
*ABSOLUTE MAXIMUM RATINGS (25°C) Any Lead-To-Case Voltage _ ••.•.••••••••••.... ±100 V Gate-Drain or Gate-Source Voltage .•••.••....••• -50 V Gate Current .••.••.••••••••••••••••••••.... 50 rnA Total Device Dissipation at (Each Side) ............• 250 mW 85°C Case Temperature (Both Sides) ....•..•.... 500 mW Power Derating (Each Side) ••••••••••••.• 2.86 mWrC (Both Sides) ••••.•••.•••••• 4.3 mWrC Storage Temperature Range .•••••.•••••. -65 to +250°C Lead Temperature (1/16" from case for 10 seconds) ••. 300°C
•
5 mV Offset Maximum (2N5452) Simplifies Amplifier Design Output Conductance Less that 1 J./mho TO·71 See Section 6
G,
~~ 8,
Characteristic
12.. 1.3.. 3 S 1- TA 4 T 15" CI
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown
Voltage
VGS(of!l VGS
Gate-Source Cutoff
Voltage
It I~
VGS(I)
lOSS
Gate-Source Voltage Gate-Source Forward Voltage Drain Saturation Current
I~9
gl.
Transconductance
90S
Common-Source Output Conductance
11't 11't I;';" 12
0 y
li4'
I
Ciss
N I- A 13 M Crs,
Cdgo 1- C 15 en 116 NF
Common-Source Forward
Common.source Input
Capacitance Common-Source Reverse Transfer Capacitance
D2 G, 30 0506
21 N 1_ G 22
"
Bottom View
(25a C
unless otherwise noted) 2N5452 2N5453 2N5454 Umt Min Max Min Max Min Max -100 -100 -100 pA -200 -200 -200 nA -50 -50 -50
02
G2
"
Test Conditions VGS=-30V, VOS=OV VOS=
I
•
ITA=150C
0 V,IG =-IIlA
-1 -4.5 -1 -4.5 -1 -4.5 V VOS =20 V, 10 =1 nA -0.2 -4.2 -0.2 -4.2 -0.2 -4.2 VOS =20V,Io =50llA 2 2 2 VOS=OV,IG=lmA 0.5 5.0 0.5 5.0 0.5 S.O mA VOS =20V, VGS =OV 1000 3000 1000 3000 1000 3000 1000 1000 1000 Ilmho VOS= 20V, VGS =0 V 3.0 3.0 3.0 VOS - 20 V,IO =200llA 1.0 1.0 1.0 4.0 4.0 4.0 VOS =20V, VGS =OV 1.2 1.2 1.2 pF
1= 1 kHz 1= 100 MHz
1= 1 MHz
1.5
1.5
VOG
20
20
!!Y. 20 VHz 0.5 dB
VOS =20V, VGS =0 V
1= 1 kHz
VDS=20V,VGS=OV,
1=100Hz
Input Noi.e Voltage
Common-Source Spot NOise Figure
0.5
0.5
0.95
1.0
0.95
1.0
0.97
5.0 0.4 0.5 1.0
10.0 0.8 1.0 0.97 1.0
0.25
0.25
0.95
1.0
0.95
15.0 2.0 2.5 1.0
NOTE: 1. Assumes smaller value
0.25
-
=10V,IS=OV
RG =10M!2 VOS =20V, VGS= OV
mV VOS
-
-
1= 1 kHz
1.5
Gate-Source Voltage
* JEDEC registered data
.~ ,
1 10 0 G2
EqUivalent Short Circuit
17 IOSSI/IOSS2 (Note 11 1Differential Gate-Source lB M IVGS1-VGS21 Voltage
1- C I~ ~
20
Drain-Gate Capacitance
Drain Saturation Current RatiO
liB ~
82
'2
0,
*ELECTRICAL CHARACTERISTICS
G2
=20 V,IO =200llA
T =25·C to -55·C T=25·C to +125·C
1= 1 kHz
#Jmhos
NQP In
numerator.
Silicanix
3-23
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NRL, NPA, NH See Section 4
General Purpose Amplifiers • Switches •
BENEFITS Low Cost •• Automated Insertion Package
Plastic TO·92 See Section 6
* ABSOLUTE MAXIMUM RATINGS (25"C)
.........................
25 V Drain-SouTce Voltage Drain-Gate Voltage ........•.................. 25 V Source-Gate Voltage .......................... 25 V Total Device Dissipation at 25"C ...•........... 310mW Derate above 25" C 2.82 mWrC Operating Junction Temperature ................ 135"C Storage Temperature Range .............. -65 to +150"C
GD
,~:
...................
s
c
o
c
0
s
G
Bottom View
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Chara.;teristic
l-1s
1.2.
T 3 A
1--;
T
I-I 5 C 6
1-
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown
Voltage Gate-Source Cutoff VGSloffi Voltage Saturation Dram lOSS Current
Ofs 0
7 I-V 8 N I_A
qO!
C ISS
9 M Crss I-I C 10 NF
Common-Source For-
ward Transconductance Common-Source Outout Conductance Common-Source Input Capacitance
Min
2N5457 Typ M•• -0.01
-25
M..
-0,01
-1.0 -200 -25
-60
2N5458 Typ M••
Min
-1.0 -200
-0.01 -25
-60
-1.0 -200
1.0 1,000
-6.0
-1.0
NOise Figure
nA
-60
Test Conditions
VGS·-15V,VOS·0
0
~ITA'+100 C
IG = -1 0 j.tA, VOS = 0
5.0
2.0
5,000 1,500
-70
-20
-8.0
9.0
4.0
16
5,500 2,000
6,000
VOS = 15 V, 10 = 10 nA rnA
VOS = 15 V, VGS = OINoteli f
p.mho
10
50
15
50
00
50
45
70
4.5
7.0
4.5
7.0
1.0
3.0
1.0
3.0
1.0
30
0.04
30
0.04
30
0.04
3.0
~
1 kHz
VOS= 15V,VGS=0 pF
Common~Source Ae-
verse Transfer Capacltance
Unit
V -0.5
..JEDEC registered data NOTE: 1. Pulse test pulsewldth = 2 ms.
3-24
2N5459 Typ M••
dB
1= 1 MHz
VOS -15 V, VGS - 0 RG = 1 Mil, f = 1 kHz NBW =1 Hz
NRL., NPA, NH
Siliconix
~
.H
p-channel JFET
Siliconix
designed for. • •
UI
~ oI
BENEFITS
~
Z
• Low Cost • Automated Insertion Package • Low Capacitance
• Amplifiers • Analog Switches
Z
UI
~
UI PIN CONFIGURATION TO-92
ABSOLUTE MAXIMUM RATINGS TA = 25°C unless otherwise noted Drain-Gate or Source-Gate Voltage 2N5460 - 2N5462 ....•.......................... 40V 2N5463 - 2N5465 ..........................••... 60V Gate Current ................................•.... 10 rnA Storage Temperature Range ........... -65°C to +200°C Operating Temperature Range .••....... -55°C to +150°C Lead Temperature (Soldering. 10 sec.) ........... +300°C Power Dissipation .............................. 310 mW Derate Above 25°C ...................... 2.8 mW/oC
o~:
Plastic
[)
BottomVI8W
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Min
Parameter 2N6460. 2N5461. 2N5462 BVGSS
VGS(off)
Typ
Max
Units
Gate-Source Breakdown Voltage
2NS463. 2NS464. 2NS465
Gate-Source Cutoff Voltage
I lOSS
VGS
gf,
V
IG = 10 "Adc. VOS = 0
V
VOS
60
2NS460. 2NS463
0.75
6.0
2NS461. 2NS464
1.0
7.5
2NS462. 2NS465
1.8
9.0
2NS460. 2N5461. 2N5462
5.0
2N5463. 2N5464, 2N5465
50
2NS460. 2N5461. 2N5462
10
2NS463. 2N5464. 2N5465
1.0
nA
Gate-Reverse Current
IGSSR
TA = 100'C
Zero-Gate Voltage Dram Current
Gate-Source Voltage
Forward Transadmlttance
Test Conditions
40
2NS460.2N5463
-10
-5.0
2N5461.2NS464
-2.0
-90
2N5462. 2N5465
-4.0
-16
2N5460. 2N5463
05
40
2NS461.2N5464
08
4.5
2NS462. 2N5465
15
6.0
2NS460. 2N5463
1000
4000
2NS461.2N5464
1500
5000
2NS462. 2N5465
2000
6000
VOS = 0
1.0 /LAde
VGS = 20V VGS == 30V
VGS = 20V
"A
VGS = 30V
rnA VOS= -15V
VGS = 0 '0=01 mA
V
'0"" -0.2 rnA '0= -04mA
",mho
f= 10kHz
go,
Output Admittance
75
IIomho
C'SS
Input Capacitance
5.0
7
pF
Coss
Reverse Transfer Capacitance
1.0
2.0
pF
NF
Common-Source NOise Figure
1.0
2.5
dB
on
EqUivalent Short-Circuit Input NOise Voltage
60
115
Siliconix
= 15 Vdc, 10 ""
nVI
vHz
VOS = -15V VGS = OV
f"'" 100 Hz BW"", 1 0 Hz
RG""'10MO(e n o nly)
3-25
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NH See Section 4
VHF/UHF Amplifiers • Mixers •• Oscillators Analog Switches
BENEFITS Low Cost • Completely Specified for 400 MHz
• Operation Analog Switch • LowVeryErrorLittle Charge Coupling
•
Crss < 1.0 pF * ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Gate Voltage .. '........................... 25 V Source Gate Voltage ............................ 25 V TO-92 See Section 6 Drain Current ............................... 30 mA Forward Gate Current ......................... 10 m~ Total Device Dissipation @25°C ................ 360 mW Derate above 25°C ..................... 3.27 mW;oC Operating Junction Temperature Range ..... -65 to +135°C Storage Temperature Range .............. -65 to +150°C S " Lead Temperature o " (1/16" from case for 10 seconds) ............... 240°C Bottom View *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)
,~:
Characteristic 1
-s .2T 3 A -T 4 I -SC 6
-
Gate Reverse Current
BV GSS ~~~~~urce Breakdown
lOSS
Saturation Drain Current Common-Source Forward
Transconductance
-1.0
-1,0
-200
-200
-25
-25 -4.0
-2.0
-6.0
10
5.0
4,0
10
8.0
20
Common-Source Output
50
Conductance
60
100
100
1,000
1,000
50
5.0
5.0
Common-Source Input
Common-Source Reverse Transfer Capacitance
10
1.0
1.0
Coss
Common-Source Output Capacitance
2.0
2.0
20
25
25
25
NF
NOise Figure
Gain
16
f =400 MHz
f= 400 MHz
pF
f= 1 MHz
VOS= 15V, VGS=O,RG= 1 MIl
3.0
f = 1 kHz
VOS = 15 V, 10 - 1 mA, RG - 1 kU
I~
Common-Source Power
f= 100 MHz VOS= 15V, VGS=O
f=100MHz
Capaci tance
20
20
4.0
4,0
f= 100 MHz VOS = 15 V, 10 = 4 mA, RG = 1 kU dB VOS = 15 V, 10
25 18
30
18
30
10
20
10
20
0
1 mA
VOS= 15V,lo=4mA
f = 400 MHz i= 100MHz f = 400 MHz
NH
• JEDEC registered data NOTE: Pulse Test PW 300 Jls. duty cycle ~3%
3-26
-~ "
100
C rss
,
Vos = 15 V, VGS = 0 (Note 1)
f = 400 MHz
15 M I-I 16 C
:~ 23
VOS = 15 V. 10 = 10 nA mA
Ilmhos
Re(YosI Conductance
Gp,
TA = +100°C
IG = -IliA. VOS = 0
f=100MHz
75
Common-Source Input
21
VGS = -20 V. VOS = 0
3,500
3.000
Ciss
119 1-
Test Conditions
75
14 N I_A
18
G 0
f = 1 kHz
R Common-Source Output e{yos) Conductance
117"
nA
GD
3,000 6,000 3,500 7,000 4,000 8,000
Common-Source Forward 2.500 Re(Yf,1 Transconductance
i-V
Unit
V
-05
9
""1'2 113 0
-1,0
-3.0
go,
!Ii"'
2N5486 Moo Max
-0.3
7
10
2N5485 MIn Max
-200 -25
VGS( I) Gate-Source Cutoff of Voltage
9f,
-8 -
IGSS
2N5484 Max
Min
Plastic
Silicanix
H
monolithic dual n-channels JFETs
Silicanix Performance Curve. NQP
See Section 4 BENEFITS Ultra· Low Noise en = 8 nVA/Hz at 10 Hz (Typical) en = 2 nVA/Hz at 1 kHz (Typical) Minimum System Error and Calibration 5 mV Offset Maximum CMRR> 100dB
designed for • • •
•
• Differential Amplifiers
•
ABSOLUTE MAXIMUM RATINGS (25°C)
TO·71
• Sea Section 6
Gate-Drain or Gate-Souce Voltage ............ -40 V Gate Current ...•.••....•....•...••.•.•••••.. 50 mA Device Dissipation (Each Side), TA = 85°C (Derate 2.0 mW/oC .....•......••..•.••••• 250 mW Total Device Dissipation T A = 85° C (Derate 3.0 mW/o C) ........•..•.....••••. 375 mW Storage Temperature Range ..•.••.. -65°C to +200°C Lead Temperature (1/16" from case for 30 seconds) ....••....• 300°C
G,
.. ~~
G2
.,
'2
G, D,
D:! 0' 06
,0 20
01 G2
,0
.,
G!.2
Bottom View
D,
"
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Min
Characteristic
1..2. I~
IGSS
I""; •
I~ 12 6
BVGSS T A VGSlotfl T V,,< I
e
17"
1-;'; I~
0 V N A M I
'13 I- e 14
'6
1,7
1'8
M A T
e
H I N 19 G
20
12'
IG - -, ~A, VOS =0 VOS -2DV,IO -1 nA
pA
VOG = 20 V, 10 = 200~A
-D2
-38 -'00
lOSS
SaturatIon Dram Current INote 1) INote 1)
""
'f,
Common-Source Forward Transconductance
90.
Common-Source Output Conductance
90' CISS
Common-Source Output Conductance
Crss
Common-Source Reverse Transfer Capacitance
'n
Equivalent Short CirCUIt Input NOise Voltage
INote 1)
05
-'00 75
1000
4000
500
1000
IOSS2 IVGS,-VGS2 1
Differential GateSource Voltage
VGS = ·30 V, VOS = 0
125°C
mA
VOS = 20V, VGS - 0 VOS=20V,VGS=0 VOG=20V,10=200~A
pmho
, pF
5 30 '5 10
12N55'5-24
Ma. Mon
'0 095
l>IVGS,-VGS2 1 Gate-Source Voltage Differential Dnft l>T (Note 3)
,
095
Ma.
Mon Ma.
'0
10
,
095
,
Mon
095
nV
f - 1 kHz
Unit
Test Conditions
Ma.
Mon Ma.
10
10
nA
VDG-20V. 10 = 200~A
,
-
VOS= 20V, VGS= 0
mV
,
090
'0
'5
'5
5
10
20
40
80
40
VDG=20V,
80
10 '" 1905 1-9052 1 9151 9h2
CMRR
Differential Output Conductance Transconductance Ratio (Notes 1 and 2) Common Mode Rejection Ratio (Note 41
0'
0'
097
1 097
'00
'00
,
0' 095
,
0'
0' 095
,
0.90
,
12SoC
TA::: 2SoC TB '" 125°C pvlc
20
--
f::: 10 Hz
VOG =20V, 10 = 200~A
.iif,'
5
10
f::: 1 MHz
VDS '" 20 V, VGS '" 0
5
5
f= 1 kHz
VOS - 20V, VGS - 0 VOG =20V, 10 -200~A
25 12N55'5-19 2N5520-24
150°C
nA
2N5515,20 2N5516,2' 2N5511.22 2N5518,23 2N5519.24
Differential Gate Current Saturatlo'n Dram Current Ratio (Notes 1 and 2)
Test Conditions
'0
Common-Source Input Capacitance
I-
1-
V
-4
Gate Operating Current
lOSS,
nA
-07
Mo"
,-
-250
Gate-Source Cutoff Voltage Gate Source Voltage
IG
IIG,-IG2 1
pA
-40
Characteristic
,5
Umt
Gate-Source Breakdown Voltage
Common-Source Forward Transconductance
8 1'9
I"'iii
Gate Reverse Current
Max
·25D
200~A
TA - -5SoC TB = 25°C
pmho f= 1 kHz
VDO - 10 to 20 V,
• JEDEC registered data NOTES. 1 Pulse test required, pulsewldth ::: 300 ~s, duty cycle 2 Assumes smaller value In numerator
dB
90
ID=200~A
NQP
3 Measured at end pomts, T A and TB
<:. 3%.
l>VOO ) ,.1.VDD 4 CMRR::: 2010910 ( l>IVGS,-VGS21
Siliconix
CI
10 V
3-27
monolithic dual n-channel JFETs
H
Siliconix
Performance CurvesNCB/NZB See Section 4
designed for • • •
•
BENEFITS
• •
General Purpose DiHerential Amplifiers
High Input Impedance IG< 5OpA. Minimum System Error and Calibration 5 mV Offset Maximum (2N5545) TO-71
*ABSOLUTE MAXIMUM RATINGS (25°C)
Se. Section 6
Gate-Drain or Gate-Source Voltage •••.•. , ...• , .••• -50 V Gate Current .• , . . • . . . , . , . . • . . • . • . . . . . . • . . . . , 30 mA Device Dissipation (Each Side), TA
= 25°C
G,
(Derate 1,67 mWrC) .. , ...••. , • . • . • . . • . . . . 250 mW
~~ 8,
Total Device Dissipation, T A = 25°C
02
82
'z Dz
(Derate 2.67 mWrC) ., . . . • • . . • . . . • . . . . . . . • 400 mW
fo
Storage Temperature Range •.. , .. , • . . . • . . -65 to +200°C
0' 02,
0,
Lead T emperatLJ re
o
(1/16" from case for 30 seconds) . , •.• , .••••.•.• 300°C
670 62
a
' "
'2 _aDz G,
Bottom View
0,
J\
8,
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1 12' 1'3 14' 15' 1'6
S T A BVGSS T VGS(off) I c IG lOSS 7 9fs 1'6 0 gos
'9
'iii
V
-50 -0.5
Gate-Source Breakdown Voltage
Gate-Source Cutoff Voltage Gate Operating Current Saturation Drain Current
0.5 1500
Common-Source Forward Transconductance
Common-Source Output Conductance
C1S5
Common-Source Input Capacitance
N Crss A M NF 11
Common-Source Reverse Transier Capacitance
.;..:..
-12
Min
Gate Reverse Current
IGSS
I'
2N5545 Min
Differential Gate Current
14
10SSl IOSS2
Saturation Drain Current
15 M IVGS1-VGS2 1 A T C H Il.IVGS1-VGS2 1 16 I Il.T N i- G 9fsl 17 9fs2 118 190s 1-9os21
-
Ratio (Note
1)
0.95
2N5546
Max 5
Min
1
0.90
V pA mA
Min
1
0.90
IG =-1 p.A, VOS=O VOS = 15 V.IO = 0.5 nA VOG = 15 V, 10 = 200 p.A VOS -15 V, VGS =0 f= 1 kHz
pF dB nV
v'HZ
1
Differential Gate-Source
5
10
15
5
10
15
10
20
40
Unit
f= 1 MHz 2N5545
VOG=15V, 2N5546 10 = 200p.A 2N5545 2N5546
10
20
VOG=15V,10=200p.A
-
VOS=15V,VGS=0
mV
VOG = 15V
40 VOG = 15V,I0 =200p.A
Transconductance Ratio
(Note 1) Differential Output Conductance
0.97
1 1
0.95
1 2
0.90
1
-
i= 10 HZ, RG = 1 Mfl f= 10 Hz
Test Conditions
nA
p.vfc
Differential Drift (Note 2)
L I TA= 150°
VOS=15V,VGS=0
Voltage Gate-Source Voltage
Test Conditions
VGS=-30V.VOS=0
p.mho
2N5547 Max 5
Max 5
• JEOEC registered data. NOTES:
TA=125°C
10 = 50p.A 10=200p.A TA = 25°C TB = 125°C TA = _55°C TB = 25°C f = 1 kHz
3 p.mho NCB/NZB
1 Assumes smaller value in numerator.
2. Measured at end pOints, TA and TB.
3-28
pA
-4.5 -50 8 6000 25 6 2
180 200
IIG1-IG21
-
nA
Equivalent Short CirCUit Input Noise Voltage
13
-
-150
Spot NOise Figure
Characteristic
-
Unit
3.5 5
C en
Max -100
Siliconix
matched dual n-channel JFETs designed for • • •
H Siliccnix
Performance Curves NCB See Section 4
Differential • Wideband Amplifiers • Commutators
BENEFITS Gain • High7500 Minimum 9fs • Specified Matching Characteristics ~mho
*ABSOLUTE MAXIMUM RATINGS (25°C)
TO·71 See Section 6
..........................
Gate-Gate Voltage ±80V Gate·Drain or Gate·Source Voltage .............. -40 V Gate Current ............................... 50mA Device Dissipation (Each Side), T A = 25°C (Derate 2.2 mW;oC) ....................... 325mW Total Device Dissipation, T A = 25°C (Derate 3.3 mW;oC) ..............•........ 650mW Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C
G,
~~ 8,
G2
52
82
o· 02 o.
G, 30
0,
0 7 G2
20
Gt
,0
8,
G2
Ii
"
Bottom View
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1
2" 3" 4" 5" "6 "7"
S T BVGSS A VGS(off) T I VGS(f) C lOSS
8
9"
i'ON
iT~
A
117
mA
VOS=15V,VGS=0
100
n
10 = 1 mA, VGS - 0
7500
12,500
Common-Source Output Conductance
Crss CISS
Common-Source Reverse Transfer CapaCitance Common-Source Input Capacitance Spot NOise Figure
1.0
Equivalent Short CircUit Input NOIse Voltage
50
9f.2
pF
12
2N5565
Min
Max
M,n
Max
095
1
0.95
1
0.95
1
5
10
20
10
25
50
Unit
-
095
1
25 0.90
1
50 0.90
1
f= 1 MHz f - 10Hz, Rg = 1M f= 10 Hz
v'Hz
Max
10
VOG=15V,10=2mA
dB nV
2N5566
*JEDEC registered data_ NOTES: 1. Pulse test required, pulse width 300 /JS, duty cycle 2. Assumes smaller value In numerator 3. Measured at ends POints, TA and TB.
f= 1 kHz
3
Test Conditions
VOS = 15 V, VGS = 0
mV
I'VI
Transconductance Ratio (Note. 1 and 2)
f= 100 MHz
Jlmho
Min
~IVGS1-VGS21 Gate-Source Voltage DifferentIal Oroft (Note 3) ~T 9f.l
f= 1 kHz
7000 45
2N5564
I I 150'C
VOS=OV,IG = 2 mA
30
90.
Differential Gate-Source Voltage
VOS = 15 V,IO = 1 nA
1.0
9f.
IVGS1-V GS2 1
V
5
Common-Source Forward Transconductance (Note 1)
Saturation Drain Current Ratio (Note. 1 and 2)
VGS=-20V, VOS=O IG=-lI'A,VOS=O
-3
rOS(on)
IOSS2
nA
-40 -05
Gate-Source Voltage
10SSl
Test Conditions
pA
-200
Characteristics
15 T -C H 16 I N G
Unit
Saturation Drain Current (Note 1) Static Dram Source ON Resistance
121 NF =C 13 en
14 -M
Max -100
Gate-5ource Breakdown Voltage Gate-Source Cutoff Voltage
0
y
Min
Gate-Reverse Current
IGSS
'c -
TA = 25'C TB = 125'C VOS=15V,10=2mA
TA = -55'C TB = 25'C f= 1 kHz
NCB ~
3%.
Silicanix
3-29
--
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NCB/NZB See Sedion 4
Switches • Analog Commutators • Choppers •
BENEFITS Low Cost • Industry Package • AutomaticStandard I nsertion • Fast Switching Package • trise < 5 ns (2N5638) I nsertion Loss • LowrDS(on} < 30 n (2N5638) Short Sample • Crss <4 pFand Hold Aperture Time
*~ABSOLUTE
MAXIMUM RATINGS (25°C) Drain-Source Breakdown Voltage ................ 30V Drain-Gate Breakdown Voltage 30V Source-Gate Breakdown Voltage ................. 30V Forward Gate Current ........................ 10mA Total Device Dissipation at TLEAD = 25°e ...... 625mW Derate above 25°e 5.68 mWre Operating Junction Temperature Range ..... -65 to +135°e Storage Temperature Range .............. -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) ............... 3000 e
Plastic
.................
TO-92 See Section 6
...................
o~:
GD s c o c
0
Bottom View
s
G
i*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
2N5638
Min
-
1
BVGSS
2. s
Gate-Source Breakdown Voltage
2N5639
Max Min
-30
2N5640
Max Min
-30
Unit
-30
V
-1.0
-1.0
-1.0
nA
3 T
-1.0
-1.0
-1.0
IJA
4A
1.0
1.0
1.0
nA
10
1.0
1.0 Ill\,
IGSS
Gate Reverse Current
Test Conditions
Max IG=-101JA.VOS=0 VGS=-15V.VOS=0
TA = +10o"C
VOS = 15 V. VGS = -12 V 12N5638) "GS = -8 V (2F\J5539}, '-'GS - -6'1 (21'J564C)
ST 1 -C
10(011)
Dram Cutoff Current
"6
lOSS
Saturation Dram Current
- 7
VOSlon)
Drain-Source ON Voltage
0.5
0.5
0.5
8
rOSlon)
Static Oram-5ource ON Resistance
30
60
100
9
rdslon)
Resistance
30
60
100
CIIS
Common-Source Input Capacitance
10
10
10
C rss
Common-Source Reverse Transfer Capacitance
4.0
4.0
4.0
Idlon)
Turn-On Oelay Time
4.0
6.0
8.0
VOO=10V
1010nl=12 mA 12N563BIRL = BOO
tr
Rise Time
5.0
8.0
10
VGSlon)= 0
'Olon)= 6,mA 12NS6391 RL = 1.6k
tdlo!!)
Turn-OFF Delay Time
5.0
10
15
tl
Fall Time
10
20
30
.1-
0 10 y I- N 11 12
1-
,ll S 14 W
115
.
50
25
5.0
mA
VOS = 20 V, VGS = 0 INote 1)
V
VGS = 0,10 = 12 mA 12NS63B),
-
TA=I~COC
10 = 6 rnA 12N5639), 10 = 3 rnA 12N5640)
Orain-5ource ON
JEOEC regIStered data
NOTE:
n
pF
nsec
10 = 1 mA, VGS = 0 VGS=O,IO=O
1=1 kHz
VGS = -12 V, VOS = 0
1= 1 MHz
VGSloff)= -10 V '010nl=3 mA 12N5640)
RL - VOD -lrDS(on! +501 '0
~~~~:!k..t= VGS(on! ~9"
1 Pulse test PW .;; 300 f.JSec, duty cycle';; 3.0%
--i
-----vGsc••,
1-'.-1.1.::: "",,'
~~tr
~~:~TBJ
10%
voo
IcPU~C GENERATOR
10Kn{
;_
~
~
n 12N563BI n 12N56391 RL =3.2k n 12N56401 NCB/NZB
o 1J'F TO 50 OHM SCOPE B
__
,~OO1"FI TO 50 OHM SCOPE A SCOPE TEKTRONIX 561A OR EQUIVALENT
3-30
Siliconix
,
matched dual n-channel JFETs designed for • • •
H Siliconix
Performance Curves See Section 4
NT
BENEFITS Matching Characteristics Specified • High Input Impedance
Differential Amplifiers • High Input • Impedance Amplifiers
•
= 1 pA Max (2N5906-9)
IG
TO·78 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-to-Gate Voltage ........................ ±80V Gate-Drain or Gate-Source Voltage ............... -40 V Gate Current ................................ 10 mA Device Dissipation (Each Side), T A = 25°C (Derate 3 mWrC) ........................ 367mW Total Device Dissipation, T A = 25°C (Derate 4 mWrC) ........................ 500mW Storage Temperature Range .........•.... -65 to + 200°C
0,
~~ s,
c 0,
62
82
S2
J
0 50 D2
'0
06 G2 7
20
0,
10
°2
S,
[
Bottom View
~\
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CharactenstlC
1-2. I~ I~ 4
S T A
:5' ~
'6' I...! 9
1;;1'2 1_ 13
114 1_
IGSS
Gate Reverse Current Gate-Source Breakdown Voltage
-40
VGS'off) VGS
Gate-Source Cutoff Voltage
·0.6
Gate Source Voltage
IG
Gate Operating Current
lOSS
Saturation Drain Current
9"
Transconductance
'0.
Common-Source Output Conductdnce
C ISS
Common-Source Input Capacitance
ens
Common Source Reverse Transfer Capacitance
0 V
N
~ I C
15
116
Transconductance
'0'
Common-Source Output Conductance
'n
EqUivalent Short CIrCUIt Input
NF
Spot NOise Figure
17 "Gl-IG2'
1-
IOSSl 19 I _ M IOSS2 A 9f51 20 T C 91s2
1- H
I~I
1VGS1-VGS2'
(Note 1)
Transconductance RatiO (Note 1)
Differential Gate-Source Voltage
N
22 G
123
1'24
A1VGS,-VGS2' Gate-Source Voltage DIfferential Drift INote 21 AT 19os1-90s2 1
Differential Output Conductance
pA
-5
nA
-45
V
VDS .... 10 V. 10 - , nA VOG '" 10 V,IO;\O 30p.A
-3
·1
pA
-3
-1
nA pA
500
70
260
70
250
3
3 , 5 50
pF
'50
1
1
02
0'
3
1
f = 1 kHz VOS'" 10V, VGS = 0 f= 1 MHz
j.Jmho
f'" 1 kHz
~
VOS= 10V.VGS=O
dB
2N5903.7
2N5904.8
2N5905.9
Mon
Mon
Mon
M,n
095
097
Max
Max
Max
20
20
20
20
02
02
02
02
1
095
1
097
1
095
1
095
--
VOG::: lOV.IO::: 30llA
2N5902,6 Max
125"C
12SOC
pmho
5
15 150
I I
-4
30
50
VGS=-20V.VOS=0 IG--lpA.VOS=O
500
Differential Gate Current Saturation Dram Current RatiO
-2
30
NOise Voltage
Characteristic
'18
-46 -4
-40 -06
Test Conditions
Unit
Max
5
Common-Source Forward
"Is
2N5906-9 M,n
-10
Common-Source Forward
'10
Max
-5
BVGSS
C
I,
2N6902-5 Mon
,
0.95
1
095
1
,
5
5
10
15
5
10
20
40
URit
nA
-
-
10
20
40
02
02
02
02
Test Conditions VOG=10V, 2N5902·5 10 =30I1A. 2N5906·9 TA"'25"C VOS=10V,VGS=O
f = 1 kHz
mV VOG::; lOV, TA- 2Soe T6 = 12SDC '0;:: 30pA
/NtC 5
f - lOa Hz, RG = 10 M
pmho
TA = _55°C TB = 25"C f= 1 kHz
• JEDEC regIstered data NOTES: 1. Assumes smaller value 1n numerator 2. Measured at end pOints, TA and TB
Siliconix
3·31
matched dual n-channel JFETs designed for • • •
-- • 0-
H
Siliconix
Performance Curves NZf..D See Section 4 BENEFITS through 100 MHz • HighgfsGain > 5000 ~mho
Wideband Differential Amplifiers
1ft
Z
~
• Matching Characteristics Specified TO·78 See SectIon 6
ABSOLUTE MAXIMUM RATINGS (25°C)
........................
±80V Gate·to·Gate Voltage Gate·Drain or Gate·Source Voltage ..........•... -25 V Gate Current ............................... 50 rnA Device Dissipation (Each Side), (Derate 3 mW;oC) .. 367mW Total Device Dissipation,(Derate 4 mW;oC) ....... 500mW Storage Temperature Range ...•........•. -65 to +200 0 c Lead Temperature (1/16" from case for 10 seconds) ............... 3000 C
G,
~~ s,
8,
c
405
30
G,
G2
S2
°2 06
0 '0
0 G2 7 10
0,
J ~, 0,
8,
Bottom View
[
*ELECTRICAL CHARACTERISTICS (250 unless otherwise noted) Min
Characteristic 1
12"
IGSS
Gate Reverse Current
S T A 15 T II
BVGSS
Gate·Source Breakdown Voltage
VGS(off)
Gate·Source Cutoff Voltage
VGS
Gate·Source Voltage
IG
Gate Operating Current
I~
l"t 6
C
1-
7
lOSS
8 19 Iiii' 0 y I 112 N A 113 M I 14 C
'iT
-
-
15
(Note 1)
-5 -4 -100
pA
VOG = 10 V,IO = 5 mA
-100
nA
7
40 10,000 10,000
90S
Common-Source Output Conductance
100
90S
Common~Source
150
Output Conductance
Common-Suurct! input Capacitance Common-Source Reverse Transfer Capacitance
1.2
Equivalent Short Circuit Input NOise Voltage
20
Spot Noise Figure
Differential Gate Current
17
IVGS1-V GS2 1
(Notes 1 and 2)
Min
20 0.95
Differential Gate-Source Voltage
1
Max 20
095
1
10
15
20
40
20 0.95
1
* JEDEC registered data
1
f= 100 MHz f= 1 kHz f = 100 MHz
pF
VOG=10V.10=5mA
nV
f= 10kHz RG = lOOK
dB Unit nA
-
f= 1 MHz f = 10 kHz
VFiZ
Tast Conditions VOG = 10 V. 10 = 5 mA
TA = 125°C
VOS= 10V, VGS=O
mV
40 0.95
TA = 125°C
f= 1 kHz
/lvtc
G Transconductance Ratio (Note 2)
2N5912
Max
TA = 150°C
VOS = 10 V, VGS = 0 V
/lmho
1
aIVGS1-V GS2 1 Gate-Source Voltage Differential Orift (Note 3) aT
-9fsl 9152
mA
5
Ciss Crss
Saturation Drain Current Ratio
-
TA = 25°C TB = 125°C VOG = 10 V, 10 = 5 mA
TA = _55°C TB = 25°C f= 1 kHz
NZF-D
NOTES: 1. Pulsewidth" 300 1lS. duty cycle" 3%
2_ Assumes smaller value In numerator. 3. Measured at end POints, T A and Ta.
3-32
VOS = 10 V. 10 = 1 nA
5000
Min
VGS = -15 V. VOS = 0
V
5000
IIGHG21
21
-1 -0.3
Forward Transconductance
en
Test Conditions
IG =-1 /lA, VOS=O
Common-Source Forward Transconductance
10SS1 IOSS2
-
nA
9fs
~
19 Il -I 20 N
-250
Common~Source
2N5911
A T C
pA
9fs
NF
M
-100
-25
Saturation Drain Current
Characteristic
-18 -
Unit
Max
Silicanix
monolithic dual n-channel JFETs
Performance Curves NNR See Sedion 4
1
BVGSS
-
2
IGSS
3 4 5
5 VGS(off) T A T VGSton)
,
C lOSS
~ 7
-
-
8 9
10 11
0
Y N A M I C
12
-
13 14 15
,M A
Gate-Source Cutoff Voltage
Min
-35 50
-35 -50
Saturation Dram Current (Note 2) Gate Current (Note 11
9f.
Common Source Forward Transconductance (Note 2)
9 0S
Common-Source Output Conductance
05
100
Input
0,
20
-35
-3.0
-15 -02
100
05
-30
Test Conditions Vos = O"G
pA
VOS ~ O'VGS VOS
V
100
VOS VG5
10V. =0
= 15V.
rnA pA
VOG
-5
nA
'0 = 200l'A
20
20
20
30
30
eN
EqUivalent Short-Circuit Input NOise Voltage
15
15
15
CMRR
Common-Mode Rejection RatiO INote 3)
5
Vos == 10V,
VOG
10
nV
25
25
300,,5 duty cycle ~ 3% 3 CMRR '" 2010910
~
Silicanix
= 15V. ~
= 1 kHz
f'" 1 MHz
15V.
f
=0
=::
dB
VoG '" 10 to 20 V. 10
rnV
VoG
6V
AlV GS1
4 Measured at end pomts. TA' Te and TC
VOS VG5
=
10 V. 10
=
VoG = 10V. 10 = 200"A
p'vrc
50
f
10 '" 200~A
,;Hi
95 10
-
TA - 125"C
VG5. 0
pF
95
= 200l'A
7000
30
=::
= 15 V, '0 = 1 nA
VOG == 15 V, '0
-5 2000
= -15V
-23
-5
7000
= -l~A
V
-5
2000
I G2\,
~ '2
Unit
M..
Crss
1 Appro)umatelv doubles for every lOGe mcrease m TA 2 Pulse test duration
S
,0
Bottom View
80
NOTES
Z
0-
07 G2
'1
80
Gate-Source Voltage Dlfferentlal Drift (Note 4)
N
06
-5
95
0-
02
o·
G, 30
80
Differential Gate-Source Voltage
=
82
Common Source Reverse Transfer Capacitance
T C IVGSl - VG52' H I 6f\/G51 - VGS~ N 6r G
0-
'2
2N690717A
Min
-23 05
8,
#lmho
Capacltdnce
N
Z
G2
-5
7000
.2000
M..
~~
-15 -02
-23
Voltage (on)
Common-~aurce
2N6906/6A
-15 -3.0
Gate-Source
IG
CISS
2N6905/5A Min Ma.
-02
=
TO·71
ABSOLUTE MAXIMUM RATINGS (25°C) G, Gate-Drain or Gate-Source Voltage ................... 35 V Forward Gate Current ............................. 10 mA Device Dissipation (each side) @ TA = 85°C derate 2.6 mW%OC ............... 300 mW Total Device Dissipation @ TA = 85°C) ................................. 500 mW Storage Temperature Range. '" ............ -65 to 200°C ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted)
-
0CII
BENEFITS • Minimum System Error and Calibration 5 mV Offset Maximum (2N6905) 95 dB Minimum CMRR (2N6905-07) • Low Drift with Temperature 10 p,vrc Maximum (2N6905) • Operates from Low Power Supply Voltages VGS(off) < 2.5 V • Simplified Amplifier Design Output Conductance < 2 p,mho • Low Noise en = 10 nVI v'Hz at 10Hz Typical
Noise FEY Input • Low Amplifiers and Medium Frequency • Low Amplifiers Impedance Converters • Precision • AmplifiersInstrumentation • Comparators
Gate-Source Breakdown Voltage erslon Gate Reverse Current (Note 11
Z
Siliconix
designed for • • •
Charaderistic
N
H
DO
~
10 Hz
=
200"A
200"A
TA Ta TC
=::
=
55"C. +25GC +125GC
lVOD = 10V
V GS2 1
3-33
-So n-channel JFET
IE
---en... designed for. • •
Siliconix
Performance Curves NBB See Section 4
... • Infra-red Detector Micropower Pre-amplifier Z • o
BENEFITS • Reduced Component Count, Lower Circuitry Cost Input O,!,er Voltage Clamp by Two Built·in Diodes • Low Noise • Low Leakage
0-0
~
•
-- • o o
...
-
•
Transducer Impedance Conve'rter Hearing Aid Pre-amplifier
D
G
U;
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage . ......... -30V Gate-Current ................................. 10 mA Total Device Dissipation (25°C) ............. 300 mW Storage Temperature Range ........... -55 to 200°C Operating Temperature Range ......... -55 to 150°C Power Derating .......................... 2.4 mWrC Lead Temperature (10 seconds @ 1/16") •••.•••. 300°C .,
4th
~
-8 ---... I o
en -0
Z
~
.~.
* r--~~~ll S
I
II I
[)llb :
s
:
L__ J I
I,I"
I.
r---1
I
'l ___ . ,l
L_________ J
0
TO·72
11I
1---""'(.8-----1
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 2N690B
Characteristics
Min
BVGSS
Gate·Source Breakdown Voltage (Note 1)
IGSS
Gate Reverse Current (Note 1)
VGS(off)
Gate Source Cutoff Voltage (Note 1)
lOSS
Saturation Drain Current (Note 1)
9ls
Common~Source Forward Transconductance (Note 1)
gos
Common~Source
Max
2N6909 Min
Max
-30
-30 Typ
~
-25
-0.3
-1.B
0.05 100
Typ
2N6910
Min
Unit
Max
-30 Typ
~
-1 pA VG4
~
0 V. VOS
~
V
IG
pA
VGS ~ -15V. VOS ~ OV. VG4 ~ OV
0V
~
-25
~
-25
-0.6
-2.3
-0.9
-3.5
V
VOS ~ 10 V. 10 ~ 1 nA. VG4 - 0 V
2.0
0.20
3.5
0.6
5.0
rnA
VOS - 10 V. VGS - 0 V. VG4 - 0 V
3000
400
3500
1200
4000
-
Output Conductance
50
(Note 1)
Test Conditions
75
100
I"'mlio
VUS - 15 V, VGS = 0 V. YG4
=0 V
Ciss
Common-Source Input Capacitance
5.0
5.0
5.0
pF
VOS ~ 10V. VGS ~ 0 V. I ~ 1 MHz
Crss
Common-Source Reverse Transfer Capacitance (Note 1)
2.0
2,0
2.0
pF
VOS ~ 10 V. VGS ~ 0 V. VG4 - 0 V. FREQ ~ 1 MHz
en
Equivalent Short CirCUit Input NOIse Voltage
25
.JHZ
VGS(I)
Gate-Source Forward Voltage (Note 1)
± 1.2
V
IG - ±0.5 rnA. VOS - 0 V. V04 - 0 V
:t10
pA
VG4
dB
VOS ~ 15 V. VGS ~ 0 V. RGEN ~ 1 MEG. F ~ 1 kHz
IG4 NF
Forward Gate Diodes Current (Note 2)
Typ
fo-
25
Typ
~
± 1.2
~ ±1
Noise Figure
:t10 1.0
25 :t
Typ
~
Typ
~
1.2
::t:10
Typ
r---;:,
1.0
1.0
NOTES: 1. Measured when the gate lead is shorted to the 4th lead. i.e •• characteristIc olthe FET only (VG4 2. FOlWard diodes' current when a voltage Is applied between the gate and the 4th lead. Device Available in Surface Mount (SOT·l43)-Order Number
3·34
~
SST690B. SST6909. SST6910
Siliconix
nV
VOS ~ 10V. VGS ~ OV. I ~ 10Hz
~
±100 mV
NBB ~
0 V).
n-channel JFET Amplifier
H
Siliconix
Performance Curves NBB See Sedion 4
designed for • • •
•• • •
-_.
--eft
BENEFITS • Reduces Component Count, Lower Circuitry Cost • Input Over Voltage Clamp by Two Built-in Diodes • Monolithic Source Resistor • Low Noise • Low Leakage
Infra-red Detector Micropower Pre-amplifier Transducer Impedance Converter Hearing Aid Pre-amplifier
~.
G'
:. 1 !
ABSOLUTE MAXIMUM RATINGS (25°C) Maximum Supply Voltage (VDD) .............. -30 V Gate Current ................................ 100 mA Total Device Dissipation (25°C) ............. 300 mW Storage Temperature Range ........... -55 to 200°C Operating Temperature Range.......... -55 to 150°C Power Derating .......................... 2.4 mWfC Lead Temperature (10 seconds @ 1116") ........ 300°C
~,
o o
r-----------,1 r ~i':'
I
I
,---, I
:
s
:
I ~-, n
b '. ,---, I!
6 HiL __ J
I
0
I ! G! I I"==-< ,--_. II IL __________ JI
TO-12
!-11r.as-----!
I l D!
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristi~
Min
Max
Unit
VGs(ope,)
Gate-Source Voltage
0.15
2.8
V
IO(oper)
Drain Current
5.0
85
p.A
"n
Equivalent Short Circuit Input NOise Voltage
10
25
IG4
Forward Signal Current
±1
±10
Av
Source Follower Gain (AV)
Z(m)
Input Impedance
Z(out)
Output Impedance
Vf
Forward Voltage
IG
Gate Leakage
NF
0.75
30
Current
Typ
= 20 V. VG4 = 0 V (Note 1)
VOS = 10 V. VGS = 0 V FREQ = 100 Hz
pA
VGS = ±100 mV
VN
VOO = 10 V. FREQ
100
Gil
VGS'" ±100 mV
Kil
VOO - 10 V. FREQ - 1 kHz. VG4 = 0 V (Note 1)
45
1
70
= 1 kHz
IG = ±0.5 mAo VOS = 0 V, V04 = 0 V
±1.0
V
25
pA
VOO - 15 V, VG4 = 0 V (Note 1)
dB
VOO = 15 V, VG4 = 0 V. RGEN = 1 Mil. F = 1 kHz
1
NOTE: 1. VG4 = 0 V, Test CondItion implies the gate and 4th lead are shorted. In
'V'HZ
VOG
0.85
Noise Figure
Device Available
nV
Test Conditions
NBB
Surface Mount (SOT 1431-0rder Number-SST6911
Siliconix
3-35
IEII
z (II)
H enhancement-type p-channel MOSFETs Perfonnance Curves MRA designed for ••• See Sedion 4
Siliconix
Input Impedance • Ultra-High Amplifiers
• •
BENEFITS Rugged MOS Gate Minimizes Handling • Problems
Eledrometers Smoke Detedors pH Meters Digital Switching Interfaces Analog Switching
± 125 V Transient Capability Gate-Leakage • LowTypically 0_02 pA Off-Isolation as a Switch • HighlOSS < 200 pA
*ABSOLUTE MAXIMUM RATINGS (25°C) TO-72 See Section 6
Drain-Source or Gate-Source Voltage 3N 163 _..... -40 V Drain-Source or Gate-Source Voltage 3N 164 ...... -30 V Transient Gate-Source Voltage (Note 1) ......... ±125 V Drain Current ............................. -50 rnA Storage Temperature -65 to +200°C Operating Junction Temperature ......... -55 to +150°C Total Device Dissipation (Derate 3.0 mWrC to 150°C) .............. 375mW Lead Temperature 1/16" From Case For 10 Seconds .. 265°C
.................
~
JD
Go---J~B
1.
B.C
D
G
*ELECTRICAL CHARACTERISTICS (25°C and VBS = 0 unless otherwise noted) Characteristic
3N163 Min
IGSS
Min
Gate-Body Leakage Current
----s ----=-----f
T A T
~I
g C
-----;0
----;;-----;2 13 0
BVOSS Drain-Source Breakdown Voltage BVSOS Source-Dram Breakdown Voltage Gate Source Voltage VGS VGS 'h Gate-Source Threshold Voltage Drain Cutoff Current lOSS Source Cutoff Current ISOS 'O'onl ON Drain Current
14 N gos --;SA C ISS
!_M
Common-5ource Forward Transconductance
l---;s
'd(onl
Turn-ON Delay Time
I~W
'r 'off
RiseTime
20
-30 -30 -2.5 -2
-6.5 -5 -200 -400 -30 250 4,000
-SOO
-30 300
1,000
4,000
2.5
2.5
0.7
0.7
3
3 12 24 50
VGS' -30 V, VOS' 0
V oA mA n
jlmho
TA -12UOC
10 =-101lA, VGS' 0 'S·-10IlA, "GO· VRO - 0 VOS' -15 V,IO' -0.5 mA VOS' Vr.S, '0' -101lA VOS' -15 V, VGS' 0 VSO· -20 V, VGO = 0, VOB VOS' -15 V, VGS - -10 V VGS' -20 V,IO =-1001lA VOS' -15 V, 10·-10mA
NOTE: 1, Transient gate-source voltage JEDEC registered a. ±125 V. vlN 5011
d RG
Siliconix
c
0
f'l kHz
pF
VOS' -15 V,IO' -10 mA f= 1 MHz
ns
VOO=-15V 'O(onl '-10mA RG' RL = 1.5 kn
MRA
VDO
*JEDEC registered data
3-36
TA'125"C
pA
25~
12 24 50
Turn-OFF Time
-£.5 -5 -400
-3
250
Common-Source Input Capacitance
Coss
Crss
2,000
Common-Source Output Conductance Common-Source Reverse Transfer Capacitance Common-Source Output Capacitance
I~S
-5
rOS(an) Dram-Source ON Resistance
9fs
-y
16 I i----;J C
-40 -40 -3 -2
Test Conditions
Unit
VGS = -40 V, VOS' 0 -10 -26
4
-Ss
Max
-10 -25
---!..
----4 ----.2.
3N164
Max
vOUT INPUT PULSE RISE TIME..:;; 2 ns PULSE WIDTH ~ 200 nl
SAMPLING SCOPE
t,<; 02ns CIN"'2rF RIN;>10Mn
n-channel JFETs designed for • • •
H
Silicanix Performance Curves NH See Section 4
VHF/UHF Amplifiers • Oscillators • Mixers •
BENEFITS • Wide Band High Yfs/Ciss Ratio Low Feedback Capacitance Crss = 0.85 pF Typical
•
• Selected I DSS and V GS Ranges
ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Gate Voltage ............................. 30 V Drain-Source Voltage ........................... 30 V Reverse Gate-Source Voltage ...................... 30 V Forward Gate Current ......................... 10 mA Continuous Device Dissipation at (or Below) 25°C Free Air Temperature (Note 1) ................................ 200 mW Storage Temperature Range ............ -55°C to +150°C Lead Temperature (1/16" from case for 10 seconds) ........ , ...... 260°C
TO·92 See Section 6 • INSULATED CASE • INSENSITIVE TO LIGHT
,~:
s
G
a
l!) G
0
s
0
Bottom View
ELECTRICAL CHARACTERISTICS (25°C) Characteristic 1
-
BVGSS
2
IGSS
Gate Reverse Current
3' -S
lOSS
Saturation Dram Current
-
~I 7
-
-9 - 10 11
-
VGS
0 12 Y C rss _N 13 A 1 "14M -g,s
Unit
Test Conditions
V
IG = -1 j.lA, VOS = 0
nA
VGS=-20V,VOS=0
25
rnA
VOS = 15 V, VGS = 0
BF244A
2.0
6.5
rnA
Selected Into Following BF244B Groups (Note 2) BF244C
6.0
15
rnA
12
25
rnA
Corresponding to lOSS groups
BF244A
-{).4
-2.2
V
BF244B
-1.6
-3.8
V
BF244C
-3.2
-7.5
V
-{l.5
-8
V
6.5
mrnho
VGS(off) Gate·Source Cutoff Voltage gls
Max
-5
C
B
Typ
-30
2
4
T 5 A lOSS -T
Min
Gate·Saurce Breakdown Voltage
Small·Signal Comman·Source Forward Transconductance Common-Source Reverse Transfer Capacitance Input Resistance
' 15 C
C ISS
Common-Source Input Capacitance
""16
Coss
Common-Source Output Capacitance
3
5.5 0.85 .
pF
VOS = 15 V,IO = 200j.lA
VOS = 15 V,IO = 1Oj.lA VOS=15V,VGS=O,I=1 kHz VOS=20V, VGS=-1 V
I 1= 100 MHz
25
kn
10
kn
VOS = 20 V, V'GS =-1 V
4
pF
VOS=20V,VGS=-1 V
1.6
pF
VOS = 20V, VGS =-1 V
NOTE: 1. Oerate linearly to 125°C Iree·aor temperature at the rate 01 2.5 mwtC. 2. Pulse test PW .. 300 j.lS, duty cycle .. 3%.
Silicanix
-
VOS = 15 V, VGS = 0
I 1=200MHz
NH
3-37
n-channel JFETs designed for • • •
H
Billcanix Performance Curves NH See Sedion 4
VHF/UHF Amplifiers • Oscillators • Mixers •
BENEFITS • Wide Band High Yfs/Ciss Ratio Low Feedback Capacitance Crss = 0.85 pF Typical
•
• Selected I DSS and V GS Ranges ABSOLUTE MAXIMUM RATINGS (25°C) Drain·Gate Voltage ............................. 30 V Drain-Source Voltage ........................... 30 V Reverse Gate-Source Voltage ...................... 30 V Forward Gate Current ......................... 10 mA Continuous Device Dissipation at (or Below) 25°C Free Air Temperature (Note 1) ................................ 200 mW Storage Temperature Range ............ -55°C to +150°C Lead Temperature (1/16" from case for 10 seconds) ............... 260°C
TO·92
See Section 6 • INSULATED CASE
• INSENSITIVE TO LIGHT
.~:
Characteristic
-
Min
BVGSS
Gate-Source Breakdown Voltage
2
IGSS
Gate Reverse Current
iOSS
Saturation Drain Current
--;:I-=- S
BF245A
!~
T 5 A 1- T
I~
1---2.. 8 Ig
lOSS
I C
VGS
Selected Into Following BF245B Groups INote 21 BF245C
Corresponding to lOSS groups
110 11
gfs
1-0 12 V Crss I- N 13 A 1 M g,s
114
Typ
15 C
VGS = -20V. VOS =0 VOS = 15 V. VGS = 0
20
65
rnA
6.0
15
rnA
12
25
rnA
-2.2
V V
BF245C
-3.2
-75
V
-{)5 3
55 085
Common·Source Input Capacitance Common-Source Output Capacitance
-8
V
65
mmho
pF
VOS= 15V. VGS =0
VOS=15V.IO=200 /lA
VOS=15V.IO=IO/lA VOS = 15 V. VGS = O. f = 1 kHz VOS= 20V. VGS =
1V
I f=100MHz
25
k!l
10
kH
4
pF
VOS = 20 V. VGS = --1 V
16
pF
VOS = 20 V. VGS = -1 V
Input Resistance
CISS
Test Conditions IG = -1 /lA. VOS = 0
nA
-3.8
Coss
C
rnA
16
Common-Source Reverse Transfer Capacitance
C
S
25
-{).4
Transconductance
G
-5
BF245A
Smail-Signal Common-Source Forward
DO
2
NOTE: 1. Derate linearly to 125°C free-air temperature at the rate of 2 5 mWrC 2. Pulse test PW " 300 /lS. duty cycle'" 3%
3-38
Unit V
I-I
""16
Max
-30
BF245B
VGSloff) Gate·Source Cutoff Voltage
D
G
Bottom View
ELECTRICAL CHARACTERISTICS (25°C)
1
s
Siliconix
VOS=20V.VGS=-IV
I f = 200 MHz I'JH
n-channel JFETs designed for • • •
m
H
"T1
Slllcanlx
en
en
rl>
Performance Curves NH See Sedion 4
• UHF Amplifiers • Mixers • Oscillators
N
m "'T1
N
en
BENEFITS
• •
en
r-
High Gain Gpg = 14 dB Typical at 800 MHz Selected lOSS Ranges
m m "'T1
N
en
en
ABSOLUTE MAXIMUM RATINGS
r-
Drain-Gate Voltage _............................ 30 V Drain-Source Voltage ........................... 30 V Reverse Gate-Source Voltage ...................... 30 V Forward Gate Current ......................... 50 mA Total Device Dissipation @ 25°C ................ 350 mW Derate above 25°C ...................... 3.5 mW/oC Storage Temperature Range .............. -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) ............. , .260°C
o
TO-92 See Section 6
• INSULATED CASE • INSENSITIVE TO LIGHT
o~:
s
DD
Min
Characteristic
-2
3'
-4 -5
6"
-:; 8
-
BVOGO Drain-Gate Breakdown Veltage S IGSS T VGSloffl A T lOSS I C lOSS
9fs
9
gos 0 y Ciss N 11 A Crss M 12 I flYfs) C Gpg 13
10
-
-
14
NF
Typ
-5 -7.5
-0.5
Drain Current at Zero Gate Voltage INote 1)
3
12
V
18
mA
3
7
mA
BF256LB
6
13
mA
BF256LC
11
18
mA
INote 1) Common-Source Output
Conductance
4.5
5.5
VGS=-20V,VOS=0 VOS =15V,IO = 10nA
-
/lmho 4.5
pF
1.2
pF
f=l MHz
Capacitance
Cutoff Frequencv INote 2)
Test Conditions IG = -1 /lA, VOS = 0
mmho
50
Common-Source Reverse Transfer
Common-Gate Neutralized Insertion
e
VOS=15V,VGS=0 f = 1 kHz
Common-Source Input Capacitance
Noise Figure
nA
BF256LA
Common-Source Forward Transconductance
Power Gain
Unit V
Gate-Reverse Current
Gate-Source Cutoff Voltage
Selected into Following Groups INote 1)
Max
-30
e
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)
1
S
G
1000
MHz
14
d8
VOS = 10 V, RS = 47
n, f = 800 MHz
7.5
dB
VOS = 15 V, RS = 47
n, f
= 800 MHz
NH NOTES: 1. Pulse test PW .. 300 /lS, duty cvcle .. 2%. 2. Frequency at which the real part of the forward transconductance falls 3 dB relative to the value at 1 kHz.
Siliconix
3-39
H current regulator diodes Performance Curves designed for • • • NKL NKM NKO See Section 4 Siliconix
Regulation • Current Limiting • Current • Biasing • Low Voltage References
BENEFITS Simple Two Lead Current Source Current Insensitive to Temperature Changes Temperature Coefficient Better Than 3000 ppm/oC On All Devices • TO-18 Package for Improved Current Control Simplifies Floating Current Sources No Power Supplies Required 1V Operation
• •
• • ABSOLUTE MAXIMUM RATINGS (25°C)
TO-18 (MODIFIED) See Section 6
.....................
Peak Operating Voltage 100 V Forward Current 20 mA Reverse Current .•••••••.•..•.••.•..••.•.•... 50 mA Thermal Resistance 8JC 100°C/W Power Dissipation at TC = 25°C 1.25 W Operating Junction Temperature -55 to +150°C Storage Temperature· .••••.•••••.•.. -55° to +200° C
............................ .................. ............ .....
a
z.
Symbol
'F' RegUlatorCUMnt
Test Cortditlanl
Un..
z.
Dynamic ImpHlince
Y,=Z5Y
V,_25Y
(Note')
(Note 2)
(mAl
Mll
.om
Min
M..
CR022
022
0198
0242
CnO.014 CR027 CR030 CR033
02.
UJlb
Ulb4
021 030 033
0243 0270 0297
CR039 CR043 CR047 CROS6 CR062
039 0.3 047 056 062
CR068 CR075 CR082 CR091 CRloo
CR,,.
M..
T,.
"
038
33 29 26 21
, 0 10 10 10 10
100 087 075 056 047
20 18 16 13 115
0400 0335 0290 0240 0205
Min
0297 0330 0363
115 '0' 9' 85 78
275 235 195 '60 135
0351 0387 0423 0504 0559
0429 0473 0517 0616 0682
410 330 270 '90 155
69 6' 56 50
068 075 082 091 100
0612 0675 0738 0819 0900
0748 0825 0902 '001 1100
135 115 100 088 080
85 72 60 52
0990 '08 117 126 135
1210 132 143 '54 165
070 064 '059 054 051
38 33
CRl30 CRl40 CRtSO
110 120 130 140 150
CR160 CRt80 CR200 CR220 CR240
'60 180 200 220 240
'44 '62
176 198 220 242 264
0475 0420 0395 0370 0345
CR270 CR300 CR330 CR3SO CR390
270 300 330 360 390
297 330 363 396 429
CR4]O CR470 CR530
430 470 530
367 423
473
'77
563
,80 198 216 243 270 297
32' 351
517
Peak OpentIng Voltage
YF" 25Y
Vf = 2SV
INote4)
-SS·C.;; TA..;" 25"C
O"C~TA"';5O"C
Y,=25V 2S·C ... TA ..::; 125"C
MlnVottI
Typ ppml"C
TypppmrC
Typ ppmt"C
+2600 +2400 +2100 +1800 +1500
+'900 +1650 +1400 +1150 +950
+1220
051 055
'00 '00 '00 '00 '00
, 05 105 110 120 130
065 071 077 09' 100
'00 '00 '00 100 100
+1050 +800 +550 +50 -200
+800 +350 +'50 -250 -450
+150 0 -200
170 150 130 110 095
115 120 125 129 135
070 075 080 085 095
100 100 100 100 100
250 200 -25 -200 -425
-SO
-375 -475 -550 -675 -825
25 22
0180 0155 0135 0115 0105
080 071 060 052 0'6
140 ,.5 150 155 160
115 125 130 135
100 '00 100 100 '00
-'50 -675 -1050 -1125 -1150
'00 095 088 080 075
0092 0074 006' 0052 0044
035 030 025 022 020
165 175 185 195 200
050 055 060 065 070
'00 100 100 100 100
1300 '000 425 125
875 650 250 0 -225
0320 0300 0280 0265 0255
068 060 056 052 048
0035 0029 0024 0020 0017
0'8 014 013 011 010
215 225 235 2SO 260
075 085 090 085 100
100 100 100 '00 100
-'50 -375 -650 -825 -925
-425 -550 -750 -8SO -900
0245 0235 0220
045 040 035
0014 0012 0010
009 008 005
275 290 310
110 "0 170
100 '00 '00
-1025 -1100 -1200
-1000 -1100 -1200
•• 44
32
D.' 0.6
..
,
Pulse test-steady state currents may very Pulse test-steady state Impedances may vary Main Vf required to Insu,e IF > 08 IF1!mln) Max VF where IF < 1 1 IF1(maxlls guaranteed
3-40
G
It: .. 11 IF1IMex)
NOTES: 1 2 3 4
Temperature CoefficIent rrypals)
• 0 M
VoII.
T,.
T,.
CR110
= 08 "11Mlnl (Note 3)
MO
90 .0 70 60 50
Min
I,
VF=6V
A
.,
POV
VL
KlMMllmpedancti lImltlngVoltqe
C, CASE
CATHODE
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Parameter
~
Siliconix
725
-150 -.00
-550 -925
-toOO -1200 -1300 -1250 -1225
+1050 +800 +600 +'50
•
K L
-500 -700
-9SO -1050 -1150 -1225 -1275
• K
M
400 225 0 -225 -400
-600 -700 -875
-'-1100 000
-1200
-'-1400 300
••
0
current regulator diodes designed for . . .
H
Silicanix
• Current Regulation • Current Limiting BENEFITS • Simple Two Lead Current Source • Current Insensitive to Temperature Changes Temperature Coefficient Better Than O.15%/"C On All Devices • TO-18 Package for Improved Current Control • Simplifies Floating Current Sources No Power Supplies Required
• Biasing • Low Voltage References ABSOLUTE MAXIMUM RATINGS (25°C) Peak Operating Voltage ...................... 100 V Forward Current. . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA Reverse Current ........................... 50 mA Thermal Resistance 8JC ..................... 100°C/W Power Dissipation atTc = 25°C ................ 1.25 W Operating Junction Temperature ........ -55 to +150°C Storage Temperature .................. -55 to +200°C
TO-1B (MODIFIED) See Seclion 6
ANODE
C, CASE CATHODE
A
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Svmbol Parameter Test Conditions
POV
IFI
Zd
VL
Peak Operating Voltage
Regulator Current
Dynamic Impedance
Limiting Voltage
IF = 1.1Fl(Max)
VF= 25V
VF= 25V
IF = 0.8 I Fl(Min)
(Note 1)
(Note 2)
(Note 3)
(Note 4)
Units
Maximum Volts
(mn)
(rnA)
Nom
Min
Max
Min
(V) TVp
Max
TVp
1.0
0.5
9.5
1.05
0.7
CRR0240
100
0.240
O.IBO
0.300
5
CRR0360
100
0.360
0.270
0.450
2.5
CRR0560
100
0560
0.420
0.700
12
6
1.30
1.1
CRROBOO
100
O.BOO
0.600
1.000
O.B
5.2
1.35
0.85
13
CRR1250
100
1.250
0.937
1.560
0.5
2.5
1.60
1.3
CRR1950
100
1.950
1.460
2.440
0.37
O.B
1.95
0.65
CRR2900
100
2.900
2.160
3.600
0.28
0.56
2.35
0.9
CRR4300
100
4.300
3.240
5.400
0.22
0.35
3.00
1.46
CRR0240-560 -NKL CRR080D-1250 - NKM CRR1950-4300 - NKO
NOTES: 1. Max VF where IF< 1.11Fl (max) is guaranteed. 2. Pulse test - steady state current may vary. 3. Pulse test - steady state impedances may vary. 4. Min VF required to insure IF
> 0.8
IF1 (min).
Silicanix
3-41
-
APPLICATIONS
Parallel Operation
The current-limiter diode is the electrical dual of the Zener diode.
CR,
~+v,z;;-
ITOTAL=ICR,+ICR2 , 1 = + Zd2
-v
Current-Limiter Diode V-I Characteristic
CR2
(When I,
Zd1
Series Operation 12 -11
< 12, that is
< 0.2 I,)
EQUIVALENT CIRCUIT
I,
I, 1
c,
Z.
VOLTS
POISICR1) < POALLOWED
BV (FOR SERIES DEVICES)
=BV,+ BV2
RS 1
SYMBOLS AND DEFINITIONS
Rs
A C
Forward Current (Anode Positive) Current at a specified Test Voltage, VF
Collector or Drain Hi-Z Load Resistors
Constant-Current Timing Circuits
Anode (Drain) Cathode (Source and Gate Shorted)
POV 81 8 JC oJA
Peak Operating Voltage Current Temperature Coefficient Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient
ZK
Knee AC Impedance at specified VF. ZK should be as high as possible and is specified as a minimum. Dynamic Impedance at specified VF. Zd is specified as a minimum.
Zd
Emitter or Source Biasing +
+
?
?
Constant-Current Supply or Current-Limiting Element
~
e
9
Logic Circuit Pull-Up Current Source
0
T-'-------0
3-42
+
9
Siliconix
matched dual n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NCB-D See Sedion 4
Differential • Wideband Amplifiers • Commutators
BENEFITS High Gain 7500 tLmho Minimum gfs Specified Matching Characteristics
• •
ABSOLUTE MAXIMUM RATINGS (25°C)
TO-71
..........................
See Section 6
±80V Gate-Gate Voltage Gate-Drain or Gate-Source Voltage .....•..•••... -40 V Gate Current .....•.•••.•.••.•.•..•.•.....•.. 50 rnA Device Dissipation (Each Side), T A = 25°C (Derate 2.2 mW/oC) ..•...••..•....•.•.••.• 325mW Total Device Dissipation, T A = 25°C (Derate 3.3 mW/oC) •.••..•••••••.•.•.•..•. 650mW Storage Temperature Range •••.•..••....• -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ........•...... 300°C
G,
~~ S,
Gz
82
S2
.4.
02 0' 06 0 7 G2 20 0, ,0
G, 30
s, Bottom View
"
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1
1'2 I~
14 5' 6" 1" 8
g10 'iT i2 13
-
S T A T 1 C
IGSS
Gate-Reverse Current
BVGSS VGS(off) VGS(I) lOSS rOS(on)
Gate-Source Breakdown Voltage
91. O V 90. N A Crss M C1SS 1 NF C ifn
-40 -D.5
Gate-Source Cutoff Voltage
pA nA V
2
5
Static Drain Source ON Resistance
7500 7000
Common-Source Forward Transconductance
(Nol.')
3
Equivalent Short Circuit Input NOise Voltage
DN6664 Min Max
pF
12 1.0 50 DN5666 Min Max
1 0.95
1 0.9S
1
Unit
-
10
20 mV
10
25
SO
10
25
50
1 0.90
Test Conditions
VOS = 15 V, VGS =0
/IV! ·C VOS =15 V, 10 =2 mA
1 -
1= 1 kHz 1= 100 MHz 1= 1kHz 1= 1 MHz 1= 10 Hz, Rg =1M 1= 10Hz
v11z
5
1 0.90
VOG=15V,lo=2mA
dB nV
ON6666 Mm Max
I I 150·C
IG=-l/1A,VOS=O VOS=15V,10-lnA VOS =0 V, IG =2 mA VOS=15V,VGS=0 10=1mA,VGS=0
65
Spot NOise Figure
09S
n
Test Conditions
VGS' -20 V, VOS= 0
/lmho
Common-Source Output Conductance
0.95
mA
50 100 12,500
Common-Source Reverse Transfer Capacitance Common·Source Input Capacitance
Saturation Drain Current IOSS1 14 RaIla, (Nol.' 1and 2) -M IOSS2 A IVGS1-VGS2 1 Differential Gate·Source 15 T Voltage -C H AIVGS1-VGS2 1 Gate-5ource Voltage 16 1 Oill.r.nlial 0,,11 (Nol. 3) N AT G 91.1 Transconductance RatiO 17 (No I•• 1and 2) 91.2
Unit
-3
Gate-Source Voltage Saturation Drain Current (Note 1)
Characteristics
-
Max -100 -200
Min
TA = 2S·C TB =12S·C TA =-S5·C TB = 2S·C 1= 1kHz NCB-O
, NOTES:
1. Pulse test required, pulse width 300 J.lS. duty cycle <: 3%. 2 Assumes smaller value tn numerator. 3. Measured at ends POints, TA and Ta
Silicanix
3-43
l1li
H
matched dual n-channel JFETs
Siliconix
designed for...
Performance Curves NCB-D See Section 4
• Dual FEY
BENEFITS • High Density • Matched Switch Resistance Constant rOS(on) with Signal
• ABSOLUTE MAXIMUM RATINGS (2S0C)
TO-71 See Section 6
Gate-Gate Voltage ............................. ±80 V Gate-Drain or Gate-Source Voltage ............... -40 V Gate Current ................................ 50 mA Device Dissipation (Each Side), T A = 25°C (Derate 2.2 mW;oC) ....................... 325 mW Total Device Dissipation, T A = 25°C (Derate 3.3 mW;oC) : ...................... 650 mW Storage Temperature Range ............ -65°C to +200°C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C
G,
~~ 8,
G2
S2
'2
.,
20
D,
J
o'06 D2
G, 30
01 G2
,0
02 D,
"
Bottom View
ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted)
I
Characteristic 1 ~
-
IGSS BVGSS
Gate-Sou rce Breakdown Voltage
-40
VGS(off)
Gate·Source Cutoff Voltage
-0.5
VGS(f)
Gate-Source Voltage
-Sc
lOSS
Saturation Drain Current (Note 1)
~ 8
----g
D Y N
10 _M A 11 T -C 12 H
I
I\I1!!X
-100 -200
S 3 T A ----:- T 5 I
------;-
Min
Current
Gate~Reverse
'J!'!it
pA nA
I
Te:t Condition; VGS=-20V.VOS=0
I 15o"C
IG = 1 I'A, VOS = 0 -3
V
2.0 5
mA
100
11
rOS(on)
Static Drain Souroe ON Resistance
Cgd
Oraon-Gate Capacitance
7
Cgs
Gare-5ource Capacitance
7
IOSSI IOSS2
Saturation Drain Current Ratio (Notes 1 and 2)
IVGS1-VGS21
Differential Gate-Source Voltage
9fsl 9fs2
Transconductance Ratio (Notes 1 and 2)
0.9
0.9
pF
VOS=15V,VGS=0 10= 1 mA,VGS=O VGS= -10V
f= 1 MHz
VOS= 10V
1
-
20
mV
1
VOS= 15V,10= 1 nA VOS=OV,IG=2mA
60
-
VOS=15V,VGS=0
f = 1 kHz
NCB-O
NOTES: 1. Pulse test required, pulse width 300 I'S, duty cycle .. 3%. 2. Assumes smaller value in numerator. 3. Measured at end points, T A and TB.
3-44
I
Silicanix
dual
•
PICO
ampere diodes
designed for • • •
H Siliconix ---
BENEFITS • Very High Off-Isolation 1 pA Max (DPAD1) • High Isolation Between Diodes 20 Femto Amp Typical (DPAD1) • Matched Capacitances • Compact Packaging
Circuits • Clipping Diode Switching • High • CircuitsImpedance Protection
TO-71 (MODIFIED) (Pins 2 and 6 Removed) See Section 6
TO-7B (MODIFIED) (DPADI Only) See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C) Forward Gate Current, Each Side ................ 50mA Total Device Dissipation @ T A = 25°C Derate 4.0 mW;oC to 125°C................. 400 mW Storage Temperature Range ............. -55 to +125°C Lead Temperature (1/16" from case for 10 seconds) '" ............300°C
it
~
c,
~,
fi
A2
C2
~'~ A1~,'
A'~A2
o
C,
A2
C, BotlomVlew
Bottom View (Alternate)
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CHARACTER ISTIC
MIN
TYP
MAX
UNIT
TEST CONDITION
- 21
-1
DPADI
-2
DPAD2
3"
-5
-
~S
IR
Reverse Current
-10
5 T -A 6 T -I 7 C
-
2.. 9
- 10
BVR
Reverse Breakdown Voltage
VF
Forward Voltage Drop
11 D - Y CR 12 N 13
~
-45
VR
-50
DPAD50
-100
DPAD100
V 1.5 0.8 2.0 0.1
0.2
IR
DPAD1, 2, 5
~-II'A
IF~
pF
VR
pF
VR1
DPAD10. 20, 50, 100
1 mA
~
-
DPAD10 DPAD20
-35 0.8
~-20V
-20
-120
Capacitance
ICR1-CR2 1 Differential Capacitance
DPAD5 pA
DPAD1, 2, 5,10,20,50,100
-5 V, I
~
DPAD1, 2, 5
1 MHz
DPAD10, 20, 50, 100 =VR2=-5V,I~
1 MHz
DPAD1, 2,5, 10,20,50,100
T
APPLICATION Operational Amplifier Protection. I nput Differential Voltage limited to 0.8 V (typ) by DPADS 0 1 and O2 Common mode input voltage limited by DPADS 03 and 04 to ±15 V.
0, 03
'*' oit I:" '
t !_ . .
v
Typical sample and hold circuit with clipping. DPAD diodes reduce oflset voltages fed capacitively from the F ET switch gate.
Silicanix
IR<'~tl
DPAD10
+15 V
04
-15V
DPAD1
I en f
t,
DPADl
2N4393. CONTROL SIGNAL
C
j
2N4117A
~UT 3-45
n-channel JFETs designed for . . .
H
Siliconix
Performance Curves NT See Section 4
• Ultra-High Input Impedance Amplifiers Electrometers pH Meters Smoke Detectors
BENEFITS • Low Current IDSS < 0.15 mA (FN4117A) • Minimum Circuit Loading IGSS < 1 pA
TO-72
*ABSOLUTE MAXIMUM RATINGS (25°C)
See Section 6
Gate-Drain or Gate-Source Voltage (Note 1) .. _..... -40 V Gate-Current ... _. _.. _..... _. _. _. _. , ... _. . .. 50 mA Total Device Dissipation (Derate 2 mWrC to 175°C) ......... _. _... , 300 mW Storage Temperature Range. _. _. _...... _. -65 to +175°C Lead Temperature (1/16" from case for 10 seconds) ... _. __ .. _, . _. 255°C
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
FN4117A Min Max
Gate Reverse Current
FN4118A Min
Max
FN4119A Min Max
Unit
-;
-1
-1
pA
-2.5
-2.5
-2.5
nA
I....!...
S
IGSS
3
A
BVGSS
Gate-Source Breakdown Voltage
VGS(off)
Gate·Source Cutoff Voltage
-0.6
-1.8
-1
-3
-2
-6
lOSS
Saturation Drain Current (Note 2)
003
0.15
0.08
0.4
0.20
1.2
70
250
80
250
100
330
Test Conditions
VGS=-20V,VOS=0
150·C
1~:Tr--------------------------r--;---;----r---r---r---r---r------------~---------1 -40 -40 -40 I~ T~~~-=~~~-=-=~~~-4---+--~--~--;_~;-__1
I'~ ~
5
6
1-,7
I~ 8
D
gfs
i~a~~~~dSu~~:~~:(~:~d2)
__
Common-Source Output
C'SS
Capacitance
V
IG=-Ip.A,VOS=O
VOS=10V,lo=lnA rnA
VOS= lOV,VGS=O
yr-------------------~--~--_+--_r--_r--;_--;___1 Jlmho
N
Ar~s _____c_o_nd_u_ct_an_c_e____________-+__-+__-1____r-__r-__+-__;-__~ M I
Common-Source Input
3
5
10
3
3
3
I~ C~------~~--------~~-+--~---r---r--;---~~ Common-Source Reverse Transfer 1.5 1.5 1.5 9 Crss Capacitance
pF
VOS=10V,VGS=0 f= 1 MHz
NT
...JEDEC registered data.
NOTES: 1. Due to symmetrical geometry. these units may be operated with source and drain leads interchanged. 2. This parameter is measured during a 2 ms Interval 100 ms after power IS applied. (Not a JEDEC condition.)
3-46
f ' l kHz
Silicanix
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NCB See Section 4 BENEFITS Low Insertion Loss, High Accuracy in • Test Systems rON
Switches • Analog Commutators • Choppers • Integrator Reset Switch •
No Offset or Error Voltages Generated • by Closed Switch
• •
*ABSOLUTE MAXIMUM RATINGS (25°C)
Purely Resistive High Isolation Resistance from Driver High Off-Isolation ID(off) < 100 pA High Speed tON < 20 ns
Q
TO-18
Reverse Gate-Drain or Gate-Source Voltage ___ ..... _-40 V Gate Current ............... _........... _.... 50 rnA Total Device Dissipation at 25°C Case Temperature (Derate 10 mW;oC) ..... , ____ .. _............. 1.8 W Storage Temperature Range. _... _........ --65 to +200°C Lead Temperature (1/16" from case for 60 seconds) ............... 300°C
See Section 6
o~:
o
'"m -m '" ~
5
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
'.....!..
2
-3 -4 5
IGSS
Gate Reverse Current
8VGSS
Gate-Source Breakdown Voltage
~S ]T IDloff) Drain Cutoff Current I---, .A 81 T VGSlfi Gate-Source Forward Voltage Ig- 'Ic, VGSloff) Gate-Source Cutoff Voltage Saturation Dram Current 10 IDSS INot.1I ~
1ii -:-
FN4392 Ma. Mon -100 -200 -40
-2 25
100 200 1 -5 100
Dram Source ON Voltage
04
rOSlon)
Static Dram-Source ON Resistance
rds(on)
Dram-Source ON Resistance
~ D Y N ~ 20 "'21 s 22 ' W 23
CISS
Common-Source Input Capacitance
60 60 16
C rss
Common-Source Reverse Transfer Capdcltance
~
-
Umt
-40
1 -3
-05 5
tdlon) t, tdloff) tf
Turn-ON Delay Time
Rise Time Turn-OFF Delay Time
Fall Time
VGS =-20 V. VDS =0
VDS =20 V VGS =-5 V 150·C
IG =1mA, VDS =0 VOS =20 V. 10 =1 nA mA VOS =20 V, VGS =0 110 - 3 mA V VGS=O liD =6 mA IID-12mA n VGS O,llo=lmA n VGS O,IID 0 f =1kHz VDS =20 V. VGS =0 I VGS =- 5 V f = 1 MHz pF VGS - - 7V VOS =0 VGS--12V VOD - 10 V, VGS(on) - 0 VGS(off) 1010ni ns FN4392 6 -7 FN4393 3 -5
100 100 16 5
5 15 5 50 30
yoo 5111
NOTE' 1 Pulse test reqUired, pulse width = 300 jJS, duty cycle ~ 3%
1000pF PULSE 0-1
o~--r" VIN SCOPE
5112
-=-
Silicanix
150·C
IG=-lpA,VDS=O
V
60
15 5 35 20
Test Conditions
pA nA V pA nA pA nA
04 VDSlon)
.g 18
FN4393 Ma. -100 -200 100 200
~ 13 14 15
-
Mon
l'
5H!
-=-
IEII RL
16KU 32KH NCB
1000pF t---VOUT
RL=(~)-51n
D
s1 -=-
O(onl
ONPUTPULSE
RISE TIME< 05ns FALL TIME < 0 5 ns PULSE DUTY CYCLE 1%
SAMPLING SCOPE
RISE TIME 04 os INPUT RESISTANCE 50 n
3-47
.. .. • .,.. • .-..
., n-channel JFETs -0 designed for • • • 0 ., Analog Switches
H
0
1ft
0
Siliconix
Performance Curves NVA See Section 4 BENEFITS • Very Low Insertion Loss rOS{on) < 3 n (J105) • No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver
Choppers
• Commutators
TO-92 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
.~:
Gate-Drain or Gate-Source Voltage ............... - 25 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWfC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
o
G
GD o
o
0
o
0
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
Jl05
Jl06
"1111 Till IVidA
1
"25 T '3 _A
-7
.J!
Gate Reverse Current (Note 1) Gate-Source Cutoff Voltage
-4.5
BVGSS
Gate-5ource Breakdown Voltage
-25
Drain Saturation Current (Note 2)
500
~
-10
-3 nA
-3 -2
-6 -0.5
25
-25
200
-4.5
100
V mA
IO(off)
Drain CU10ff Current (No1e 11
3
3
3 nA
rOSlon)
Dram Source ON ReSistance
3
6
8
CdQ(off)
Dram Gate OFF Capacitance
35
35
35
Cooloffl
Source Gate OFF Capacitance
35
35
35
160
160
160
9 0 Cdglonl V + N A Cso(onl
-1211
Mill iy.., MdA Mill iyl' ividX
-3
IGSS VGS(offl
4 T lOSS
51 5 C
Jl07
1--'-":";"r--+-~'::"'-+-'~-T---1Uni1
ON Capacitance
Fall Time
NOTES: 1. Approximately doubles for every 10·C increase 2. Pulse 1est duration = 300 I'S; duty cycle ~ 3%.
3-48
VOS=5V.IO=I/lA VOS= 15V. VGS=OV VOS=5V.VGS=-lOV
n VOS=OV,VGS=-10V
Turn On Delay Time 15 15 15 1dlon I Rise Time 20 20 20 1r C ~--------~----------------+--+~+-~--;-~---r~r--r~ns Turn Off Delay Time 15 15 15 1dloff)
1f
VOS = 0 V, VGS = -15 V
f= 1 MHz
pF
Dram Gate plus Source Gate
M
13
Test Conditions
20
20
20
VOS=VGS=OV SWitching Time Test Conditions
Jl05 1.5V VOO VGS(offl -12V 50n RL
Jl06 15V -7V 50n
Jl07 15V -5V 50n
NVA In
TA.
Siliconix
n-channel JFETs designed for • • •
Siliconix
Performance Curves NIP See Sedion 4
• • Choppers • Commutators • Low Noise Audio Amplifiers Analog Switches
-.... ....
H
BENEFITS Low Cost •. Automated Insertion Package Low Insertion, Loss rDS{on) < 8 n (Jl08) No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver Fast Switching td{on) + tr = 5 ns Typical Low Noise en = 6 nV/yHz at 10 Hz, Typ (J110)
• •
• • •
i
o
-0
....
.... o
-g
Plastic
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage .............. , -25V Gate Current ..................... ' ........ 50mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ................... , .. 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............. , .-55 to 150°C Lead Temperature Range (1 /16" from case for 10 seconds) . , ............ 30QoC
TO·92 See Section 6
,~:
G GD s
D
S
0
D
0
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Jl0B
Characteristic 1
12'5 1'3:
'GSS
I~~
7 IS
1-
Gate-Source Breakdown Voltage
lOSS
Dram Saturation Current INote 2)
' 0 (011)
0
Min
Typ
-6
Max -3
-25
-25
BO
40
10
Dram-Gate Plus Source-
UOit
nA
-4
-05
V
3
3 25
15
15
15
15
15
15
VOS=5V,10=1~A ~A
rnA
V OS -15V,V GS -OV
nA
V OS =5V,V GS =-10V
!l
VOS <; 0 1 V, VGS - OV vOS = OV, VGS = -10V
pF 85
Gate ON Capacitance
85
85
Turn ON Delav Time
4
4
4
AlseTime
1
I
1
Turn OFF Delay Time Fall Time
-
Test Conditions V OS =OV,V GS =-15V
V OS -OV,I G --l
B
Cdg(on!
If
Max -3
-2
3
Source-Gate OFF Capacitance
+
Typ
11
Csg(off!
N C,g(on! I-A 10 M Id(on! Iii I I, I-c 12 'd(offi
M,n
-25
Dram Cutoff Current (Note 1)
Drain-Source ON Reslstane
Jll0
Jl09 Max
-10
-3
Cdg(off! Dram-Gate OFF Capacitance
9 y
113
Gate Reverse Current (Note 1)
BV GSS
'OS(on!
Typ
-3'
V OS(of1) Gate-Source Cutoff Voltage
I-T
17
Min
n,
6
6
6
30
30
30
f= 1 MHz VOS = VGS = 0
SWltchmg Time Test Conditions Jl08 Jl09 Jl10 l,5V 1.5 V 15V VOO VGS(offi -12V 150n RL
-7V
-5V
150n
150n
NIP
NOTES: I, ApprOXimately doubles for every 10°C Increase In TA-
2 Pulse Test duration 300 jlS, duty cycle <; 3%
Silicanix
3-49
n-channel FETs designed for • • •
H
Siliconix
Performance Curves NCB See Section 4
• Analog Switches • Choppers • Commutators
BENEFITS Low Cost • Automated Package • Low InsertionI nsertion Loss
•
rDS(on)
< 30 n
(J 111)
No Offset or Error Voltages Generated • by Closed Switch
...Z••
• •
.... ~
III
-
Purely Resistive High Isolation Resistance from Driver Fast Switching ~(on) + tr = 13 ns Typical Short Sample and Hold Aperture Time Cgd{off) < 5 pF Cgs(off) < 5 pF
:::)
(J
...Z III
:::)
o
:e III
~
Plastic
ABSOLUTE MAXIMUM RATINGS (25°C) TO·92 See Section 6
Gate-Drain or Gate-Source Voltage ............... -35V Gate Current .•.... _.......•...........•.... 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWtC) . ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
G GO
.~:
0
~
=» en
S
s
C
o
c
Bottom View
ELECTRiCAL CHARACTERISTICS (25"C unless otherwise noted) J112
J111
J113
Characteristic
1
--;-
-
3
s T A
T
....!.I
...:..C
Test Conditions
UNIT M,n
Tvo Ma.
M,n
Tvo
-1
Ma.
M,n
-1
IGSS
VGSloff)
Gate Source Cutoff Voltage
-3
BVGSS
Gate Source Breakdown Voltage
35
35
-35
lOSS
Dram Saturation Current INote 2)
20
5
2
-10
Tvo Ma.
-1
Gate Reverse Current (Note l'
-1
nA
-3
-5
VOS '" 0 V. VGS" -15 V VOS=5V,IO=1iJ.A
V VOS = 0 V, IG = -1 iJ.A rnA
VOS=15V.VGS=OV
IDloU)
Dram Cutoff Current (Note 1)
-1
-1
-1
nA
VOS = 5 V. VGS = -10 V
6
'OSlon)
Dram Source ON Resistance
30
50
100
Cdg(offl
Dram Gate OFF Capacitance
5
5
5
"
Vos = 0 1 V. VGS = OV
1
B -0
Csgloffl
Source Gate OFF Capacitance
5
5
5
V
Cdglon)
28
28
28
Csgtonl
Dram Gate Plus Source Gate ON Capacitance
tdlan)
Turn On Delay Time
1
1
7
t,
Rise TIme
6
6
6
td(aff)
Turn Off Delay Time
20
20
20
tf
Fall Time
15
15
15
-
9
-;;;: _M
11
I
-c
..E. 13
VOS"'OV,VGS=-10V
3-50
VDS=VGS=O
ns
NOTES: 1. Approximately doubles for every 10° C increase in T A. 2. Pulse Test duration 300 JlS; duty cycle .. 3%.
f= 1 MHz
OF
Swltchmg Time Test Conditions J111 J112 lOV 10V VOD -1 V -12 V VGS(offl 800 Sl 1,600n RL
NCB
Siliconix
J113 10V
-5V 3,2oon
n-channel JFETs designed for • • •
Siliconix Performance Curves NCB See Section 4
Switches • Analog Choppers • Commutators •
BENEFITS • Low Insertion Loss rOS(on) < 30 n (J111A) • High Off-Isolation 10(off) < 200 pA • No Error or Offset Voltages Generated by Closed Switch Purely Resistive
ABSOLUTE MAXIMUM RATINGS (25°C)
...... ... ...c..... ~ c.. ......
c..
H
~
~
TO·92 See Section 6
Gate-Drain or Gate-Source Voltage ............... -40 V Gate Current ................................ 50 mA Drain Current .............................. 400 mA Total Device Dissipation (25°C Free Air Temperature) ................ 350 mW Power Derating ............................... 3.27 mW/"C Storage Temperature Range ................ -55 to +150°C Operating Temperatufe .................... -55 to +135°C
"~:
INSULATED CASE •
INSENSITIVE TO LIGHT
GO
Lead Temperature (1/16" from case for 10 seconds) ............... 300°C
s
D
o
D
Bottom View
0
s
G
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1
-; ~ - A ..2
IGSS
Gate Reverse Current (Note 1)
VGS(off)
Gate-Source Cutoff Voltage
BVGSS
Gate·Source Breakdown Voltage
4 T lOSS I C I o (of!) 6 rOS(on)
Saturation Drain Current (Note 2)
7
Cdg(off)
~
"'5
-
9
JlllA Min Max
J112A Min Max
-200
-5
-10
J113A Min Max
-200 -2
-7
-200 -1
-40
-40
-40
30
15
8
Drain Cutoff Current (Note 1)
Unit pA
-5
Test Conditions
VOS = 0, VGS =-15 V VOS = 5 V. 10 = 1 /lA
V
VOS = O. IG = -1 /lA
mA
VOS=15V.VGS=0
200
200
200
pA
VOS=5V.VGS=-10V
30
50
80
n
VOS"'O.l V. VGS=O
Drain Gate OFF Capacitance
5
5
5
0 y Csg(off)
Source·Gate OFF CapacItance
5
5
5
N Cdg(on)
Dram Gate Plus Source Gate ON Capacitance
28
28
28
+ Csg(on)
Drain Source ON Resistance
VOS = O. VGS = -10 V pF
f= 1 MHz VOS = VGS = 0
NCB
NOTES: 1. Approximately doubles for every 10°C increase m TA. 2. Pulse test duration = 300 /lS; duty cycle .. 3%.
Siliconix
3-51
-
- p-channel JFETs
..... ......... .. ., !:::...
.. • ...,:!:- • ...........'"- • .,'" -0
.,~~an...
H
Siliconix
Performance Curves PSA/PSB/PSC See Section 4
designed for • • • Analog Switches
BENEFITS
• Low Cost
Iftl--.
..... ...
• Simplifies Series-Shunt Switching when Combined with J113, its N-Channel Complement Low Insertion Loss rOS(on) < 85 n (J174) No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver Short Sample and Hold Aperture Time Csg(off) < 5.5 pF Cdg(off) < 5.5 pF Fast Switching td(on) + tr =7 ns Typical
Choppers Commutators
• •
II
> -
•
::;)
o
...Z III
::;)
o
:e III
u
:Ea=
::;)
-'"
•
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) ....•.... 30V Gate Current ..•.......................•...• 50 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
Plastic
TO·92 Sea Section 6
o~:
sD
G
D
a a
Bottom View 0
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristics 1 2
VGs(off)
12
i
6
3
1
4
I
08
3-52
VOs = 0, VGs = 20 V VOs=-15V,lo=-10nA
30 -135 -7
-70
-20
mA
VOs= -15V.VGs=0
-1
-1
-1
-1
nA
VOs=-15V,VGs=10V
85
125
250
300
rl
VGs = O. VOs = -0,1 V
Drain-Gate OFF
30
30
-2
-35 -15
VOS=O,IG=I~A
30
Capacitance
5.5
55
5.5
55
Csg(off)
Source-Gate OFF Capacitance
55
55
55
5.5
Drain-Gate Plus SourceGate ON Capacitance
32
32
32
32
VOs = O. VGs = 10 V f= 1 MHz
pF
TUrn On Delay Time
2
5
15
20
t,
Rise Time
5
10
20
25
td(oltl
Turn Off Delay Time
5
10
15
20
tf
Fall Time
10
20
20
VOS = VGs= 0
ns
NOTES: 1. Geometry
Test Conditions
V
113
nA
225
Cdg(offl
0 Cdg(onl 9 V + N Csg(on) I-A 10 M td(on) I:: C
10
Resistance
1-
1-,
5
Orain-Source ON
18
J177
1
1
Dram Cutoff Current (Note 2)
'Os(on)
J176
Saturation Drain Current -20 (Note 3)
Voltage
l7
Voltage
Gate-Source Breakdown
3 T BVGSS I_A 4 T 1055 I I- c 5 10(0111 6
Gate-Source Cutoff
J175
Unit
Gate Reverse Current iNuu:ii2j
IGss
11_ s
J174
Min Typ Ma. Min Typ Ma. Min Typ Ma. Min Typ Ma.
IS
symmetrical. Units may be operated With source and drain leads Interchanged.
Siliconix
25
SWitching Time Test Conditions J175 J174 J176 JI77 -10V -6V -6 V -6V VOO 3V BV 6V VGs(off) 12V 560n 1.2Krl 5.6Krl 10Krl RL OV OV OV OV VGs(onl
2. Approximately doubles for every 100 e Increase," T A. 3. Pulse test duration := 300 tJ.s; duty cycle OS;;; 3%.
PSA/PSBI
PSC
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NPA See Section 4
• General Purpose Amplifiers
BENEFITS
• High Input Impedance IG = 10 pA Typical
• Good for Low Power Supply Operation VGS(off)
< 1.5V (J201)
rn ...
g~
CO -~
:<
Plastic
ABSOLUTE MAXIMUM RATINGS (25°C)
II
Gate-Drain or Gate-Source Voltage (Note 1) ....... -40 V Gate Current ............................... 50mA Total Device Dissipation at 25a C Ambient (Derate 3.27 mWrC) ...................... 360 mW Operating Temperature Range ............. -55 to 135a C Storage Temperature Range ............... -55 to 150a C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300a C
'4:
en en
...
~
o
.
G GD D
s
s
c
D
C
~
o w
..
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) J202
J201 CharacterIStic
1
IGSS
-S 2 T
Moo
Gdle Reverse Current Gate Source Cutoff Voltage
-03
3 T
BVOSS
Gate Source Breakdown Voltage
-40
4 C
IDSS
Saturation Dram Current INote 3)
02
5
'G
Gate Current (Note 2)
-, -
6 _ 0 'Is y
7 N 'as
-A
-,
9 C
10
Transconductance (Note 3) Common Source Output
Conductance
Mon
hp
-15
J203
Max
Mon
Typ
-100 -40
-OB
Max
M,n
J204 Typ
-100
-20
-100
Test Conditions
Unit
Ma.
-100
pA
-20
-03
VOS - D. VGS - -20 V VOS - 20 V. 10 '" 10 nA
V -40 10
09
45
1,000
500
40
-10
-10
-25
-40 20
02
-10
-10 1,500
VOS" D. IG '" -1 pA
12
500
3
10
VOsc20V,VOS'0
pA
VOG'" 20 V. 10 '" IOSSlmm)
1500 f:: 1 kHz
25
VDS 4
Crss
Common·Source Reverse Transfer Capacitance
I
1
I
1
en
Equivalent Short Circuit Input NOIse Voltage
5
5
5
10
4
4
~
20V, VGS:
a
Siliconix
-
4
pF
NOTES: 1 Geometry IS symmetncal. Units may be operated With source and dram leads Interchanged 2 ApproXimately doubles for every 10°C Increase In T A 3 Pulse test duration = 2 ms
II1II
mA
,umho
1
35
Common Source Input Capacitance
8 M C1SS
-
Common Source Forward
Max -100
(Note 2)
VGS/offJ
-A
TVp
nV
ff,
f : 1 MHz
VOS
~
10 V, VGS = 0
f: 1 kHz
NPA
3-53
n-channel JFETs designed for • • •
..., • ..., ~
H
Siliconix
Performance Curves NZF See Section 4
General Purpose Amplifiers
o
BENEFITS
• High!Its Gain = 7000 Jlmho Minimum
~
(J211,J212) Impedance • HighIGSSInput =100 pA Maximum Ciss = 5 pF Typical
TO-92 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
.............. ...............................
.~:
Gate-Drain or Gate-Source Voltage -25 V Gate Current 10mA Total Device Dissipation at 25° C Ambient (Derate 3.27 mWtC) .........•............ 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
GD s o
0 0
0
s
G
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) J210
Characteristic
IGSS
Min
VGSloff) Gate-Source Cutoff Voltage Gate-Source Breakdown Voltage BVGSS lOSS
Saturation Dram Current (Note 2
5C
lG
Gate Current (Note 1)
6
91s
Common-Source Forward Transconductance (Note 2)
7
Y gas
-
0
-N 8 A C,ss -M 9 I erss
_C 10
"n
J211 Max
Typ
MIn
-100
Gate Reverse Current (Note 1)
1 S 2T A -T 4 I
'3
Typ
-1
-3
-25
J212 Max
15
-2.5
-45 20
-6
-4
40
15 -10
Unit pA V
Test Conditions VOS=O,VGS=-15V VOS= 15V,IO= 1 nA VOS = 0, IG = -1 IlA
rnA
VOS = 15 V, VGS = 0
pA
VOG=lOV,lo=lrnA
12,000
12,000 7,000
1= 1 kHz
~mho
150
Conductance Common-Source Input
200
200
Capacitance
4
4
4
Common-Source Reverse Transfer Capacitance
1
1
1
10
10
10
VOS: 15 V, VGS = 0 pF
EqUivalent Short-Circuit Input
NOise Voltage
Ill!
!'HZ
1= 1 MHz
I--1= 1 kHz
NZF
NOTES: In
TA.
2. Pulse test duratIon:;:: 2 ms.
3-54
-100
-10 12,000 6.000
Common-Source Output
1. ApprOXimately doubles for every lOGe mcrease
Max
-25
7
-10 4,000
Typ
-100 -25
2
Min
Siliconix
n-channel JFETs designed for • • •
...
~
H Siliconix
Performance Curves NPA See Section 4
W
o
...
~
... W
and Sub-Audio • Audio Amplifiers
BENEFITS Low Noise • Ultra en = 8 nV/v'Hz Typical at 10 Hz en = 2 nV1v'Hz Typical at 1 kHz
TO·92 See Section 6 Plastic
ABSOLUTE MAXIMUM RATINGS (25°C)
"~:
Gate-Drain or Gate-Source Voltage (Note 1) ........ -40V Gate Current ............................... 50 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ........ , ...... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) , ... , ......... 300°C
G GO 0
s
S
0
o
0
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 I-
IGSS
s
15
IG
6 91s 1-0 7 y 90S I_N 8 A CISS I_M 9 I C rss I_ C 10 en 111
Typ
Gate Reverse Current
Gate-Source Breakdown Voltage Saturation Drain Current (Note 3)
Common-Source Output Conductance Common-Source Input
Capacitance Common-Source Reverse
J232
Typ
Min
-3
-05 -40
Max
3
-250 -5
-15
Max -250
Umt pA
-6
-3'
6
3,500 1,500
VOS = 0, VGS = -30 V VOS=20V,IO= lilA VOS = O,IG = -lilA
5
-2
Test Conditions
V
-40
2
-2 1,000
Typ
Min
-40
0.7
Gate Current (Note 2) Common-Source Forward Transconductance (Note 3)
J231 Max -250
(Note 2)
Gate-Source Cutoff VGS(off) Voltage
2 T I-A 3 T BVGSS I-I 4 C lOSS
J23D
Min
10
-2 4,000 2,500
VOS=20V,VGS-O
pA
VOG = 10 V, 10 = 0.5 rnA
5,000 1= 1 kHz
Ilrnho 1.5
3
6
4
4
4
VOS=20V,VGS=0 pF
Transfer Capacitance
1
EqUivalent Short Circuit
8
Input Noise Voltage
2
1 30
8
IEII
rnA
1= 1 MHz
1
30
2
NOTES: 1. Geometry is symmetrical. Unit may be operated with source and drain leads interchanged. 2. Approximately doubles for every 10°C Increase in TA. 3. Pulse test duration = 2 ms.
Siliconix
8 2
30
.!!Y
tIHz
VOS = 10V, VGS =0
Hz -ff == 110kHz
NPA
3-55
-----
p-channel JFETs designed for • • •
H
Siliconix
Performance Curves PSA/PSB/PSC See Sedion 4
• General Purpose Amplifiers
BENEFITS • Low Cost • Automatic Insertion Package • High Gain Amplifiers 9fs = 14,000 Mmho Typical (J271) • Low Noise en = 6 nVlJHi at 1 kHz Typical
...Z•• ...
1M
-o~
:)
...Z i
1M
::)
1M
~
TO·92 See Secllon 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
Gate·Dratn or Gate Source Voltage (Note 1) ....•.... 30 V Gate Current ..•........................... -50 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
.~:
~
::)
'"
G
s
sD 0
G
C
o
C
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unleSs otherwise noted) J270 Characteristic 1
'2 -3' 4
5"
S T A T I C
6
7 8 9 -
IGSS
Gate Reve ..e Current (Note 2)
VGS(off)
Gate-Source Cutoff Voltage
0.5
BVGSS
Gate-Source Breakdown Voltage
30
lOSS
Saturation Drain Current (Note 3)
·2
IG
Gate Current (Note 2)
gfs
Common·Source Forward Transconductance (Note 3)
90s
Common·Source Output Conductance
0
y
Min
N A Ciss M I Crss C 10 en
Common..source Input Capacitance
Typ
J271 Max
Min
Typ
200 20
200 1.5
6,000
60 15,000
Test Conditions VOS=0,VGS=20V VOS = ·15 V, 10 = ·1 nA VOS=O,IG=lpA
-50
·6
15
pA V
30 -15
Unit
4.5
8,000
mA
VOS=-15V, VGS=O
pA
VOG = -15 V, 10 = 10SS(min)
18,000 pmho
200
f = 1 kit.!
500 VOS = -15 V, VGS = 0
32
.
32
Common-Source Reverse Transfer Capacitance
4
4
EqUivalent Short·Circuit Input Noise Voltage
6
6
NOTES: 1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged. 2. ApproxImately doubles for every 10°C increase In TA. 3. Pulse test duration = 2 ms.
3-56
Max
Silicanix
pF
...JJY....
11HZ
f= 1 MHz
VOS=-10V, 10= 10SS(min) f= 1 kHz
PSA/PSB/PSC
n-channel JFETs designed for • • •
H
Siliconix -----
Performance Curves NZF See Section 4
VHF/UHF Amplifiers • Oscillators • Mixers •
BENEFITS •
• •
High Power Gain 20-23 dB Typical at 100 MHz, Common-Source 17_5-20_5 dB Typical at 100 MHz, Common-Gate Low Noise Figure 1_3 dB Typical at 100 MHz High Dynamic Range Greater than 100 dB TO-92
Sea Section 6 ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
.~:
Gate-Drain or Gate-Source Voltage . . . . . . . . . . . . . . . . -25 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C). _ . . . . . . . . . . _ .. _ .. _ ... 360 mW Operating Temperature Range ....... _ .. _ .. -55 to 135°C Storage Temperatu re Range_ ... __ ... _ . _ . _ . -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .. _ . . . . . . . . . . . 300°C
GO s
0
D
0
Bottom View
D
s
G
ELECTRICAL CHARACTERISTICS (25°C unless otherwise specified) Characteristic
--.!.
-2
S
T
Max
Gate Reverse Current
IGSS
nA
-0.1
IlA
Gate·Source Breakdown Voltage
-25
4
VGS(off)
Gate·Source Cutoff Voltage (Note 1)
-1.5
-7.0
IDSS
Saturation Dram Current (Note 1, 2)
4
45
I
:-c 5
6
0 y
9fs
Common·Source Forward Transconductance (Note 1)
7
N
gas
Common·Source Output Conductance
200
Common-Source Reverse Transfer Capacitance
1.7
Common-Source Input Capacitance
5.5
A
B M Crss _I
9 c Ciss
Characteristic IDSS (Note 2)
Saturation Drain Current
VGS{off)
Gate Source Cutoff Voltage
J300A Min Max 4 -1.5
9 -3.0
J300B Min Max 7 -2.0
Test Conditions
Unit
-0.5
3 A BVGSS T
!-
-
Min
VGS=-15V, VDS=O
TA= 125°C
IG = -1IlA, VDS = 0
V
VDS=10V,ID=1nA
rnA
VDS= 10V, VGS=O
4500 9000
J300C Min Max
15
12
25
-4.0
-2.5
-5.0
NOTES: 1. lOSS and VGSS(offl are selected into 5 range. and labeled according to above table. 2. Pulse test PW .; 300 JlS, duty cycle'; 3%.
Siliconix
Ilmho
VDS= 10V, ID = 5 rnA, f= 1 kHz
pF
VDG= 10V, ID = 5 rnA, f= 1 MHz
J300D Max
~Min
21
45
-3.5
-7.0
Unit
Test Conditions
rnA
VDS=10V VGS=OV
V
VDS=10V ID=1nA
NZF
3-57
-
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NH See Section 4
Amplifiers • VHF/UHF Oscillators • Mixers •
BENEFITS for Operation at 100 • Characterized and 400 MHz • LowNFNoise = 1.7 dB Typical at 100 MHz TO-92 See Section 6 • Plastic
.~:
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage ............... -30 V Gate Current ............................... lOrnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mwtC). ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
GO s
D
D
D
D
BottomViaw
s
G
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 S
12" T 13~ I-I 4 C 5
1-
6 0 V I- N
-
7 A M 8 I C
9
IGSS
Gate Reverse CUrrent (Note 1)
VGS(off)
Gate Source Cutoff Voltage
BVGSS
Gate Source Breakdown Voltage
lOSS
Saturation Drain Current INote 2)
9ts
Transconductance (Note 21
90S
Common-Source Output Transconductance
C ISS Crss
-14 -15
H I
liS
119 120 I-
I~
15
4,500
Capacitance Common-Source Reverse Transfer Capacitance
-100 -05
-3
-30
5
Cc.,.,mo!"-Scurce Input
Max
Untt pA V
Test Conditions VOS = 0, VGS = -20 V VOS=15V,IO=1 nA VOS = 0, IG = -1 pA
1
8
mA
VOS= 15V,VGS=0
7,500 3,000 t = 1 kHz
pmho
50
50 VOS= 15V,VGS=0
3,5
3.5
0.85
0.85
pF
f= 1 MHz
90ss
boss
Common-Source Output Susceptance
91ss
Common-Source Input Conductance
b,ss
Common-Source Input Susceptance
7,500
Common-Source Power
20
Gam
11
NOise Figure
1.7
VOS=i5V,lo=5mA,
f = 100 MHz
(Single SIdeband)
3.8
RG = 1 Kn
f = 400 MHz
Gps
22
123'
-6
-30
Q
U E N C V
Typ
-100 -2
i- F
16 !- R 17 E
Min
Common-Source Output Conductance
G H
J305 Max
9f,
Coss
12
13
Typ
Common-Source Output Capacitance Common-Source Forward Transconductance
10
:iI
Common-Source Forward
J304 Mon
NF
10
1.0 t= 100 MHz
3,000 4,200
f = 400 MHz
60
60
f= 100 MHz
800
f= 100 MHz
f= 400 MHz
80 800
pmho
3,600 80
VOS = 15 V, VGS = a
f= 400 MHz
800 2,000
f= 400 MHz f= 100 MHz
80
f= 100 MHz
2,000
f = 400 MHz f= 100 MHz VOS=15V,lo=5mA
f= 400 MHz
dB
NOTES: NH
1. ApprOXimately doubles for every 10°C Increase 10 TA. 2. Pulse test duration = 2 ms.
3-58
Silicanix
-------
n-channel JFETs designed for • • •
• • •
H
Siliconix
Performance Curves NZB See Section 4 BENEFITS Industry Standard Part In Low Cost Plastic Package High Power Gain 11 dB Typical at 450 MHz Common-Gate Low Noise 2.7 dB Typical at 450 MHz Wide Dynamic Range Greater than 100 dB Easily Matches to 75 n Input
VHF/UHF Amplifiers Oscillators Mixers
AB~OLUTE
•
• • • •
MAXIMUM RATINGS (25°C)
Drain-Gate Voltage ............................ 25 V Source-Gate Voltage. _......................... 25 V Forward Gate Current ........................ 10mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
Plastic
TO-92
See Section 6
,~:
lD S
D
o
D
Bottom View S
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1
BVGSS
112 SlOSS T 1-= A 4 T VGS(off)
1-' 5
e
lOSS
16
VGS(f)
Gate-Source Breakdown Voltage
Of.
18
go.
1-
D
9
~
Gate-Source Cutoff Voltage
Saturation Dram Current (Note 11
1-
A 10 M gog
1- , 11 C Cgd
1eg•
12
113
'n
ward Transconductance
Common-Gate Output
VGS =-15 V. VOS=O
-10
.A
-10
-40
-20
-65
V
12
60
12
30
24
60
rnA
10
V
10 B,OOO
17.000
10 10,000
8.000
17.000
250
250
250
13,000
12,000
150
100
150 25
18
25
50
43
50
Equivalent Short-CIrcuit Input NOise Voltage
Transconductance
Common-Source Output Conductance
Common·Gate Power Gam at NOise Match
19
NF
NOise Figure
20
Gpg
21
NF
Common-Gate Power
Gam at NOise Match NOise Figure
pF
10
10
10
12
12
12
14
14
14
04
04
04
VOS = 0, 10 = 1 rnA
015
015
015
nV
v'H.
10 = 10mA
VOS
=
D,
VGS=-10V
VOS"10V. lo=10mA
f"1 kHz
f= 1 MHz
f"100Hz
mmho
16
16
16
15
15
15
11
11
11
27
27
27
VOS"'10V. IO"'10mA
f-105MHz
dB
f "450 MHz
NOTE.
NZB
1 Pulse test PW 300 1'5, duty cycle" 3%
Siliconix
--
Vos = 10 V. VGS = a
VOS" 10 V. /-Imhos
13,000
18
Common-Source Forward
T '" +125°C
Ves:; 10V,ID '" 1 nA
w o
17,000
43
G pg
-
-10
nA
-65
~
IG =-1/JA. VOS=O
-10
25
Common-Source Input Conductance
~
-10
-10
w
o
Test Condltlonl
Unit
V
50
RelY.sl
18
M..
18
Common-Gate Input Conductance
17 F Re(yO$)
TVp
-25
43
Re(Ylg)
-R
Mon
Gate-Source Capacitance
15
~
M..
Gate-Dram Capacitance
Re(yfs)
18
J310
-10
Output Conductance
Conductance
Mon
-10
Common-Source
Transconductance
M..
JOOS TVp
-25
Voltage
14
-
TVp
-25
Gate-Source Forward
Common-Gate Forward
9ig
Mon
Gate Reverse Current
Common-Source For-
7
J308
G
0
3-59
-
H n-channel JFETs current regulator diodes Performance Curves NCL designed for. • • See Section 4
Siliconix
• • • •
o
BENEFITS
Current Regulation Current Limiting Biasing Linear Ramp and Staircase Generator
• Low Cost • Simple Two Lead Current Source • Simplifies Floating Current Sources No Power Supplies Required • Good Operating Current Tolerance ±20% TO-92 (MODIFIED) See Section 8
1ft
-t
.
ANODE
ABSOLUTE MAXIMUM RATINGS (25°C)
o
~
Peak Operating Voltage .......................... 50 V Forward Current ............................. 20 mA Reverse Current.............................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW;oC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1 /16" from case for 10 seconds) .............. 300°C
o
1ft
-t
Plastic
-
CATHODE
CO
A
c
C
A
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) J500
J501
J502
J503
J504
J505
Min
0.192
0.264
0.344
0.448
0.600
0.800
Nominal
0.240
0.330
0.430
0.560
0.750
1.000
Max
0.288
0.396
0.516
0.672
0.900
1.200
Characteristic
..2... 2
S T A T 4 I ,- C 5
-
IFI
Forward Current (Note 1)
3
-
16 7
1-
I~ 9
D
V N
POV
Peak Operating Voltage (Notes 1 and 2)
Min
50
50
50
50
50
50
Max
1.2
13
15
1.7
1.9
2.1
Typ
08
0.9
1.1
1.2
1.4
1.5
VL
LImIting Voltage (Note 3) Small·Signal DynamIc Impedance (Note 1l
Min
4.0
22
15
12
0.8
05
ZFI
Typ
8.0
6.0
4.4
3.4
2.5
1.9
CF
Anode·Cathode CapacItance
Typ
2
2
2
2
2
2
Unit
mA
VF = 25 V
IF = 1.1 IFI (Max) V IF = 0.9 IFI (Min)
Mn
V F = 25 V. f = 1 kHz
pF
VF=25V.f=1 MHt NCL
NOTES: 1. Pulse test duration = 2 ms. 2. MaxImum VF where IF < 1.1 IFI (Maxl is guaranteed 3. M,nomum VF required to Insure IF > 0.9 IFI(Min)·
Current· Limiter Diode V·I Characteristic I.
IF, VR
I VL
I., 3-60
Test Conditions
Siliconix
pov
V.
~~---
n-channel JFETs current regulator diodes Performance Curves NCL designed for • • • See Section 4
Siliconix
---~~-
• • • •
... o ... UI
ANODE
Plastic
~
o
CO
... ~ ... o ... UI
UI
TO-92 (MODIFIED) See Secllon 6
Peak Operating Voltage .......................... 50 V Forward Current ............................. 20 mA Reverse Current .............................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWtC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
0-
'I
• Low Cost • Simple Two Lead Current Source • Simplifies Floating Current Sources No Power Supplies Required • Good Operating Current Tolerance ±20%
ABSOLUTE MAXIMUM RATINGS (25°C)
o
UI
BENEFITS
Current Regulation Current Limiting Biasing Linear Ramp and Staircase Generator
... UI
H
UI
CATHODE
c
cO A
A
C
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
I....!. 2
I3
-
4
-
2
S T
-
J!. 9
Forward Current (Note 1)
A
T I C
POV
VL
6 7
IFI
D
y N
ZFI CF
Peak Operating Voltage INotes 1 and 21
JS06
JS07
JS08
JS09
JS10
JSll
24
29
3.8
3.0
3.6
4.7
43
S.6
Moo
1120
1.440
1.9
Nominal
1.400
1.800
24
Max
1.680
2.160
29
3.6
Min
SO
50
SO
50
50
50
Max
2.5
2.8
31
3.5
39
4.2
Typ
1.8
20
2.2
2.5
28
3.0
Smail-Signal Dynamic
Moo
033
02
,02
0.15
015
012
Impedance INote 1I
Typ
1.4
1.0
0.70
060
0.50
0.30
Anode-Cathode Capacitance
Typ
2
2
2
2
2
2
Limiting Voltage (Note 3)
NOTES 1 Pu Ise test du ration
Test Conditions
Unit
mA
VF = 25 V
IF = 11 IFI IMaxl
v
IEII
IF =091FI IM,"I
M12
VF=25V,f= 1 kHz
pF
VF
= 25 V, f = 1 MHz
NCL =
2 ms
Current· limiter Diode V-I CharacterIStic
2 MaXimum VF where IF < 1 1 IFHMax) IS guaranteed 3. Minimum VF required to Insure IF > 09 'FI(MIn) IF
IF,
VR
I
/
VL
pov
VF
R
Silicanix
3-61
H n-channel JFETs current regulator diodes Performance Curves NKL, VRMA designed for • • • See Section 4 Siliconix
------
BENEFITS
Regulation • Current Limiting • Current Biasing • Linear Ramp and Staircase • Generator
• Low Cost • Simple Two Lead Current Source • Simplifies Floating Current Sources No Power Supplies Required
TO-92 (MODIFIED)
See Secllon 6
ABSoLuTE MAXIMUM RATINGS (25°C)
ANODE
Plastic
~
Peak Operating Voltage ......................... 100V Forward Current ............................. 20 mA Reverse Current.............................. 50 mA Total Device Dissipation (25°C Free Air Temperature) ....................... 350 mW Power Derating (to +125°C) ..................... 3.27 mW/oC Storage Temperatu re Range ............... -55 to 135°C Operating Temperature Range ............. -55 to 135°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
CATHODE
cO
A
A
C
c
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise notprl) Characteristic
4
-
5
-6
-7
S T A T I
IFl POV
C
Max
Peak Operating Voltage (Notes 1 and 21
VL
Limiting Voltage (Note 3)
ZFl
Smail-Signal DynamiC Impedance (Note 11
CF
Anode-Cathode Capacitance
0 N
Forward Current (Note 1)
250
700
200
-
NOTES: 1 Pulse test duration
VF = 100 V IJ.A
VF = 25 V VF = 1.0 V
IF = led IFI
100 1.1
1.0
(Max)
~
----
IF = 09 IFI (Mini
15
44 2
M!!
VF = 25 V. f = 1 kHz
pF
VF
= 25 V. f
= 1 MHz
NKL, VRMA ='
2 ms
2. MaXimum VF where IF < 1 1 IF1(Max) IS guaranteed 3. MInimum VF required to Insure IF > 091FlIMm)
3-62
Test Conditions
Untt
V
~ V 9
Typical
770
1.2.
-23 -
Min
.
-- -
Siliconix
H
current regulator diodes designed for • • •
Siliconix
Performance Curves NCL See Section 4
Regulation • Current Limiting • Current Biasing • Low • Voltage References
BENEFITS • Simple Two Lead Current Source • In Low Cost Plastic Package • Simplifies Floating Current Sources No Power ~upplies Required
TO-92 (MODIFIED) See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
Peak Operating Voltage .......................... 50 V Forward Current ............................. 20 mA Reverse Current.............................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWtC). ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
ANODE
~
DC o
A
CATHODE
c
Bottom View
A
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Dynamic
Regulator Current
Limiting Voltage
VF=25V
IF=0.8 IFllmin) IFF 1.1
Peak op Volt
Impedance
Knee Impedance
IF NOM
IF MIN
IF MAX
VL
VL
VOP
'ZD
'ZK
Nominal rnA
Min rnA
Max mA
Max Volts
Typical
IFIIMax) Min Volts
Typical Megohms
Typical Megohms
J553
05
018
0.75
13
075
50
10
2
J554
10
0.6
16
1.75
055
50
1
1
J555
2.0
14
2.6
2.15
075
50
88
025
J556
30
2.4
38
2.6
075
50
6
014
J557
45
36
53
30
15
50
48
009
PART NUMBER
NOTES: 1 Pulse test-steady state currents may vary. 2. Pulse test-steady state Impedance may vary. 3 Min VF reqUIred to IRsure IF>O 8 IFI Imin). 4 Max VF where 'F < 1 1 IF1(max) IS guaranteed.
NCL
Siliconix
3-63
High Impedance Diode Switching High Dynamic Range Log Amps High Isolation Protedion Circuits
BENEFITS • Low Cost
TO·92 (MODIFIED)
See Section 6
Plastic
ABSOLUTE MAXIMUM RATINGS (25°C)
A
Forward Current ............................ 10 mA Total Device Dissipation ........•.....•...... 360 mW Storage Temperature Range ............ -65°C to +135°C Lead Temperature (1/16" from case for 10 seconds) ............. 300°C
* AO C
C
Bottom View
ELECTRICAL CHARACTERISTICS (25°C) Min Typ
Characteristic
-5
JPAD10
-10
--
JPAD20
-20
JPAD50
-50
S T A T I C
1
IR
Reverse Current (Note 1)
JPAD100
-100
JPAD200
-200
3
0 V
4
N
Unit
pA
-35
-BO
BVR
Breakdown Voltage (Reverse)
VF
Forward Voltage Drop
0.8
1.5
CR
Capacitance
1.5
2.0
pF
NOTE:
1. The JPAD type number denotes Its maximum reverse current value in pica amps. Devices with IR values intermediate to those shown are also available on request.
3-64
Test Conditions
-500
JPAD500
-2 -
Max
JPAD5
Silicanix
VR
=-5 V. f = 1 MHz
Preliminarv
high voltage protection diode
H
Siliconix
designed for. . .
Performance Curves VRMA See Section 4
• High Impedance Diode Switching
BENEFITS • Offers High Voltage Protection • Broad Current Range
• High Dynamic Range Log Amps • High Isolation Protection Circuits
TO-92 (MODIFIED)
ABSOLUTE MAXIMUM RATINGS (25°C)
See Secllon 6
Anode to Cathode Voltage JR135V ...................................... 135V JR170V ...................................... 170V JR200V ...................................... 200 V JR220V ...................................... 220V JR240V ...................................... 240V Forward Diode Current IF ........................ 20mA Reverse Diode Cu rrent IF ......................... 50 mA Power Dissipation PO .......................... 360mW (Derate 3.27mW/oC) Storage Temperature TSTG .............. -55°C to 150°C Operating Temperature TOp .............. -55°C to 135°C
Plastic A
* cD c
A
D
c A
Bottom View
ELECTRICAL CHARACTERISTICS (25°C) Characteristic
Min Typ Max JR135V
1
2
POV
IF' IF2
Peak Operating Voltage'
Forward Current
Unit
Test Conditions
-
135
JR170V
170
JR200V
200
JR220V
220
JR240V
240
V
200
IF=1mA
VF=2V
770
200
/J A
3
VL
Limiting Current
4
ZD
Dynamic Impedance
2
MQ
5
AIF/AT
IF Temp Coefficient
+0.6
%/oC
0.9
V
VF= 100V 1= 0.8 IF' (min) VF=25V VF=2-100V TA = -20 to + 85°C VRMA
NOTE:
1. Pulse test duration 2 ms.
Silicanix
3-65
-I monolithic dual o
I
g Silicanix
n-channel JFET designed for • • • • Hybrid Circuits Wideband Differential • Amplifiers • VHF/UHF Amplifiers
Performance Curves NNZ See Sedion 4 TO·71 See Section 6
S2
02
fo 0,
0' 2
1 0 0
610 02
0, S, Bottom View
0,
~~ S,
BENEFITS
G2
52
• High Gain through 100 MHz gfs > 4500 Mmho • Low Insertion Loss • Tight Tracking
ABSOLUTE MAXIMUM RATINGS (25 0 C) S2 ...~D2
Gate-Drain or Gate Source Voltage ................. -25 V Gate Current ........................................ 50 rnA
0,
lA
TO-71 = M440, M441
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 S 2T -A 3 T -I 4 C
"5 6
-
0
Gate-Source Cutoff Voltage
BVGSS
Gate-Source Breakdown VOltage
lOSS
Saturation Dram Current (Note 2J
IG
Gate Current (Note 11
9fs 90s
M CISS
-~ 9
Typ
Gate Reverse Current (Note 1)
VGS(offl
V
7 N -A
8
IGSS
M440 Min
Common·Source Forward
Transconductance
-6
-1 -25
Crss
Common-Source Reverse Transfer Capacitance
IVGS1-VGS21
Differential Gate-Source Voltage
Typ
Max -500
-6
-1 -25
6
30
6
-500 9.000 4.500
4.500
Unit pA V
Test Conditions VOS=0.VGS=-15V VOS = 10 V, 10 = 1 nA VOS=O.IG=-I~A
30
rnA
VOS= 10V,VGS=0
-500
pA
VOG = 10 V. 10 = 5 rnA
9.000 f = 1 kH2
IJmho
200
Conductance Capacitance
Min
-500
Common-Source Output Common·Source Input
M441 Max
200 VOG = 10 V. 10 = 5 rnA
50
50
12
12
f= 1 MHz
pF
M 10
A T
10
rnV
VOG = 10 V. 10 = 5 rnA
NNZ
NOTES: 1. ApprOXimately doubtes for every 10°C Increase In TA 2. Pulse test duration = 300 IoIsec; duty cycle <;; 3%.
3-66
20
Siliconix
monolithic dual n-channel JFETs
H
Silicanix
designed for • • •
Performance Curves NNZ See Section 4
• Hybrid Circuits DiHerential • Wideband Amplifiers • VHF/UHF Amplifiers
• High Gain through 100 MHz gfs > 5000 J.!mho TO·78 • Low Insertion Loss See Section 6 • Tight Tracking
BENEFITS
G1
~~ S1
ABSOLUTE MAXIMUM RATINGS (25 0 C)
5, 40'
30
06
0 '0
0
G, 01
Mm
Ma.
1
~
S 12 T 4 A IS T I- I 6 C 17
8
9 ';0 0
11
y
112 N A :13 M I- I 14 C
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
Unit
-100
pA
-250
nA
VGS(off)
Gate-Source Cutoff Voltage
VGS
Gate-Source Voltage
IG
Gate Operating Current
lOSS
Saturation Drain Current (Note 1)
91s
Common-Source Forward Transconductance
5000
10,000
91s
Common-Source Forward Transconductance
5000
10.000
90S
Common-Source Output Conductance
100
90S
Common-Source Output Conductance
150
-1
-5
-0 3
-4 nA
40
mA
Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance
12
en
EqUivalent Short Circuit Input NOise Voltage
20
Spot NOise Figure
16
-
17 M 1- A I~ T C 19 H I- I N 20 G
IIGl-IG2 1
Differential Gate Current
10SSl IOSS2
Saturation Dram Current RatiO (Notes 1 and 2)
IVGS1-VGS2 1
Differential Gate-Source Voltage
Min
20 095
~IVGS1-VGS21 Gate-Source Voltage Differential Onft I Note 3) ~T
1
Ma. 20
095
1
10
15
20
40
pF
91s1
Transconductance RatiO (Note 2)
095
1
095
1
1= 100MHz 1=1 kHz
VOG=10V.10=5mA
nV
Unit nA
-
1= 1 MHz 1= 10kHz 1=10kHz RG = lOOK
dB
Test Conditions VOG = 10 V, 10 = 5 mA
TA = 125°C
VOS = 10 V. VGS = a
mV
121
TA = 12SoC VOS=10V.VGS=OV
v'FfZ
40
20
,
I = 100 MHz
/lV/oC
(Guarantee-no test)
TA = 150°C
1=1 kHz
1 MS912
Ma.
VGS=-15V,VOS=0
/lmho
5
Min
M5912
Test Conditions
VOG=10V,10=5mA
pA
CISS
Characteristic
G, D, = M5911,
VOS= 10V,10= 1 nA
-100
7
MS911
TO-78
V
-100
Crss
NF
I~o ~,
IG = -1 /lA, VOS = a
-25
1-
15
G,
7
10 5,
Bottom View
*ELECTRICAL CHARACTERISTICS (25 0 unless otherwise noted) Characteristic
D,
C
Gate-Drain or Gate Source Voltage ................. -25 V Gate Current ........................................ 50 rnA
G2
S2
-
TA= 2S·C TB = 125°C VOG = 10 V, 10 = 5 mA
TA = -S5°C TB = 2SoC f = 1 kHz
91s2
NNZ
* JEDEC registered data NOTES: 1 Pulsewldth :s:;;; 300 /.lS, duty cycle :s:;;; 3% 2 Assumes smaller value 10 numerator 3 Measured at end pomts, T A and Ta
Silicanix
3-67
-
enhancement-type p-channel MOSFET designed for • • •
• High-Input Impedance Amplifiers
H
Siliconix
Performance Curves MRA See Section 4 BENEFITS • High Input Impedance IGSS = 30 Femto Amp Typical • High Gain gfs = 1000 j.tmho Minimum
Smoke Detectors Electrometers pH Meters ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Source Voltage ........................... 25 V Gate-Source Voltage ........................... ±10 V Drain Current ............................... 30 mA Total Device Dissipation at (Or Below) T A = 25°C (Derate 3 mW;oC to +150°C) ........ , ... , ... 375 mW Operating Junction Temperature ........... -55 to +150°C Storage Temperature .................... -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ............... 265°C
TO-1S See Section 6
JD Go----J,s
S,B.C ~
G
D
ELECTRICAL CHARACTERISTICS (25°C) Characteristic
-
1
2 3
-4
-5
S T A T I C
6 0 y IN 7 A 1- M I 8 C
Min
IGSS
Gate-Source Leakage Current
BVOSS
Drain-Source Breakdown Voltage
-25
VGS
Gate-Source Voltage
-2.0
Max
Unit
-1.0
pA
--6.0 -20
Test Conditions VGS=-10V,VOS=0
V
10 = -10 /lA, VGS = 0
V
VOS =-10 V, 10 =-10/lA
lOSS
Orain Cutoff Current
nA
VOS=-10V,VGS=0
10(on)
ON Drain Current
-3.0
mA
VOS =-10V, VGS=-10V
9fs
Common-Source Forward Transconductance
1000
/lmhos
Ciss
Common-Source Input Capacitance
6.0
Crss
Common-Source Reverse Transfer Capacitance
1.5
pF
VOS =-10V, 10 = -2 mA, f = 1 kHz
VOS =-10V, VGS= -10V, f= 1 MHz
MRA
3-68
Siliconix
n-channel JFET designed for • • •
3C
H Siliconix
Performance Curves NH/NRL See Section 4
VHF/UHF Amplifiers • Mixers • Oscillators •
S "'G
"ft
B'ENEFITS Low Cost • Automatic Insertion Package
•
TO-92 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
Drain-Gate Voltage __ ............. _ ............ 25 V Source-Gate Voltage .............. _ ............ 25 V Drain-Source Voltage ........................... 25 V Forward Gate Cu rrent ...... _...... _ .......... 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) .... __ ................ 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ......... _ ..... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
,~:
G GO 0
o
0
•
0
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
Min
1
-2 -
IGSS S 3 T BVGSS A T 4 I VGS(of!) C 5 lOSS
-6
VGS
7
9f.
8 0
Re(yt.)
-
-
N
Re(yo,)
-
A 10 M I -C 11
-
12
Gate-Source Breakdown
Voltage
Unit
-2.0
nA
-2.0
p.A
-25
Test Conditions
VGS =-15 V, VOS = 0
TA = +100°C
IG =-10p.A, VOS = 0 V
Gate-Source Cutoff Voltage Saturation Drain Current Gate-Source Voltage
Common-Source Forward
Transconductance Common-Source Forward
Transconductance
-8.0 2.0
20
-{l.5
-7.5
2000
7500
VOS=15V,lo=2nA mA V
-
VOS = 15 V, V GS = 0 (Note 1) VOS=15V,IO=200p.A f = 1 kHz
1600 IJmhos
y
9
Gate Reverse Current
Max
Common-Source Output Conductance
Common-Source Input
Re(Yi')
Conductance Common-Source Input
Ci" Crss
Capacitance Common-Source Reverse
Transfer Capacitance
200
f=100MHz VOS = 15V, VGS=O
800 7.0 pF
f = 1 MHz
3.0
NOTE: 1. Pulse test PW = 300 p.s; duty cycle"; 3%.
NH/NRL
Siliconix
3-69
OQ
o
n-channel JFET a. :e designed for • • •
H
Siliconix
I I.
Performance Curves NH/NRL See Section 4
• VHF/UHF Amplifiers • Mixers • Oscillators
BENEFITS
•
Low Cost • Automatic Insertion Package
TO·92 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
Drain·Gate Voltage ............................ 25 V Source·Gate Voltage ........................... 25 V Drain-Source Voltage ........................... 25 V Forward Gate Current ........................ 10 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) . , " .... , ..... 300°C
.~:
G GO ,-s
o
0
C
S c
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1
12
5 IGSS ,- T 3 A 6VGSS 1_ T 4 I VGS(off)
'"5 c 6 7
12
-13
-14
--8.0
1.5
24
2000
7500
gos
10 M Re(Yis) I 11
-25
Common-Source Output Conductance
1- C
nA I'A
-{l.5
9fs
9 y Re(yos) N
Unit
-1.0 -1.0
Gate·Source Cutoff Voltage Saturation Drain Current
I-A
Max
Gate-Source Breakdown Voltage
Common-Source Forward Transconductance
18 Re(Yfs) 1_ 0
-
Gate Reverse Current
lOSS
I-
Min
Common-Source Forward Transconductance
V
VGS=-15V,VoS=0
TA - +100°C
iG=-10I'A,VOS=O VOS=15V,IO=10I'A
mA
VOS = 15 V, VGS = 0 (Note 1)
f = 1 kHz 75 1600
Common-Source Output Conductance
Common-Source Input Conductance
I'mhos 200
f = 100 MHz
VOS=15V,VGS=0
800
Ciss
Common-Source Input Capacitance
6.5
Crss
Common-Source Reverse Transfer Capacitance
2.5
NF
Noise Figure
pF
2.5 3.0
dB
NOTE: 1. Pulse test, pulse width = 300 I'S, duty cycle';; 3%.
3-70
Test Conditions
f = 1 MHz
VOS = 15V, VGS=O, RG = 1M VOS = 15 V, VGS = 0, RG = lK
n n
f = 1 kHz f=100MHz NH/NRL
Siliconix
n-channel JFET designed for • • •
~
H Siliconix
"1'1
~
Performance Curves NRLJ NPAINH See Section 4
• General Purpose Amplifiers • Analog Switches
"
BENEFITS Low Cost • Automatic Insertion Package
•
TO-92 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Gate Voltage _______ . _.. _................ 25 V Source-Gate Voltage ........................... 25 V Drain-Source Voltage ........................... 25 V Forward Gate Current ................... _.... 10 mA Total Device Dissipation at 25° C Ambient (Derate 3.27 mWtC). .. _.................. 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
Plastic
'4:
G GD D
s
s
c
D
C
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1
S IGSS
I- T 2
A BVGSS
I3
14
Gate Reverse Current Gate-Source Breakdown
Voltage
T I VGS(oll)
Gate-Source Cutoll Voltage
C IDSS
Saturation Dram Current
5
9ls
1- D
Min
Common-Source Forward
Transconductance
-25
Typ
Max
Unit
-0.01
-1.0
nA
-60 V
-0_2
-8_0
0_5
24
800
6000
Test Conditions
VGS=-15V.VDS=0
VDS = 15 V.ID = 10l'A mA
VDS = 15 V. VGS = 0 (Note 1)
1=1 kHz
I'mho
6
Common-Source Output
Y gos I- N 7 A CISS M II 8 C Crss
Transfer Capacitance
19
NOise Figure
NF
Conductance Common-Source Input Capacitance
10
75
4_5
7.0
1.0
3.0
0.04
2.5
VDS = 15 V. VGS = 0 pF
Common-Source Reverse
-
IG =-10I'A. VDS=O
dB
1=1 MHz
VDS = 15 V. VGS = O. RG = 1M n
1=1 kHz
NRlINPA/NH
NOTE: 1. Pulse test PW .; 630 ms. duty cycle'; 10%.
Silicanix
3-71
-- designed n-channel JFET for .... ~
H
I ""
Siliconix
Performance Curves 'NRU NPAINH See Sedion 4
•••
General Purpose Amplifiers • Analog Switches •
BENEFITS Low Cost •• Automatic I nsertion Package
TO-92 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
Drain-Gate Voltage ............................ 20V Source-Gate Voltage ........................... 20V Drain-Source Voltage........................... 20V Forward Gate Current ....................... _. 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
'4:
G GO D
s
s
0
D
0
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
5 IGSS I- T 2 A BVGSS T I VGS(off) C lOSS 1
1"3 4" 5
- Y0 6 - AN 7 M I 8 C
-
Gate·Source Breakdown Voltage Gate·Source Cutoff Voltage Saturation Drain Current
9fs
Common-Soutce Forward Transconductance
gas
Common-Source Output Conductance
Ciss
Common-Source I nput Capacitance
Crss
Min
Gate-Reverse Current
Common-Source Reverse Transfer
Capacitance
Typ
Max
Unit
-.01
-100
nA
-20 -0.5
-10.0
0.5
20
V
Test Conditions VGS=-10V.VOS=0 IG=-lO"A.VOS=O VOS=10V,IO=1"A
mA
VOS = 10 V, VGS = 0 (Note 1)
500 10
f = 1 kHz
"mho VOS=10V,VGS=0
4.5
pF
f = 1 MHz
1.0
NRL/NPA/NH NOTE: 1. Pulse test PW .;; 630 msec, duty cycle';; 10%.
3-72
Siliconix
n-channel JFET designed for • • •
~
H
Siliconix
Performance Curves NRL See Section 4
VHF/UHF Amplifiers • Mixers • Oscillators •
--
." '"II
~
BENEFITS Low Cost •• Automatic I nsertion Package
TO·92 See Section 6
Plastic
ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Gate Voltage ............................ 25 V Source-Gate Voltage ........................... 25 V Drain-Source Voltage ........................... 25 V Forward Gate Current ........................ 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
o~:
G
0
TD o
D
S
D
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic IGSS
1-2. 2
S
BVGSS
I- T 3
A T
VGS(off)
I- I 4 C
15
lOSS 9fs
6 Re(Yf.) 1- 0 7 Y C's. I- N 8
Crss
Min
Gate Reverse Current
Gate-Source Breakdown
Voltage Gate·Source Cutoff Voltage Saturation Drain Current
Common·Source Forward
Transconductance Common·Source Forward
Transconductance Common-Source Input
Capacitance Common-Source Reverse Transfer Capacitance
Typ
Max
Unit
-om
-100
nA
-25
Test Conditions VGS=-10V,VOS=0 IG =-10"A, VOS=O
V -0.5
-10.0
1
25
1000
7500
VOS=10V,IO=1"A mA
VOS = 10 V, VGS = 0, (Note 1)
-
f = 1 kHz "mho
800
f = 100 MHz VOS=10V,VGS=0 3.5
pF
f = 1 MHz
0.85 NRL
NOTE: 1. Pulse test PW = 300 I'S, duty cycle'; 3%.
Siliconix
3-73
p-channel JFETs designed for • • •
H
Siliconix
Performance Curves PSAJPSB/PSC See Sedion 4
Switches • Analog • Choppers • Commutators
BENEFITS I nsertion Loss • LowrDS(on) = 75 n Maximum (P10S6)
Offset or Error Voltages Generated • No by Closed Switch Purely Resistive
ABSOLUTE MAXIMUM RATINGS (25°C) TO-92 See Se.tion 6
Gate-Dram or Gate-Source Voltage (Note 1) __ • __ .. _. 30V Gate Current .................... __ . _..... __ 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C). ........... __ . __ . ____ 360 mW Operating Temperature Range ____ . _... _... -55 to 135°C Storage Temperature Range..... _.. __ . _... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) ........... _. _300°C
G .~: GD 5
0
o
0
5
0
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Pl0B6 Max
Characteristic 1
-
BVGSS
--.2.
-
4
- 65 -7 -
S T
30
30
Gate Reverse Current
*
10(0f!)
Dram Cutoff Current
lOGO
Drain Reverse Current
I
c
VGS(off) Gate-Source Cutoff Voltage lOSS
8 9
rOS(on)
10
rd,(on)
0 V Ciss
12
Crss
N
- 13
W
- 15
I T C
14
Saturation Drain Current
VOS(on) Oraln-Source ON Voltage
11 -
Voltage
Min
3
-
IGSS
Gate-Source Breakdown
S
16 H
Static Drain-Source ON
Resistance Drain-Source ON Resistance Common-Source Input
Capacitance
Pl0S7 Max
Min
V
2
2
-10
-10
-0.5
-0.5
IJA
2
2
0.1
0.1
nA p.A
10
5
-5
-10
nA
V mA V
IG = 1 p.A, VOS = 0 VGS= 15V, VOS=O VOS =-15 V, VGS = 12 V (Pl086) VGS = 7 V (Pl087) VOG=-15V,IS=0
TA =85'C
VOS=-20V,VGS=0
-0.5
VGS = 0,10 =-5 mA (Pl086),IO =-3 mA (Pl087)
75
150
n
lo=-lmA,VGS=O
75
150
n
10=O,VGS=0
45
45
f = 1 kHz
VOS =-15 V, VGS = 0 pF
Common-Source Reverse
Transfer Capacitance
10
TA=85'C
VOS=-15V,10=-1 p.A
-0.5
f = 1 MHz
10
VOS = 0, VGS = 12 V (P1OS6) VGS = 7 V (Pl087) VOO = -6 V, VGS(on) = 0
td(on)
Turn-ON Oelay Time
15
15
tr
Rise Time
20
75
VGS(of!)
10(on)
RL
td(of!)
Turn-OFF Oelay Time
15
25
Pl0S6
12V
-5mA
910n
tf
Fall Time
50
100
Pl087
7V
-3mA
1.8Kn
n,
PSAIPSB/PSC
NOTE:
1. Due to symmetrical geometry these units may be operated with source and drain leads interchanged. I
3-74
Test Conditions
Unit
SilicDnix
low-leakage
pi(o-amp
H
Siliconix
iodes
designed for • • •
BENEFITS • Very High Off-Isolation 1 pA Max (PAD1)
• • Diode Switching Impedance • High Protection Circuits Clipping Circuits
Q
TO-18 (MODIFIED) See Secllon 6
I1
ABSOLUTE MAXIMUM RATINGS (25°C) Forward Current ........................... 50mA Total Device Dissipation ..................... 300 mW Storage Temperature Range ............ -55°C to +125°C Lead Temperature (1/16" from case for 10 seconds) .............. 300°C
ANODE
CATHODE
*.
CATHODE
(C... le.d for PAD1, 2, & 5 only)
ANODE
0
-
CATHODE
o
CASE
Bottom View
ELECTRICAL CHARACTERISTICS (2S·C unless otherwise noted) Characteristic 1 12 13 I-S I~ T 5 A 1ST I-I l-i C 19 110 11 D I-V 12 N
Min
Typ
Max
Unit
Test Conditions
-1
PADl
-2
2
-5 IR
-10
Reverse Current
5 pA
PAOlO
VR = -20 V
-20
20
-50
50
-100 BYR Breakdown Voltage (Reverse) VF
Forward Voltage Drop
CR
Capacitance
-45
PAD100
-120
-35
PAD1, 2, 5 IR = -1/1A
V 0.8
1.5 0.8
~AD10
Oavt
+15 V
04
pF
VR=-5V,f=1 MHz
'R<'PAt
.....
PADt
I 8 1n
1"
I
-15V
PAOlO, 20, 50,100 PAD1, 2, 5,10,20,50,100
IF = 5 rnA
2
D,"*" Dit I: '
l1li
l
t,
PAD1
2N4393. CONTROL SIGNAL
C
j
PAD1. 2. 5 PAOlO, 20, 50, 100
2N4111A
t
VOUT
APPLICATION Operational Amplifier Protection. Input Differential Voltage limited to 0.8 V (typ) by PADS 01 and 02 Common mode input voltage limited by PADS 03 and 04 to ±15 V.
Typical sample and hold circuit with clipping. PAD diodes reduce offset voltages fed capacitively from the FET switch gate.
Siliconix
3-75
H
n-channel JFETs designed for • • •
Siliconix
BENEFITS
Switches • Analog • Commutators • Choppers • Integrator Reset Switch
• Low Insertion Loss High Accuracy in Test Systems rDS(on) < 30 n (PN4091) • High Off-Isolation ID(off) < 200 pA High Speed trise < 10 ns (PN4091) • Short Sample and Hold Aperture Time Crss <5 pF
•
Plastic
ABSOLUTE MAXIMUM RATINGS (25°C)
TO·92 See Section 6
Reverse Gate-Drain or Gate-Source Voltage ......... -40 V Gate Current ............................... 10mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
o~: GO
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1
BVGSS
2"
-
lOGO
..2.
Gate-Source Breakdown Voltage
PN4091
Min
PN4092
Max
-40
Dram Reverse Current
Min
Max
-40
-=.
S T
1010fl)
9
T
C
pA
400
400
400
nA
200
pA
400
nA
i11
1055
1-
Saturation Dram Current
INote 1)
-10
30
nA
-1 p.A. VOS
-1
-5
8
15
V mA
VOslon)
'it
0.2
Dram-Source ON Voltage
VOs
VOs
~
VOS = 20V, VGs
V
J
Static Dram-Source ON ReSistance
30
50
80
11
VGs
a'raln-Source ON Resistance
30
50
80
11
VGs = 0, 10
C1SS
Common-Source Input Capacitance
16
16
16
Crss
Common-Source Reverse Transfer Capacitance
5
5
5
tdlon)
Turn-DN Oelay Time
15
15
20
Rise Time
10
20
40
Turn-OFF Time
40
60
80
N
19
pF
~
-21
toff
3-76
V,N
~ D
Silicanix
0
mA
10=6.6mA
~
0
f~
1 kHz
f~
1 MHz
VOs~20V, VGs~O
VOs
~
0, VGs = -20 V
VOO ~ 3 V, VGslon) ~ 0 ns
PN4091 PN4092 PN4093
1010ni 6.6mA 4 2.5
VGsloff) -12V -8 -6
RL 42511 700 1120
NCB
Voo NOTE: 1. Pulsewldth = 300 p.s, duty cycle';;; 3%.
150°C
0, 10 = 1 mA
-S 20 W t,
~
10 =4
VGs=O
'dslon)
18
150°C
10 = 2.5 mA
'Oslon)
I- V
150°C
20 V, 10 ~ 1 nA
16
0
150°C
VGs~-12V
0.2
17
0
VGs ~ - 8 V
~'20V
115
1-
~
VGs = - 6 V
0.2
113
G
VGS=-20V.IS=0
nA -7
12
I
~
~A
-2
s
Test Conditions IG
pA
400
-5
D
Unit
200
400
Gate-Source Cutoff Voltage
D
200
200
VGsloff)
D
V
200
I- I
D
200
Dram Cutoff Current
A
10
Max
-40
-5 - R7
5
Bottom View
PN4093
Min
4
~
i
Performance Curves NCB See Section 4
INPUT PULSE VOUT
RISE TIME < 1 ns FALL TIME < 1 m PULSE WIDTH 1 ,.1 PULSE DUTY CYCLE 0;;; 10% PULSE GENERATOR IMPEDANCE
SAMPLING SCOPE RISETIME04nl INPUT RESISTANCE 10 M INPUT CAPACITANCE 1 7 pF
son
n-channel JFETs
.H
Siliconix
designed for • • •
Performance Curves NT See Sedion 4
• Ultra-High Input Impedance Amplifiers
BENEFITS
ZZ ~~
10"""1
J>J> ZZ
""
-~~
o~ (X)
ABSOLUTE MAXIMUM RATINGS (25°C)
"" ZZ
Reverse Gate-Drain or Gate-Source Voltage ......... -40 V Gate Current ............................... 10 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW;oC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
TO·92
-~~
Plastic
See Section 6
o~ (X) J>J>
,~:
GO S
C
o
c
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CharacteristIC
PN4117
PN4118
PN4ll9
PN4120
PN4117A
PN4118A
PN4119A
PN412DA
Umt
Test ConditIOns
Min Typ Max Min Typ Max Min Typ Max Min Typ Max
1
:-
.~ S 3
4"
-
5 6
T A T I
C
IGSS
B
Gate Reverse Current PN4117 Series Only
-10
-20
pA
-25
-25
-50
nA
-1
-1
-1
-5
Gate-Source Breakdown Voltage
VGSloffl
Gate-Source Cutoff Voltage
-06
-1 B -1
Saturation Dram Current
003
009 0.08
0.24 020
060 003
03
210
250 100
330
300
(Note 2)
Common-Source Forward
Transconductance (Note 2)
9 N _A M 10 I
gos
Common-Source Output Conductance
C ISS
Common-Source Input Capal::1tance
-c
Crss
Common·Source Reverse Transfer Capacitance
-25 -40
70
-25 -40
80
-25
-10
-40
-40 -3
-2
-6
nA I
V
-06
70
VGS = ·20 V. VOS = 0
VGS = -20 V. VOS = 0
10QoC
IG=-lpA.VOS=O VOS-l0V.IO-l nA
rnA
VOS=10V.VGS=O
,umho 10
100°C
pA
BVGSS
9fs
11
-10
-25
IGS5
0 Y
-
-10
Gate Reverse Current PN4117A Senes Only
lOSS
--"" -~~
10"""1
• Low Power lOSS < 90 J1.A (PN4117) • Minimum Circuit Loading I GSS < 1 pA (PN4117 A Series)
Electrometers pH Meters Smoke Detectors
ZZ ""
f"" 1 kHz
20 VOS= IOV,VGS=O
pF 15
15
15
f= 1 MHz
15
NT NOTES: 1. Due to symmetrical geometry. these units may be operated With source and drain leads interchanged. 2. This parameter is measured dUring a 2 ms Interval 100 ms after power IS applied.
Siliconix
3-77
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NPA, NH
See SecHon 4
• General Purpose Amplifiers
BENEFITS Low Cost • High Impedance • IG Input = 35 pA Typically • Lowen Noise = 5 nV1y'Hz Typically
@
1 kHz
TO-92
See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
.~:
.......
Gate-Drain or Gate-Source Voltage (Note 1) -30V Gate Current ............................... 50 rnA Total Device Dissipation at 25°C Ambient. (Derate 3.27 mWtC) . ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
G GO D
•
•
D
D
D
Bottom View
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 I- S 2 T 1- A T ! 4 I
--2-
I- e 5 6
IGSS
Gate Reverse Current (Note 2)
8VGSS
Gate-Source Breakdown Voltage
VGS(otf)
Gate-Source Cutoff Voltage
lOSS
Saturation Drain Current (Note 31
91s
Transconductance (Note 31
90s
Common-Source Output Conductance
Crss
Common-5ource Reverse Transfer Capacitance
17
18
I9
I10
D y N A M I C
C1SS COG
Common-Source Forward
PN4302
Max
Mon
PN4303 Min Max
Upit
1
-1
-1
nA
01
--0.1
--0.1
~A
-30
-30
5.0
1000
-30 -10
~O
-40 0.5
PN4304 Max Min
4.0
10
2000
0.5
15
V
11
12
Drain-Gate Capacitance
IVlsl
Common-Source Short Circuit Forward Transadmlttance
~A,
TA = 85°C
VOS = 0
VOS = 20 V,IO = 10 nA
1000
50
50
50
1=1 kHz
3
3
3
6
6
6
2
2
2
VOS=20V, VGS =0 1= 1 MHz
Common-Source Input Capacl-
NOise FIgure
IG = -1
.umho
tance
NF
VGS = -10V. VOS =0
rnA
pF VOG= 10V, IS = a
1=140kHz
dB
VOS=10V, VGS =0
1=1 kHz, Rgen =10M!l
,umho
VOS=20V, VGS =0
1= 10MHz
l-
-
Tast Conditons
20
2.0
700
1400
(Note 3)
3.0
700
NPA, NH NOTES:
1. Geometry IS symmetrical. Units may be operated with source and drain leads Interchanged 2. ApprOXimately doubles for every 10°C Increase In TA' 3. Pulse test dUration = 2 ms
3-78
Silicanix
n-channel JFETs designed for • • •
H Siliconix
Performance Curves NCB See Section 4
Switches • Analog • Commutators • Choppers
BENEFITS
• Low I nsertion Loss Offset or Error Voltages Generated • No by Closed Switch Purely Resistive High Isolation Resistance from Driver Plastic Low Cost
• ABSOLUTE MAXIMUM RATINGS (25°C)
1'0·92
Reverse Gate·Drain or Gate·Source Voltage ....... , ,-40 V Forward Gate Current, , , , , , , ' , , ' , , , ' , , , , , , , , , , 50 mA Total Device Dissipation at 25° C Ambient (Derate 3.27 mW;oC), , , . , , , . , , , , . , , , , . , , , . 360 mW Operating Temperature Range. , . , , , . , , , , . ,-55 to 135°C Storage Temperature Range, , , , , , , , , , , , , . ,-55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) , , , , , , . , , , , . , ,300°C
See Section 6
o~:
G GO s
D
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) PN4391
Characteristic
Mm
1----2....
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
:~
Mox
Mm
-1 0
-200
-200
-200
--40
Test Conditions
Ur1lt
-10
--40
V
--40
VGS = -20 V, VOS = 0
I
VGS=-5V
200
:~ ~ 7
IO{off)
100°C
IG""-l}J.A,VOS"'O
10
~
D
Max
-10
nA
1---2. 3
Mm
D
Bottom View
PN4393
PN4392
Mox
S
D
100'C
10
Drain Cutoff Current
nA
VOS = 20 V
VGS=-7V
200
{ao°c
-A
'~T 9 !-
1....22..
10
VGS=-12V 200
I
e
I~
VGS(offJ
GaTe-Source Cutoff Voltage
--4
-10
-2
-5
--05
lOSS
Saturation Drain Current (Note 1)
50
150
25
100
5
12
-3
V
60
mA
I~
VOS(on)
Dram-Source ON Voltage
rOS{on)
Static Drain-Source ON ReSistance
04
14
I~
30
100
rds(on)
Drain-Source ON ReSistance
30
60
100
17
C ISS
Common-Source Input Capacitance
16
16
16
1-
18 -D 19 V Crss
td~on)
Turn-ON Delay Time
22
tc
Rise Time
1---;;-
V
VGS = 0
" "
VGS=O, 10
pF
VOS = 0
10
=:
3 mA
10
=:
6 mA
=:
IEII
1 mA f'" 1 kHz
VGS = 0, VOS = 0 VOS=20V,VGS=0 VGs=:-5V
5
21
23
5
N
100'C
1 nA
VOS=20V,VGS=0
5 Common-Source Reverse Transfer Capacitance
=:
lo"'12mA 60
16
I-
20 V, 10
04
1-
I......:..':...
=:
04
1-
I-
VOS
VGS
=:
-7V
f
=:
1 MHz
VGS=-12V
15
15
15
5
5
5
Voo
ns
S td(off}
Turn-OFF Delay Time
20
35
50
W tf
Fall Time
15
20
30
10 V, VGS(on) '" 0 lo(on) VGSloffl -12 V PN4391 12 mA -7 PN4392 6 PN4393 -5 3 =:
RL BOOn 16K 32K
NCB NDTE 1 Pulse test required, pulse Width
=:
300
}.IS,
duty cycle
< 3%
Siliconix
3-79
... n-channel JFETs • -0
H
•Z designed for • • • - • VHF Amplifiers
Siliconix
A.
Performance Curves NH See Section 4
10()
BENEFITS
-3 •
• LowN FNoise = 3 dB Typical at 400 MHz • WideHighBand 9fs/Ciss Ratio
Mixers
t-
en en II
>=
:::)
G IU t-
Z
:::)
o
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
TO·92 See Section 6
Gate-Drain or Gate-Source Voltage ............... -30V Gate Current ............................... 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC). ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
,~: GD
:e
D,
0
S
0
~DG
Bottom View
IU
U
:! ~
:::)
en
Min
Characteristic 1 12 -S T 3 A I-T
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
1 4 C VGS(off) 15 6 D I-y
-c 10
Saturation Drain Current (Note 1)
13
F
-R 14 E _0 U 15 E I_N 16 C I-Y 17
VGS =-15 V, VDS = 0 V
IG = -1 p.A. VDS = 0 V
5
15
4500
7500
VDS= 15V,ID= 1 nA mA p.mho
f = 1 kHz
50
Common-Source Output Conductance
VDS= 15V,VGS=OV Common-Source Reverse Transfer Capacitance
0.8
Common-Source Input Capacitance
4
Common-Source Output Capacitance
2
Characteristic
-~
nA
-6
Gate-Source Cutoff Voltage
Common-Source Forward Transconductance
11 H 9 155 '"121 b l55
10
Test Conditions
V
IDSS
Coss
Unit
-30
9fs
1-2.. N 90S B A erss -M 9 1 CISS
Max
100 MHz M,n Max
Common-Source Input Conductance Common-Source Input Susceptance
pF
400 MHz Min Max
f= 1 MHz
Unit
100
1000
2500
10,000
9 0 55
Common-Source Output Conductance
75
100
boss
Common·Source Output Susceptance
1000
4000
9fs
Common·Source Forward Transconductance
Gps
Common·Source Power Gain
NF
NOise Figure
Test Conditions
p.mho VDS=15V,VGS=OV
4000 18
10 2
dB 4
VDS=15V,ID=5mA VDS = 15 V, ID = 5 mA, RG = lK NH
NOTES: 1. Pulse test duration
3-80
= 300115
Siliconix
n
n-channel JFET designed for • • •
H
Siliconix
"...Z VI
0W
and Medium Frequency • Low Amplifiers
BENEFITS
• Low Cost
TO·92 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C)
Plastic
Gate·Drain or Gate·Source Voltage ............... -25V Gate Current (FWD) ......................... 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) ........... " .300°C
o~: GD s
c
D
C
S D
G
Bottom View
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
-J,
Gate Reverse Current
"3
Gate-Source Breakdown Voltage
2 S IGSS T A BVGSS
4" i
-
6 7
-
VGS(off)
5 C VGS
Saturation Drain Current
rds(on)
Drain-Source ON Resistance
9fs
-9
D gos
y
10 N 9fs -A 11 M Ciss I 12 C Crss
-
-13
-
14
Common.source Forward
Transconductance
-{l.S
Common-Source Forward Common-Source Input Capacitance
Unit nA p.A
-25
-{l.4
1.0
2000
Test Conditions VGS=-15V,VOS=0
TA-85°C
IG =-10 p.A, VOS = 0 -8.0
V
-7.5
Common-Source Output Conductance
Transconductance
Max -10
Gate·Source Voltage
loss
8
-
Gate-Source Cutoff Voltage
Min
VOS=15V,IO=1p.A VOS = 15 V, 10 = 100 p.A
40
mA
500
n
VOS = 15 V, VGS = 0 VGS=O,IO=O
9000
IEII
f = 1 kHz
200 p.mho 1800
VOS=15V,VGS=0 20
f = 1 MHz
pF
Common-Source Reverse Transfer Capacitance
5.0
NF
Common-Source Spot Noise Figure
3.0
eN
Equivalent Short Circuit Input Noise Voltage
50
dB nV
y'Hz
RG=150kn VOS=15V,10=1 mA
f = 1 kHz NBW = 150 Hz
• JEOEC registered data
Siliconix
3-81
III
~
~
Q
n-channel DMOS FE's
Designed for Military and Industrial Applications • •
'"
• ~ • ~ Q • • III Q o • • ~ Q • • III
'" Q
'"
High-Speed Switching Analog Switch Multiplexer Digital Switch A to D Converters D to A Converters Choppers Sample and Hold
•
Performance Cu'rves DMCB See Sedion 4 BENEFITS • Ultra low feedback capacitance
(O.30pF) • High switching speeds «1 ns) • Gate can accept
± 40V
TO-72 So. Soctlon &
ABSOLUTE MAXIMUM RATINGS (DC) Drain Current .........•........................ 50mA Total Device Dissipation at 25DC Case Temperature ............................. 1.2W Storage Temperature Range ............. -650 to +2000 C Lead Temperature (1 116 H from case for 10 sec.). ..... 3000 C Operating Temperature Range ........ -55 0 to+150 o C
G
Orain-to-source
+30
+10
+20
Vdc
VSD
Source-to-drain*
+10
+10
+20
Vdc
VOB
Orain-to-substrate
+30
+15
+25
Vdc
VSB
Source-to-substrate
+15
+15
+25
Vdc
VGS
Gate-to-souice
±4O
±40
~ ." ~~
Vdc
VGB
Gate-to-substrate
±40
±40
±40
Vdc
VGO
Gate-to-drain
±40
±40
±40
Vdc
Typical Switching Waveform
TEST CONDITIONS
+5V- - -
Switching
510
Rl
-r----"'" foo%
.JI
VIN
+voo
S
S0210 S0212 S0214 UNIT
PARAMETER Vos
TO SCOPE
~
~
o
50%
OV --.1" 110 %
Input pulse td.lr<1ns Pulse width = 1oon8
Rep rate = 1MHz
SWITCHING CHARACTERISTICS
SAMPLING SCOPE
tr(ns)
td(ON)(ns)
tr<360ps RIN=1MQ CIN =20pF
VDD 1
10 5 15
1
RL
Typ
Max
680 680 1k
06 07 09
10
Typ
Max
07 110
08
10
tOFF(ns)
Typ 90 90 1 140
Max .•
•
-tOFF IS dependent on Rl and CL and does not depend on the device characteristics
3-82
Siliconix
DC ELECTRICAL CHARACTERISTICS (TA = 25°C PARAMETER Breakdown voltage Orain-to-source SVOS
1
-
unless otherwise specified,)
TEST CONDITIONS
SD210 SD212 SD214 UNIT Min Typ Max Min Typ Max Min Typ Max
VGS=VSS=OV.IO=10!'A VGs=Vss=-5V.ls=10nA
30
35 25
10
10
25
20
2
SVSO
Source-Io-drain
VGo=Vso=-5V lo=10nA
10
10
20
"3
SVOS
Orain-to-substrate
15
15
25
-4
VGS =OV. source OPEN lo=10nA
SVSS
Source-to-substrate
VGS=OV. drain OPEN IS=10!'A
15
15
25
5
-
6
8 T A T I C
7""
ISO (OFF) Source-to-drain
Gate
IGSS
-8 -
Laakage current lOS (OFF) Orain-to-source
9
VGS=VSS=-5V VOS=+10V VOS=+2OV
1
VGO=VSO=-5V VSO=+10V VSO=+2OV
1
Threshold voltage
VOS=VGS=VT.IS=l1'A VSS=OV
ros(ON)
Orain-to-source resistance
lo=1.0mA. VSS=O VGS=+5V VGS=+10V VGS=+15V VGS=+20V VGS=+25V
V
10 1
10 nA
10
10
1
1
VOS=VSS=OV VGS= ±40V
VT
1
10
25
0.1 0.5
1.0
2.0
50
70 45
30 23
0.1 0.1
1.0
2.0
50
70 45
30 23
19 17
10 0.1
0.1
1.0
2.0
50
70 45
30 23
19 17
V
Q
19 17
AC ELECTRICAL CHARACTERISTICS PARAMETER 10
11
U '13
14
gfs D y N A M I C
Forward transconductance
Small Signal Capacitancas (See capacitance model)
TE8T CONDITIONS VOS=10V. VSs=OV lo=2OmA.f=lkHz
8D212 8D214 SD210 Min Typ Max Min Typ Max Min Typ Max 10
15
10
15
10
15
UNIT mmhos
VOS=10V.f=lMHz VGS=VSS=-15V
C(GS+GO+GIl)
Gata node
2.4
3.5
2.4
3.5
2.4
3.5
C(GO+OB)
Orain node
1.3
1.5
1.3
1.5
1.3
1.5
C(GS+SB)
Source node
3.5
5.5
3.5
5.5
3.5
5.5
COG
Reverse transfer
0.3
0.5
0.3
0.5
0.3
0.5
IEII
pF
DMCB
Siliconix
3-83
n-channel DMOS FETs
Designed for Military and Industrial Applications
• • • • • • • •
High-Speed Switching Analog Switch MUltiplexer Digital Switch A to D Converters D to A Converters Choppers Sample and Hold
• • •
Performance Curves DMCB See Sedion 4 BENEFITS • Ultra low feedback capacitance (O.30pF) • High switching speeds «1 ns) • Diode protected gate
TO-72 SaeS.ctlon8
ABSOLUTE MAXIMUM RATINGS (OC) Drain Current ••••..••••••••.•.••••••••.•••..•.. 50mA Total Device Dissipation at 25°C Case Temperature ............................. 1.2W Storage Temperature Range ••...•••••••• -65° to +200°C Lead Temperature (1/16"fromcasefor 10sec.) •••••• 30QoC Operating Temperature Range •.••.... _55° to +150°C PARAMETER
Vos VSO VOB VSB
Orain-to-source Source-to-drain* Orain-to-substrate Source-to-substrate
VGS
Gate-to-source
VGB
Gate-to-substrate
VGO
Gate-to-drain
S0211 SD213 SD21& +10 +20 +30 +10 +10 +20 +15 +25 +30 +15 +15 +25 -25 -15 -15 +25
+25
+30
-0.3
-0.3
-0.3
+25 -30 +25
+25 -15 +25
+30 -25 +30
UNIT
Vdc Vdc Vdc Vdc Vdc Vdc Vdc Typical Switching Waveform
TEST CONDITIONS
+5V- - - - , - - - - - - , .
,-A50%
I~%
VIN
Switching
10%
OV
TO SCOPE +Voo
510
VO:~DD----X~;.
RL
OV- - -
Input pulse. td, tr <1 ns Pulse width = 100n5
Rep rate =1 MHz
d.~ '1<10.:,:%_....:.10:':'%:1\ t,l~~FF
SWITCHING CHARACTERISTICS
SAMPLING SCOPE
tr<360ps RIN =1 M2 CIN=20pF
90%
tdION)(na) Voo
I
5
10 15
trlns)
10FFlna)
RL
Typ
Max
Typ
Max
Typ
16BO 6BO lk
06 0.7 0.9
10
07 06 10
11.0
9.0 90 140
I
Max
-tOFF IS dependent on RL and CL and does not depend on the device characteristics.
3-84
Siliconix
DC ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise specified.) PARAMETER Breakdown voltage Orain-to-source BVDS
1
TEST CONDITIONS
SD213 SD216 SD211 UNIT Min Typ Max Min Typ Max Min Typ Max
VGS=VBS=OV,ID=10jIA VGS=VBS=-5V,ls=10nA
30 10
35 26
10
26
20
2
BVso
Source-to-drain
VGO=VBO=-6V ID=10nA
10
10
20
3
BVDB
Orain-to-substrate
1!j
16
25
-4
VGB=OV, source OPEN ID=10nA
BVSB
Source-to-substrate
VGB=OV, drain OPEN IS=10jIA
15
15
26
-
Leakage current IDS (OFF) Drain-to-source
5
-
6
S T A T I C
1"" -
ISD (OFF) Source-to-drain
Gate
IGBS
8
VT
9
rDs(ONI
VGS=VBS=-5V VOS=+10V VDS=+2OV
1
VGO=VBO=-5V VSO=+10V VSO=+2OV
1
10
10
VDB=VSB=OV VGB=+25V VGB=+30V
Threshold voltage
VOS=VGS=VT,IS=ljIA VSB=OV
Orain-to-source
lo=I.0mA, VSB=O VGS=-+5V VGS=+10V VGS=+15V VGS=+2OV VGS=+26V
resistance
1
26
V
10 1
10
1
10
nA
10
1
10
10
jIA 10
0.5
1.0
2.0
50 30
70 46
0.1
1.0
2.0
50 30
70 46
0.1
1.0
2.0
50 30
70 46
23
23
23
19
19
19 17
V
Q
AC ELECTRICAL CHARACTERISTICS PARAMETER 10
11
12 13 14
gfs D y N A M I C
Forward transconductance
Small Signal Capacitances (See capacitance model)
TEST CONDITIONS VOS=10V, VSB=OV lo=20mA,f=lkHz
SD211 SD213 SD215 Min Typ Max Min Typ Max Min Typ Max 10
15
10
15
10
UNIT mmhos
16
VOS=10V, f= lMHz VGS=VBS=-15V
C(GS+GO+GB)
Gate node
2.4
3.5
2.4
3.5
2.4
C(GO+OB)
Orain node
1.3
1.5
1.3
1.5
1.3
1.5
C(GS+SBI
Source node
3.5
5.5
3.5
5.5
3.5
5.5
COG
Reverse transfer
0.3
0.5
0.3
0.5
0.3
0.5
--
3.5 pF
DMCB
Silicanix
3-85
- n-channel D-MOS FETs o o
H
Siliconix
C"4
Q
en
designed lor Military and Industrial Applications. Amplifiers •• VHF/UHF Mixers •• Oscillators High-Speed Switching Normally lIOn" Switch •• Analog! Digital Switch Multiplexer •• Low-Voltage Switch FEATURES • High Figure-of-Merit gfs/C • High Speed Switch « 1 Ins) • High Gain • Wide Dynamic Range-Input • Low Voltage Requirements Battery Operation
BENEFITS • High Frequency Gain • High Speed Switching • Low Distortion
=
~
TO·72 See Section 6
ABSOLUTE MAXIMUM RATINGS (OC) Drain Current .............................. 50 mA Total Device Dissipation at 25°C Case Temperature .......................... 1.2W Storage Temperature Range ........ -65° to +200°C Lead Temperature (1"16 from case for 10 sec.) ................ 300°C Operating Temperature Range ...... -55° to +150°C DC ELECTRICAL CHARACTERISTICS (TA
2
3
SVDS 'GSS VGS(offl
4
~ 6
----a
'D ~ l;
Gate Reverse Current
VGS ~ ±25V VSS ~ 0
Gate-Source Cutoff Voltage
VDS ~ 10V, VSS ~ 0 'D ~ l;
3-86
VDG ~ lOV
VGS
Gate-Source Voltage
'DSS
Saturation Drain Current
VDS ~ 10V VGS ~ VSS ~ 0
Drain-Source ON Resistance
VDS ~ 100 rnV VSS ~ 0
'DS
D
D
Test Conditions
Drain-Source Breakdown Voltage
7
Go-l~C
S
= 25°C unless otherwise specified.)
Parameter 1
l~\
s
VSS ~ 0
Min
Typ
Ma.
I I
'D ~ 5 rnA
0
'D ~ 20 rnA
±0.01
±1.0
nA
-1.0
-2.0
V
+0.5
+1.0
V
+1.7
+2.5
V
5.0
rnA
150
200
35
50
n n
1.0
I I
Siliconix
VGS ~ 0 VGS ~ +5V
Unit V
25
••
eft
..S
AC ELECTRICAL CHARACTERISTICS Test Conditions
Parameter
9
--;0
gls
11
gos
12
Ciss
13
Crss
Forward Transconductance Common~Source
Output
Conductance
VOG= 10V 110 = 20 rnA VBS = 0, I = 1 KHz 10 = 5 rnA
Min
Typ
Max
Unit
10
14
20
rnrnho
8
80
VOG = 10V, VBS = 0 10 = 5 rnA, f = 1 MHz
Common-Source Input
Capacitance Reverse Transfer Capacitance
10
VOG = 10V, VBS = 0 10 = 20 rnA, I = 1 MHz
o o
mmho
200
/Lrnho
4.0
.0
pF
1.5
2.5
pF
SWITCHING CHARACTERISTIC VDD
RL
5 10 15
670 670 670
td(ONI- ns VIN-2to+OV VIN - 2 to +4V Typ Typ 1.2 1.3 1.5
0.8 0.8 0.8
tr - ns
tOFf - ns -2 to +OV -2 to +4V
-2 to +OV
-2 to +4V
Typ
Typ
Typ
Typ
0.7 2.3 4.3
0.4 0.4 0.5
4.0 4.4 4.4
6.0 5.3 4.8
Silicanix
3-87
o
-
n-channel dual enhancement mode lateral D-MOS FETs
c::4
designed lor. · ·
CI)
•
Q
• • • • •
Wideband DiHerential Amplifiers Cascode High Slew Rate Amplifiers Single Ended High-Speed Amps High-Speed Analog Comparators Sample & Hold Ckts High-Speed Matched Analog Switches
FEATURES • High Figure-of-Merit gfs/C • Ultra Low Feedback Capacitance 0.3 pF • Low Output Capacitance • Low Input (Gate) Leakage • Non-Critical Operating CurrentNoltage • Matched Characteristics
BENEFITS • High Frequency Performance • High Slew Rate • High Speed Switching • Tight Temperature Tracking
ABSOLUTE MAXIMUM RATINGS (25°C) Drain-to-Drain Voltage ....................... ±25V Drain-Source Voltage ........................ +25V Drain Current .............................. 50 mA Device Dissipation (Each Side), (Derate 3 mW/°C) ........................ 367 mW Total Device Dissipation (Derate 4 mW/oC) ........................ 500 mW Storage Temperature Range ........ -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ........... 300°C
3-88
Silicanix
TO·78 See Section 6
5,
5, Bottom View
H
Silicanix
eft
-
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
Min
IGss
Gate Reverse Current
BVOs
Drain-Source Breakdown Voltage
25
VGs(th)
Gate-Source Threshold Voltage
0.1
VGs
Gate-Source Voltage
Typ
Max
Unit
0.05
1
nA
0.8
2.0
10 ~ 1 "A. VGs ~ 0
V
VOS ~ VGs ~ 10V, 10 ~ 1 "A ~
~
3.0
V
VOG
1
nA
VOG ~ 10V, 10 ~ 5 rnA
9,000
15,000
",mhos
20
100
p.mhos
60
0
5
pF
1.2
pF
CUrrent
gls
Common-Source Forward Transconductance
gos
Common-Source Output Conductance
ROs(ON)
ReSistance
ciss
Common-Source Input Capacitance
3.2
c rss
Common-Source Reverse Transfer Capacitance
05
10V, 10
o
1.9
IG
7,000
V
0.05
Gate Operating
S
Test Conditions VGs ~ +15V, VOS ~ 0
5 rnA
VOs ~ 10V, VGs ~ 0, I ~ I KHz
Drain-Source
10 ~ I rnA, VGs ~ 10V
VOs ~ 10V, VGs ~ 0, I ~ I MHz
Characteristic
M A T C H I N G
IVGsl ~ VGs21
~lvGsl - VGs21 ~T
sD2110
Min
Max
sD2120
Min
Max
Unit
Differential Gate-Source Voltage
10
20
rnV
Gate-Source Differential Drift3
25 25
50 50
"V/oC "V/oc
glsl
Transconductance
9fs 2
Ratio 2
0.95
1
0.95
I
Test Condition
TA~25°C
VOG ~ 10V, 10 ~ 5 rnA
TB TA TS
~ ~ ~
I
1 KHz
~
125°C -55°C 25°C
NOTES: 1. Pulsewidth ~ 300 p.s, duty cycle::$:; 3%. 2 Assumes smaller value In numerator. 3. Measured at end points, TA and Ta.
-Siliconix
3-89
~
o o
In Q
en
H
DMOS FET Quad Analog Switch Arrays
Silicanix
o designed for Military and Industrial Applications • • • o
In
Q
en
0o o In Q
en
FEATURES
BENEFITS
• Low "ON" Resistance
APPLICATIONS
• "OFF Isolation of -107 dB
• Audio Switching
• Low Input Capacitance
• Low Insertion Loss
• Video Switching
• Low Output Capacitance
• Glitch Free Signals
• Sample/Hold
• Low Feedback Capacitance
• Fast Switching
• Choppers • Crosspoint Switches
• High Channel-to-Channel Isolation DESCRIPTION The Siliconix S05000 series is a monolithic array of single-pole, Single-throw analog switches designed for high speed switching in audio, video, and high frequency applications in communications, instrumentation, and process control. Oesigned on the Siliconix OMOS process, the S05000 is rated for analog signals of ±10 V, while the S05001 and S05002 are rated for ±5 V and ±7.5 V respectively.
Insertion loss, crosstalk, and feedthrough performance. The threshold voltage for all switches is 2 V maximum, simplifying driver requirements for low level Signal applications. The S05000 family is available in 16-pin plastic and side braze dual-in-line packages, and is rated for operation over the _55 0 to 1250 C temperature range.
These bidirectional switches feature very low interelectrode capacitance and ON resistance to achieve low
FUNCTIONAL BLOCK DIAGRAM
PIN CONFIGURATION
Oual-In-Llne Package
TOP VIEW
Order Part Numbers:
G4
O----,r-"* --
D40~-....IJ
3-90
S05OO0l, S050011, S050021 Plastic
S05000N, S05001N, S05002N Ceramic See Section 6
LS4
'-------..--0 SUBSTRATE Silicanix
ABSOLUTE MAXIMUM RATINGS 505000
ID .....••.....•...•.................••.•.••... 50 mA Operating Temperature ............... -55° to +125°C Storage Temperature .............•...... -55 to 150°C Power Dissipation (Package)2 .....•.....•..... 640 mW (Each Device) .............. 300 mW
505002
505001
VDS ••.............. 20 V 10 V 15 V 20 V 10 V 15 V VSD 1 15 V 22.5 V VDB •••.•••.•..•••.. 25 V 15 V 22.5 V VSB ................ 25 V VGS ................ 30/-25 V 25/-15 V 30/-22.5 V VGB •............... 30/-0.3 V 25/-0.3 V 30/-0.3 V VGD ................ 30/-25 V 25/-15 V 30/-22.5 V
...............
ELECTRICAL CHARACTERISTICS3 PARAMETER
SYMBOL
Analog Signal Range
VANALOG
Drain-Source
TEST CONDITIONS UNLESS OTHERWISE NOTED:
-10
BVOS
VGS
= VBS = -5 V.
Breakdown Voltage
BVSD
VGO
= VBO = -5
Drain-Substrate Breakdown Voltage
BVOB
VGB
Source-Substrate Breakdown Voltage
BVSB
VGB
Breakdown Voltage
Source-Drain
LIMITS SD5DDD SD5DDI SD5DD2 UNIT MIN4 Typ5 MAX MIN4 Typ5 MAX MIN4 Typ5 MAX
10S(off)
5
-5
-75
10
= 10 nA
20
V. IS
= 10 nA
20
10
15
= 0 V. 10 = 10 nA. Source Open
25
15
225
= 0 V.
25
15
225
IS
= 10 "A.
Drain Open VOS-20V
Drain-Source Leakage Current
10
= VBS = -5 V
VGS
10
25
1
75
15
25
25 V
10
VOS-lOV
1
10
VOS - 15 V VSD - 20 V Source-Drain Leakage Current
ISO (off)
VGD ~ VBD
= -5 V
1
VSO-10V
1
Gate Leakage Current
IGBS
VOB
= VSB = OV
10
1
10
1
VGB - 25 V
1
"A
VGB - 30 V Threshold Voltage
Drain-Source ON ReSistance
ReSistance Match 6
Forward Transconductance
VT
rDS(on)
rDS(on)
Gate Node Capacitance
9fs CG
Drain Node Capacitance
Co
Source Node Capacitance
Cs
Reverse Transfer Capacitance Crosstalk
COG
ID = 1 mAo VSB = 0 V
1 10
20
VGS - 5 V
50
70
VGS - 10 V
30
30
VGS - 15 V
23
23
23
VGS - 20 V
19
19
19
VOS - VGS - VT. 10 - 1 "A. VSB - 0 V
01
10 - 1 rn.. VSB - 0 V. VGS - 5 V VDS = 10V. 'D . 20mA. VSB
OV. f= 1 kHz
VDS = 10 V. VGS = VBS = -15 V. f = 1 MHz See Capacitance Model Figure 1 See Test Circuits 1 and 2 f = 3 kHz
1 10
01
5
15 35
20
50
70
1 10
24
10
01
10
20
50
70
5
15
1
35
5 mS 7
15
10
24
II
24
35
13
16
13
16
13
16
35
5
35
5
35
5
03
5
03
5
-107
03
V
30
5
-107
-107
pF
dB DMCAI
NOTES:
6
nA
10
VSD - 15 V VGB - 30 V
1 10
Refer to test conditions specified 10 Electrical Characteristics Tables Derate 5 mW/oC above 25°C Refer to PROCESS OPTION FLOWCHART for additIOnal information The algebraiC convention whereby the most negative value IS a minimUm, and the most positive value IS a maximum, IS used TYPical values are for DESIGN AID ONLY, not guaranteed nor sublect to production testing ThiS untested parameter IS guaranteed by deSign
In
thiS data sheet
1 mS = 1 m-mho (ll)
Siliconix
3-91
--
SWITCHING TEST CIRCUIT
TEST CIRCUIT CROSSTALK MEASUREMENT Quad Switch
TO SCOPE -+VOD
505000/505001/505002
~r o
~rs
S
VIN~~
IID~
!
600
~~
~
Crosstalk = 20 Log
.".
V,N
Where VIN = 1V RMS at 3kl-lz
Sample Scope
tr. tF < 1ns Pulse WIdth =loon8
tr<350ps RIN=1MO C'N ~ 20pF
SWITCHING CHARACTERISTICS
-----.J.
-
+Voo
·IOFF(ns)
Ir(ns)
Id(ON)(ns)
+5V - - -
ov
.".
Input Pulse
Rep Rate =1MHz
SWITCHING WAVEFORMS
V'N
'1
51 600
600
VOUTTO SCOPE
J rel="nofollow">
V,N
Vo 600
RL
510
/90% 50%
10%
VOD
I+-
C--
90%
50%
'\10%
10%/
'rl+-
ov - - -_
TYP
MAX
1.0
TYP
MAX
TYP
0.7
1.0
9.0
MAX
TdlONI
90%
Your
RL
-::;j I+- '0"
5
680
0.6
10
680
0.7
0.8
9.0
15
lk
0.9
1.0
14.0
'tOFF is dependent on RL and does not depend on the device characteristics.
TYPICAL CHARACTERISTICS
MAXIMUM POWER DISSIPATION .1 TEMPERATURE
Z
e.
1.000
g
900
i oS
800
z
700
0 j:
::
600
0;
500
I/)
Q
400
w
300
0
200
a:
~
II.
150
13SW 0.. w (J 120
I' F'-SOUR1CE-Td-sueJTRATE IVse) VOLTS
10
Z
~ 105 5
I/)
iiia:
~ ~
w
(J
a:
r--
:::I
90
~ ~
60
0
I
30
10-'15
\
7S
45
"'" ~
I/)
0 t-
100
zI
0 0
20
40
60
80
;C
100
a:
c
TEMPERATURE('C)
3-92
DRAIN-TO-SOURCE RESISTANCE.s SOURCE-TO-SUBSTRATE AND GATE-TO-SOURCE VOLTAGE
::::
Siliconix
15
r-DRAIN-TO-S URCE CURRENT •
5~
AMBIENT TEMPERATURE (T A) '25'C
0 0
4
8
12
16
20
GATE-TO- SOURCE VOLTAGE (VGS) VOLTS
TYPICAL CHARACTERISTICS (Cont.)
DRAIN-TO-SOURCE RESISTANCE va TEMPERATURE
~
e.
< a.
iL
Ul 100
g
0
W
0
80 70
iii
60
z
Iii
W II: W
0
40
0
30
I
20
~
10
0
10M
W
1M
< I.: < W
lOOk
CJ
,.......r-
... <
~V
II:
<
I
I-
100
I
10
W
0
II:
0
50
25
75
1
;;;)
100
lOOk < 1.:<
W
SOURCE-TO-SUBSTRATE VOLTAGE VS8 = OV I I I I GATE-TO-SOURCE VOLTAGE VGS = OV DRAIN-TO-SOURCE VOLTAGE VDS = 10V_
W~
II-
offi
lk
..........
III:
z;;;)
<0
",.
-
.......... V
100
1-11:
II:
40
56
..........
85
70
1,000
CJ < I.: < W
...
100
SOURCE-TO-SUBSTRATEVOLTAGE VS8 =-5V I I I I GATE-TO-SOURCE VOLTAGE VGS = -5V DRAIN OPEN
W<
rn~
............ 10-
...--
AMBIENT TEMPERATURE (TA)" C
!(.:.
WIL
sf!
-5V~
SOURCE-TO-SUBSTRATELEAKAGE CURRENTv,TEMPERATURE
... iL 00 II:~
-
Ul
DRAIN-TO-SOURCE LEAKAGE CURRENTvsTEMPERATURE W
VOLTAGJ (VGD) = OV
I I I GATE-TO-DRAIN VOLTAGE IVGD) =
25
0
AMBIENT TEMPERATURE (TA) "C
CJ
~E1To-DRA,l
lk
0
0
0
--1--1
0
~~-
Z
II:
10k
GATE-TO-SUBSTRATE VOLTAGE VGB - OV SOURCE-TO-DRAIN VOLTAGE VSD = 10)1,...0
Z
VGS = 10V .......
;;;)
Ul
Q !!J
~GS=~ ....
50
II:
100M
IL
90
<
SOURCE-TO-DRAIN LEAKAGE CURRENT va TEMPERATURE
II: ID I-!!J Ul~
10
IDI-
;;;)Z
UlW III:
011: 1-;;;) 1 0 W
10
1
--
...--~
~
~
1
0
II:
0
;;;)
0
1 25
:::: lOOk
g ;;;)
100
W
10
... !(
75
01
85
35
25
56
45
85
GATE LEAKAGE CURRENT va TEMPERATURE
CROSSTALKv,FREQUENCY
-120
~
" ,
-110
...--
iii'
-100
...
-90
:!!. I.:
~
Ul Ul
0
II:
0
-80
"
't-...
"- I'-...
-70
"
-60
1',
-50
1 35
45
55
65
75
-30 100
85
AMBIENT TEMPERATURE (TArC
--
VIN = 1V (RMS)
-40
CJ 25
75
65
AMBIENT TEMPERATURE (TA)"C
....... ...-- ~
W
< I.: < W
65
AMBIENT TEMPERATURE (TA)" C
lk
0
CJ
55
SOURCE-TO-SUBSTRATE VOLTAGE VSB =0 GATE-TO-SOURCE VOLTAGE VGS = lOV
10k
Z
W II: II:
45
DRAI~- TO-ISOURCIE VOLT~GE VD~ = 0
< a.
I-
35
lk
10k
lOOk
1M
'" 10M
FREQUENCY (Hz)
Siliconix
3-93
THEORY OF OPERATION The 505000 .series consists of four 8P8T switches with analog signal capability of ±10 volts for the 805000, ±5 volts for the 805001 and ±7.5 volts for the 805002. Each switch of the array is a OM08 N-channel field-effect transistor of the enhancement-mode type; that is, the device is normally off when gate-to-source voltage (VG8) is zero volts. When VG8 exceeds the threshold voltage, \If, the FET switch starts to turn ON with VG8 in excess of +10 volts, a low resistance path (typically 30 OJ exists between input and ouput of the switch. Figure 1 shows the normal mode of operation of a single switch of the array for ±5 volt analog signal processing. Note that the source is recommended for the input since feedback or reverse transfer capacitance is lower when drain is used as the output. When analog signals are routed from one point to another the important factors are isolation, crosstalk between switches, feedthrough and feedback transients, insertion loss and speed of operation. The 805000 series offers superior performance in all these areas (Figure 1).
Isolation. ON resistance is typically 30 0 and OFF resistance is typically 1010 0, which results in an OFF to ON resistance ratio in excess of 109. Isolation from output to input from 3 kHz analog signals is typically -107 dB. Feedback and feedthrough transients are kept to a minimum because of the very low feedback and feedthrough capacitances. This means that "glitchless" or "clean" signals appear at the output. Insertion 11)88 depends upon the source and load impedances involved. As an example, for 600 n source impedance the insertion loss for voice signals (1 V RM8 at 3 kHz) is less than 0.3 dB. Thus the 805000 series makes good telephone cross-point sWitches. Speed. Because of the low ON resistance and low input capacitance, the 805000 switches turn ON at subnanosecond speeds. They are also capable of handling very high frequency analog signals and still maintain excellent Isolation (20-30 dB at 1 GHz).
INP~~ -5
G:;:
o
r--J I L-J
-10~
L.-H-4~OUTPUT (t5V)
+5 OUTPUT
-5 -10V
B
Figure 1
TYPICAL APPLICATION Figure 2 shows an 805002 configured for operation as a one of two channel video switch. The "L" switches of the two channels are terminated at the input by the two RO resistors, allowing impedance matching to various transmis-
10K
slon line impedances. The switches can be directly controlled by standard CM08 or TTL logic gates. For more detailed information on this application, see AN83-15.
.,, -- ..,• r-·-, ' '
..
25K
~400PF
.Fe
20' 1DV
High Performance Video Swllch Figure 2
3-94
Silicanix
D-MOS FEY quad analog switch arrays and driver
H
Siliconix
designed lor Military and Industrial Applications • • • SD5200 APPLICATIONS • Switch Drivers
DESCRIPTION The SILICONIX D-MOS SD5200 monolithic arrays of silicon. insulated-gate, field-effect transistors using the N-channel enchancement mode technology. This device is designed to handle a wide variety of driver applications. The SD5200 is intended for use as a 30V driver to complement the other switch products.
FEATURES • Low Input Capacitance-2.4 pF • Low Feedback Capacitance-0.3 pF • Low Output Capacitance-1.3 pF • ±10V Analog Signal Range • Low Propagation Delay Time-600 ps • Low on Resistance-30n • Low Feedthrough and Feedback Transients • Ion Implanted for Greater Reliability • High Channel-to-Channellsolation-107 dB • Transient Protection for Gates
I, N PACKAGE
605200
(TOP VIEW)
3
DRAIN 4
0---1
1~0--04
NC
GATE 4
6
0---1
6
~0--0 5
8
SOURCE 3
110--1 9~0-012 140--1
o--:J -{4-1
1~1:.!.o4
8
SOURCE 4
ORDER PART NQ
3
I
o--:J-* d!.1 I:.!.o 5
"o--j--t
L.!o 12
14o--j-*
16~O-O13 16d!.1 ~'3
SD5200N (PLASTIC)
5052001 (SIDE BRAZE)
2 SUBSTRATE
Siliconix
3-95
ABSOLUTE MAXIMUM RATINGS (TA
= 25°C unless otherwise specified.)
Parameters
8DS200 +O.S +30 +0.5
Vdc
+20 +2Q
VGB Gate-ta-Substrate
-0.3 +20
VGO Gate-ta-Drain
'0
Unit
+30
VOS Drain-ta-Source VSO Source-te-Drain 1 VOB Drai n-to-Substrate VSB Source-te-Substrate VGS Gate-te-Source
mA
SO
Drain CUrrent
Ambient Temperature Range
Power Dissipation
Storage
-55 to +1S0
Operating
-55 to +125
Total Package Dissipation 2
640
Individual Transistor Dissipation
300
'C mW
NOTES 1. Refer to test conditions specified in Electrical Characteristics Table. 2. Derated 5 mW per degree centigrade.
SWITCHING TEST CIRCUIT
TEST CIRCUIT CROSSTALK MEASUREMENT
TO SCOPE +VQD
Quad Switch
SD50DOISDSD01ISD5002
~rs
v'N~D
Iolrs 0
I
l
510
VOUTTO SCOPE VIN
600
'1
51
Vo
600
--
600
600
Input Pulse
Crosstalk = 20 Log
";"
RL
~
Ir. tF
VIN
SWITCHING WAVEFORMS
<
1ns
Pulse Width =100"5 Rep Rate =1 MHz
Where VIN = 1V RMS at 3kHz
";"
Sample Scope tr<350pS RIN= 1MO
CIW20pF
SWITCHING CHARACTERISTICS
td{ON)(ns)
+5V - - -
• tOFF{ns)
tr{ns)
'-90% 50%
v"
10%
ovJ
+Voo
-
90% VOUT
VDD
RL
TYP
MAX
TYP
MAX
TYP
1.0
07
1.0
9.0
~TdIONI
90%
50%
\~O% -Irl--
ov - - -
10%/
-::;j
_'0"
5
660
0.6
10
660
0.7
0.8
9.0
15
lk
0.9
1.0
14.0
'tOFF is dependent on RL and does not depend on the device characteristics.
3-96
Siliconix
MAX
DC ELECTRICAL CHARACTERISTICS (TA
= +25°C unless otherwise specified) 5D5200
Parameter
Test Conditions
= VBS = OV, ID = 10 p.A = VBS = -5V, IS = 10 nA = VBD = -5V, ID = 10 nA = OV, Source Open
Min
Typ
30
35
Max
Unit
BREAKDOWN VOLTAGE Drain-ta-Source BVDS
VGS
BVSD
Source-ta-Draln
VGD
BVDB
Drain-ta-Substrate
VGB ID = 10 nA
V
Source-ta-Substrate
VGB = OV, Drain Open IS = 10ILA
V
BVSB
LEAKAGE CURRENT Drain-ta-Source IDSIOFF)
ISDIOFF)
Source-ta-Drain
IGBS
Gate
VT
Threshold Voltage
rDSION)
rDSION)
Drain-ta-Source Resistance
Resistance Match 1
VGS
= VBS = -5V = +15V = +10V VGD = VBD = -5V VSD = +15V VSD = +10V VDB = VSB = OV VGB = 30V VDS = VGS = VT' IS = 1 p.A VSB = OV ID = 1 0 mA, VSB = 0, VGS = +5V ID = 1.0 mA, VSB = 0, VGS = +10V ID = 1.0 mA, VSB = 0, VGS = +15V ID = 1.0 mA, VSB = 0, VGS = +20V ID = 1 0 mA, VSB = 0 VGS = +5V
V V
VGS VDS VDS
nA
nA
p.A 0.5
1.0
2.0
50
BO
30
V
II
23 19
II
NOTE: 1. This untested parameter is guaranteed by design.
AC ELECTRICAL CHARACTERISTICS SD5200 Parameter
gfs
Forward Transconductance
C(GS+GD+GB)
Gate Node Capacitances
CIGD+DB)
Drain Node Capacitances
CIGS+SB)
Source Node CapaCitances
CDG
Reverse Transfer Capacitances
CT
Cross Talk
Test Conditions
VDS = 10V, VSB = OV ID = 20 mA, f = 1 kHz VDS VGS
= 10V, f = 1 MHz = VBS = -15V
Min 10
Typ
Max
Unit mmho
15 2.4
3.5
1.3
1.5
0.3
0.5
pF
See Capacitance Model in Figure 1 See Test Circuits No.1 and 2,
f
= 3 kHz
-107
dB
-Siliconix
3-97
H
DMOS FET Quad Analog Switch Arrays
Siliconix
FEATURES
BENEFITS
APPLICATIONS
• Low "ON" Resistance «30 fl)
• Low Crosstalk
• Audio Switching
• Low Input Capacitance (6 pF)
• Low Insertion Loss
• Video Switching
• Low Output Capacitance (2 pF)
• Glitch Free Signals
• Sample/Hold
• Fast Switching
• Choppers
• Low Feedback Capacitance (0.5 pF)
• Reduced Board Space Requirements
• Crosspoint Switches
• High Channel-to-Channel Isolation (-107 dB) • Small Outline Package DESCRIPTION The Slllconlx SD5400 series is a monolithic array of single-pole, single-throw analog switches designed for high speed switching in audio, video, and high frequency applications in communications, instrumentation, and process control. Designed on the Siliconix DMOS process, the SD5400 is rated for analog signals of ±10 V, while the SD5401 and SD5402 are rated for ±5 V and ±7.5 V respectively.
Insertion loss, crosstalk, and feedthrough performance. The threshold voltage for all switches is 2 V maximum, simplifying driver requirements for low level signal applications. The SD5400 family is available In a 14-pin plastic Small Outline (SO) package, and is rated for operation over the o to 70° C commercial temperature range.
These bidirectional switches feature very low interelectrode capacitance and ON resistance to achieve low
FUNCTIONAL BLOCK DIAGRAM G,o
PIN CONFIGURATION
l --\<3---, I
0,0 G20
020 G30 030 G40 040
lLs,
so
: I
l---\
J
L
S2
l---\
]L
TOP VIEW
S3
Order Numbers: SD5400CY, SD5401CY, or SD5402CY
l---\<J---
See Section 6
lLS4 SUBSTRATE
3-98
Package
Siliconix
ABSOLUTE MAXIMUM RATINGS 505401
505400 VDS ................ VSD 1 .... ........... VDB ................ VSB ................
VGS ...... .. . .. .. ... VGB ................ VGD .. .. .. .. .. .. . ...
505402
ID ............................................ 50 mA Operating Temperature ..................... 0 to 70 0 e Storage Temperature .................... -55 to 125°e Power Dissipation (Package)2 ................. 850 mW (Each Device) .............. 300 mW
20 V 10 V 15 V 10 V 15 V 20 V 15 V 22.5 V 25 V 15 V 22.5 V 25 V 30/-25 V 251-15 V 30/-22.5 V 30/-0.3 V 25/-0.3 V 30/-0.3 V 30/-25 V 25/-15 V 30/-22.5 V
ELECTRICAL CHARACTERISTICS3 PARAMETER
SYMBOL
LIMITS
TEST CONOITIONS UNLESS OTHERWISE NOTED:
S05400
S05401
UNIT
S05402
MIN4 Typ5 MAX MIN4 TYP5 MAX MIN4 Typ5 MAX Analog S'gnal Range
VANALOG
-10
Drain-Source Breakdown Voltage
BVos
VGS
~
VBS
Source-Drain Breakdown Voltage
BVSO
VGO
~
VBO
Drain-Substrate Breakdown Voltage
BVOB
VGB = 0 V, 10 = 10 nA, Source Open
Source-Substrate Breakdown Voltage
BVSB
VGB = 0 V. IS = 10
~
~
10
-5 V. 10
~
10 nA
20
-5 V, IS
~
10 nA
20
10
15
25
15
225
15
225
~A.
Drain Open
'OS(oll)
VGS = VBS = -5 V
10
25
25
VOS - 20 V Dram-Source Leakage Current
-75
-5
25
15
75
25 V
10
VOS - 10 V
10
VOS - 15 V
10
VSO - 20 V Source-Drain Leakage Current
'SO(off)
VGO ~ VBO = -5 V
10
VSO - 10 V
nA
10 10
VSO - 15 V VGB - 30 V Gate Leakage Current
'GBS
VOB
~
VSB
~
0 V
VGB - 25 V
~A
VGB - 30 V Threshold Voltage
Drain-Source ON Resistance Aeslstance Match 6
VT
VOS - VGS - VT, 10 - 1 ~A, VSB - 0 V 10 ~ 1 mA, VSB ~ 0 V
rOS(on)
rOS(on)
Forward Transconductance
9fs
Gate Node Capacitance Dram Node Capacitance Source Node Capacitance
Cs
Reverse Transfer Capacitance
10
20
50
70
~
VGS
4 5 6
01
10
20
50
70
~
10
20
50
70
10 V
30
30
30
23
23
23
VGS - 20 V
19
19
19
10 - 1 mA, VSB - 0 V, VGS - 5 V VOS
01
VGS - 15 V
10V, 10 ~20mA, VSB =OV, I ~ 1 kHz
VOS " 10 V, VGS ~ VBS ~ -15 V, I ~ 1 MHz See Capacitance Model Figure 1
5 10
15 24
10
5 10
35
II
mS 7
15
35
24 13
2
13
2
6
35
6
35
6 5
13 35
15
V
24
03
03
03
107
107
-107
35 pF
dB
OMCAI
NOTES: Refer to test conditions specified Derate 69 mW/oC above 25°C
01
VGS - 5 V
See Test CirCUits 1 and 2 1= 3 kHz
Crosstalk
1
In
Electrical Characteristics Tables
Reier 10 PROCESS OPTION FLOWCHART lor additional ,"Iormat,on The algebraic convention whereby the most negative value IS a minimUm, and the most positIVe value IS a maXimum, IS used rn this data sheet Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing This untested parameter IS guaranteed by deSign 1 mS ~ 1 m-mho (H)
Siliconix
3-99
IEII
SWITCHING TEST CIRCUIT
TEST CIRCUIT CROSSTALK MEASUREMENT Quad Swllch
TO SCOPE +VOO
SD54DD/SD5401/SD54D2
,,,~fl
~rs
510
VOUTTO SCOPE
0
I
Y,N
1
600
600
600
-
~
Crosstalk = 20 Log
.".
'1
51
Vo
600
RL
V,N
Where VIN = 1V AMS 813kHz
SWITCHING WAVEFORMS
-
.".
Input Pulse
Sample Scope
tr. IF.: 1ns Pulse Width =100ns Rep Rate =1MHz
RIN" 1MQ CIN=20pF
tr<350ps
SWITCHING CHARACTERISTICS
'd(ON)(na)
+5V - - -
IrIna)
• 'OFF(na)
/90% V 1N
ov
+VOD
VOUT
-1-
50%
-
10%
f4-
VDD
RL
TYP
MAX
TYP
MAX
TYP
5
6BO
0.6
1.0
07
1.0
9.0
10
6BO
0.7
O.B
9.0
15
1k
0.9
1.0
14.0
Td(ON)
90% 50%
,\:10%
ov - - _ _ 1,1+-
90%
.r--
10%/
-:::;j 1--,0.,
'tOFF is dependent on RL and does not depend on the deVice characteristics.
TYPICAL CHARACTERISTICS
DRAIN-TO-SOURCE RESISTANCE.s SOURCE-TO-SUBSTRATE AND GATE-TO-SOURCE VOLTAGE
z
e.
g t'j
~
105 90
II:
75
w
U
60
r
45
II: :::l
7z ~ c
I'" i"-SOUR'CE-Td-sUBJTRATE (VSB) VOLTS
10
iii w
3-100
150 135 ~ 0 120
5-\
1.-- 15
,"-
~
~
30
~
15 _DRAIN-TO-5 URCE CURRENT = 5mA~
o
AMBIENT TEMPERATURE ITA} =25 'C
o
4
B
12
16
20
GATE-TO- SOURCE VOLTAGE (VGS) VOLTS
Siliconix
MAX
TYPICAL CHARACTERISTICS (Cont.)
DRAIN-TO-SOURCE RESISTANCE VB TEMPERATURE
Z
0
iii
~
100
III
80
~
70
Z
'"
iii a:
III III
40 30
'"I
0
20
I Z
10
l-
;(
a:
C
10M
GATE-TO-SUBSTRATE VOLTAGE VGB = OV SOURCE-TO-ORAIN VOLTAGE VSO = 10~
............r-
~
Cl
""
100k
~
III
....
VGS = 10V
1M
III
~GS=~ ......
50
0
a: ::J
100M
~iov ,.;.:;.--;.;.. ...
....
10k
Z ;( a:
1k
Q
100
I 0 II
..... ......
10
CJ
0
50
25
75
100
25
0
"~" «D.
SOURCE-TO-SUBSTRATE VOLTAGE VSB = OV I I I I GATE-TO-SOURCE VOLTAGE VGS =OV ORAIN-TO-SOURCE VOLTAGE VOS = 10V_
10k
.... iL uO a:- 1 k ::J'"
9
015
I-a: Ia: Z::J ;(U a:
" ".... Ill" I,,a: ~
III
10
...... ........
",-
II-
1,000
Cl
100
........ ........
85
70
SOURCE-TO-SUBSTRATE VOLTAGE VSB = -5V I I I I GATE-TO-SOURCE VOLTAGE VGS = -5V
100
DRAIN OPEN
C
Ill'" 0
56
SOURCE-TO-SUBSTRATE LEAKAGE CURRENTvsTEMPERATURE III
lOOk
Cl
...-
AMBIENT TEMPERATURE (T A)" C
DRAIN-TO-SOURCE LEAKAGE CURRENT VS TEMPERATURE III
I
...--- ----
40
'"
AMBIENT TEMPERATURE (TA)"C
I
1
a: ::J
0
TO-ORAll VOLTAGJ IVGOI = OV
I
GATE-TO-ORAIN VOLTAGE IVGOI = -5~
III
Q
111-
--t---I
.!!J
60
CJ
"...iL
0
90
CJ
SOURCE-TO-DRAIN LEAKAGE CURRENTvsTEMPERATURE
D.
I-.!!J
........
"'::JZ
10
Oa: I-::J I U III U a: ::J
1
101-
"'Ill Ia:
10
Q
....-
V
~~
~
1
0
1 25
:::: 100k
... g c(
IZ III a: a: ::J U
10k
"" ~
.... I-
55
65
75
85
01 45
35
25
56
65
75
AMBIENT TEMPERATURE (TA)"C
GATE LEAKAGE CURRENT vs TEMPERATURE
CROSSTALKvsFREQUENCY
ORAI~-TO-~OURCIE
VO~
VOLT1GE =0 SOURCE-TO-SUBSTRATE VOLTAGE VSB = 0 GATE-TO-SOURCE VOLTAGE VGS = 10V
V
~
~
-120
" ,
-110
iii' :!!. ~
.... «
I-
0'" '"a:
U
-100
«
"-
-90
"-
-80 -70 -60
"-
~
1",
-40
Cl 1
-30 100
85 65 75 55 AMBIENT TEMPERATURE (TA)"C 35
45
Siliconix
IEII
VIN = 1V (RMS)
-50
10
25
85
AMBIENT TEMPERATURE (T A)" C
--
100
III
III
45
f--
1k
III
Cl
35
'"
1k
100k 10k 1M FREQUENCY (Hz)
" 10M
3-101
THEORY OF OPERATION The S05400 series consists of four 8PST switches with analog signal capability of ±10 volts for the S05400. ±5 volts for the 805401 and ±7.5 volts for the S05402. Each switch of the array is a OMOS N-channel field-effecttransistor of the enhancement-mode type; that is. the device is normally off when gate-to-source voltage (VGS) is zero volts. When VGS exceeds the threshold voltage. \fr. the FET switch starts to turn ON with VGS in excess of +10 volts. a low resistance path (typically 30 0) exists between input and ouput of the switch. Figure 1 shows the normal mode of operation of a Single switch of the array for ±5 volt analog signal processing. Note that the source is recommended for the input since feedback or reverse transfer capacitance is lower when drain is used as the output. When analog signals are routed from one point to another the important factors are isolation. crosstalk between switches. feedthrough and feedback transients. insertion loss and speed of operation. The S05400 series offers superior performance in all these areas (Figure 1).
Isolallon. ON resistance is typically 30 n and OFF resistance is typically 1010 n. which results in an OFF to ON resistance ratio in excess of 109. Isolation from output to input from 3 kHz analog signals is typically -107 dB. Feedback and feedthrough Iransients are kept to a minimum because of the very low feedback and feedthrough capacitances. This means that "glltchless" or "clean" signals appear at the output. Insertion loss depends upon the source and load impedances involved. As an example. for 600 n source impedance the insertion loss for voice signals (1 V RM8 at 3 kHz) is less than 0.3 dB. Thus the 805400 series makes good telephone cross-point switches. Speed. Because of the low ON resistance and low input capacitance. the S05400 switches turn ON at subnanosecond speeds. They are also capable of handling very high frequency analog signals and still maintain excellent isolation (20-30 dB at 1 GHz).
r--.'-..../' ""\..../,....." -
+5,..... INPUT· '--"
-5
"0
r--I I L-J
GATE
-10~
I L...+.-*"--oOUTPUT (!5V)
+5 OUTPUT
-5
Figure 1
TYPICAL APPLICATION Figure 2 shows the S05402 used as an audio crosspoint switch. Each S05402 provides sWitching for 2 stereo channels. Additional channels can be added by connect-
109 each output to Its respective summmg node. For additional mformatlon on thiS application refer to AN83-7
LEFT INPUT SUMMING NODE FROM OTHER SWITCHES
15K CHANNEL 1 LEFT INPUT BUS
SUMMING AMP
LF347
OUTPUT AMP
RA 75K
AL
CHANNEL 1 AIGHT INPUT BUS
AS INPUT NODE I........---~...
o. . . .
"'··,..,.,---.'-=-s--
INPUT NODE
I IS
0 ALI
CHANNEL 2
RIGHT INPUT BUS 0
G
":'"
INPUT NODE
AL
i :
AD 600!!
D
RA75K
0
:~a:~I~~~~)QE FROM
"o---''+--~...J
~=
1 l-v)-o~.......,..,I1,--,.
I ":"
~5SK
1~
CHANNEL 2
LEFTINPUTaus
D
15K
AL
G
15K
• AS
N.~---'Irs"--;O
I L~~
I SUBSTRATE (~~HER SWITCHES __ J Audio Crosspoint Switch
Figure 2
3-102
Silicanix
no
&0011
_.
en
n-channel JFET 8 switch array
CO
o o
Designed for Military and Industrial Applications ••• High Speed Sense/Drive • Switch Array
BENEFITS
• •
Low RDS(ON) < 7 OHMS High Speed • TR = 1 ns; T(OFF) = 5 ns • High Radiation Resistance
ABSOLUTE MAXIMUM RATINGS (25°C) For Each Individual Chip:
PACKAGE: 16 PIN FLAT PACKAGE
Gate-Source Voltage ......................... - 25V Gate-Drain Voltage .......................... -25V Gate Current .............................. 100 mA Drain Current ............................. 400 mA Storage Temp Range ............ - 65°C to + 200°C Oper Temp Range .........•..... - 55°C to + 150°C Lead Temp (Soldering, 10 sec) .............. +300°C Power Dissipation ......................... 300 mW Derate above 25°C .................... 2.3 mwrc
1 2
, •
~1.N/C
0r. s
o~ ~o
~o ~o ~o
5
• 7
0r. s G
B
DIs
15
"
"12 11
10
~9N/C
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1
~
--a -;j
----s
---e -
S T A T I C
7
8
=+ -----;J ~
---,-;-
Min
Typical
Test Condition
Max
Unit
IGSSA
2.0
nA
VGS
~
-15V. VOS
~
0
IGSSA
5
p.A
VGS
~
-15V. VOS
~
O. TA
V
IG
BVGSS
-25
VGSlolfl
-5
~
~
8p.A. VOS
V
VOS
~
5V. 10
10Iolfi
1
nA
VOS
~
5V. VGS
~
-10V
10Iolfi
5
p.A
VOS
~
5V. VGS
~
-10V. TA
ROSlan)
7
ohm
VGS
~
O. 10
-10
~
~
~
12!1'C
0
100 nA ~
12!1'C
10 rnA
D
C1SS
30
pi
VOS
~
O. VGS
~
-10V. I
~
1 mHz
y N A M I C
Crss
15
pi
vos
~
O. VGS
~
-10V. I
~
1 mHz
lcj
3
ns
tlolfl
5
ns
tf
5
ns
t,
1
ns
Siliconix
Voo ~ 1.5V. VGSlonl ~ O. VGSlolfl ~ 12V
3-103
-
H n-channel enhancement- Silicanix mode lateral D-MOS FETs
designed for Military and Industrial Applications • • • High Speed Switching •• Analog Switch •• Multiplexer Digital Switch •• AD toto AD Converters Converters Choppers •• Sample and Hold
BENEFITS • High Speed Switching • Ultra Low Feedback Capacitance • Low RDS(ON) • Diode Protected Gate
TO-72 See Section 6
ABSOLUTE MAXIMUM RATINGS (OC) Drain Current __ ............................ 50 rnA Total Device Dissipation at 25°C Case Temperature .......................... 1.2W Storage Temperature Range ........ -65° to +150°C Lead Temperature (1/16" from case for 10 sec) ................ 300°C Operating Temperature Range ...... -55° to + 150°C
s
J Go--,.J~c .~L ____ D I --l
G
0
~
s
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic-DC IGSS
Gate Reverse Current
BVSO
Breakdown Voltage Source to Dram
BVSB BVOS
Breakdown Voltage Source to Body
Breakdown Voltage Dram
to Source Gate-Source Threshold
VGS(th)
Voltage
gf.
Common-Source Forward Transconductance
ROS(ON)
Dram to Source ReSistance
Min
Typ
Max
Unit
Test Conditions
0.1
1
/LA
VGS ~ 20V, VOS ~ VGS ~ VBS ~ 0
10
V
VGO ~ VBO ~ -5V, 10 ~ 1 /LA
10
V
IS ~ 10JLA. VGB ~ 0
15
V
VGS ~ VBS ~ OV. 10 ~ 10 /LA
V
VOS ~ VGS ~ Vth, 10 ~ 10 JLA
0.5 25
25
mmhos
30
VOS ~ 15V, 10 ~ 20 mA, F ~ 1 KHz 10 ~ 5 mAo VBS ~ OV
18 12 8
Characteristic-AC
Min
Typ
Max
n n n Unit
VGS ~ 10V VGS ~ 15V Test Conditions VOS ~ 10V, VGS ~ VBS ~ -15V. f~ 1 MHz
Small Signal Capacitance C(GS+GO+GB)
Gate Mode
17
pF
C(GO+OS)
Drain Mode
7
pF
COG
Reverse Transfer
2.5
pF
3-104
VGS ~ 5V
Silicanix
SWITCHING CHARACTERISTICS Typical Switching Waveform
TEST CONDITIONS Switching TO SCOPE +Vee
510
RL Input pulse td. tr < 1 ns Pulse width = 100ns
I,
Rep rate = 1 MHz
IOFF
SWITCHING CHARACTERISTICS
SAMPLING SCOPE tr < 360ps RIN=IMQ CIN=20pF
VOO
I
5 10 15
RL
I 680 680 lk
Id(ON)(ns) Typ Max 10 06 07 09
I
I~ns)
Typ 07 08 10
I
Max 10
IOFRns) Typ Max 90 90 140
I
"tOFF IS dependent on RL and CL and does not depend on the device characteristiCS
Siliconix
3-105
Si8901 Ring Demodulator/ Balanced Mixer FEATURES
H
Siliconix
BENEFITS
APPLICATIONS
• Low Harmonic Distortion
• High Third-Order Intercept Point • <6% Device Matching Error
• HF Mixer/Demodulator • HF Modulator/Up• Reduced System Component converter Count • Wide Dynamic Range
Contact factory for Application Note AN 85-2.
DESCRIPTION
The Si8901 Ring Demodulator/Balanced Mixer offers significant Improvement for HF mixer applications where the third-order harmonic distortion has been a problem. When used as a commutation HF double-balanced mixer, the Si8901 provides a high-fidelity IF output with
FUNCTIONAL BLOCK DIAGRAM LO,
IF2
tYPical conversion loss of 8 dB. Signal frequencies may be as high as 150 MHz. Available in an 8-pin TO-99 package, thiS device is specified over -55 to 125°C operating temperature range.
PIN CONFIGURATION SUBSTRATE (CASE)
AF2
IF~ ,
J~ ....J
'.....
lO2
RF,4
~~
SUBSTRATE
."
I
40
I~/
...
5
j
~ ~
< rel="nofollow">"be§>" _ - -
30
~~~ u'?J<Jl -ol?olll
20
S.
.....
E
m
"E
,,-
~.W"~
o'f
0
I 0
5
10
15
20
Power Local Osc. (+dBm)
3-106
---- -- -
10
0
"E
'"
"
"
Siliconix
25
30
35
L02
LO,
TOP VIEW
E III c
4
Order Numbers: Si8901A (TO-78) Si8!101Y (SO 14) See Section 6
PERFORMANCE COMPARISON
Z.
6
SUBSTRATE
~iL~ IF,
IF2
~
RF2
~..."
AF,
7
S"8901 I ABSOLUTE MAXIMUM RATINGS Vos Drain to Source ............................... 15 VOB Drain to Substrate ........................... 22.5 VSB Source to Substrate ......................... 22.5 VGS Gate to Source ..................... -22.5 V to 30 VGB Gate to Substrate . . . . . . . . . . . . . . . . . .. -0.3 V to 30 VGO Gate to Drain ....................... -22.5 V to 30
10 Drain Current .................................. 50 mA Operating Temperature .................... -55 to 125°C Storage Temperature ...................... -65 to 150°C Power Dissipation (Package) .................. 640 mW'
V V V V V V
• Derate 5 mW/C above 25°C
TA = 25°C
ELECTRICAL CHARACTERISTICS1
BVOS BVSO BVOB BVSB VTH
Dram-Source Breakdown Voltage Source-Drain Breakdown Voltage Drain-Substrate Breakdown Voltage Source-Substrate Breakdown Voltage
Threshold Voltage
0
...~
TEST CONDITIONS UNLESS OTHERWISE NOTED:
SYMBOL
PARAMETER
Gate Leakage Current
VGS VGO
:E
Third Order Intercept
Lc IM0 3
MaXimum Operating Frequency
f male
Conversion Loss
'"
Z
>-
c
15
10 = 10 nA
225
= 10 uA
225
'0
= 1 uA, VSB = 0 V = Vss =0 V. VGS =30 V 10 = 10 rnA. Vss = 0 V. VGS = 5 V 10 = 10 rnA. Vss = 0 V. VGS = 10 V 10 = 10 rnA. Vss = 0 V. VGS = 15 V 10 = 10 rnA. Vss = 0 V. VGS = 20 V 10 = 10 rnA. Vss = 0 V. VGS = 5 V Vos = 0 V. Vss = -55 V. VGS = 4 V See Figure 1, PLO
::.
UNIT
25
V
01
1
20
50
75
Vos
ros (on) Cgg
LO,-L02 Capacitance
av.
15
Vas::' VGS = VTH • Is
ros (on)
ReSistance Matching
av,
::.
Dram Open, VGe =
III
0
= Vss = -5 V. Is = 10 nA = Vos = -5 V. 10 = 10 nA
Source Open. VGS
'Gas
Drain-Source "ON" ReSistance
LIMITS MIN' TYP3 MAX
uA
2 30
n
23 19 7
3,
44
pF
8
+17 dBm
dB
+35
MHz
200
NOTES: 1 Refer to PROCESS OPTION FLOWCHART for additional ,"formation 2 The algebraic convention whereby the most negative value IS a minimUm, and the most posItive value IS a maximum, IS used In thiS data sheet 3 TYPical values are for DESIGN AID ONLY, not guaranteed nor subject to production testmg
APPLICATION HINTS Schematic of the baSIC commutation-type HF doublebalanced mixer using resonant-gate excitation Recom-
mended reading is AN85-2 "A Commutation DoubleBalanced MOSFET Mixer of High Dynamic Range."
-VGG
so."
THT
0"
"Pll.~[1 °Il °
.J,.
a "
'-----v----/ LOW,PASS IMAGE TERMINATING FILTER (OPTIONAL)
1
L-
ID(mAJ
~llq
'I
~
IJ /
1000
"
T4·1
R
l6vI !,2V L II
5000
T4·1
JL
IDIV
1680
PF
~~
0
~.
VJ
//
I
/
-5000 -5000
Figure 1
/
8V
IEII
/
-
~ ov
/ /I /1." v IL!J / '/ VOS
0 l000/DIV
(V)
5000
First and Third Quadrant I-E Characteristics Showing Effect 01 Gate Voltage Leading to large-Signal Overtoad Distortion. Figure 2
Siliconix
3-107
Small Signal -- JFETs for - designed •• -- • C")
en
!!! ('\4 en
BENEFITS
Analog Switches Choppers Commutators
!!!
Silicanix
• Low Cost • Automated Insertion Package • Low Insertion Loss rDS(on) <300 (SST111) • No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver • Fast Switching td(on) + tr 13 ns Typical • Short Sample and Hold Aperture Time Cgd(off) <5 pF Cgs(off) <5 pF
•••
t-
H
Performance Curve NCB See Section 4
t-
t-
en en
=
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate Source Voltage ........... -35 V Gate Current ................................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) .... . . . . . . . . . . . . . . . .. 360 mW Operating Temperature Range ......... -55 to 135°C Storage TempElrature Range ........... -55 to 150°C Lead Temperature Range (1116" from case for 10 seconds ............ 3000C
.'=)-
o~:
+ L
04
~
:E --
___
29MAX
09S
~
G
~
~ 0
e~
5
TOP VIEW
~
+12 MAX
005MIN
DIMENSIONS IN MILLIMETRES
SOT-23
ELECTRICAL CHARACTERISTICS (2SOC unless otherwise noted)
I
Che!'e~er!~t!c I
IGSS
Gate-Reverse Current
VGSloftl
Gate-Source In+ offl Voltage
I
SST111 Min
Max 1
BVGSS
Gate-Source Breakdown Voltage
lOSS
Saturation Drain Current (Note 1)
rOS lonl
Drain-Source on Resistance
gd~ 1,0ft)1 sg off)
Drain-Gate off! Capacitance Source-Gate off
Cdg 10n)/+ Orain-Gate on! Capacitance C loni" Source-Gate on
sa
-3
-10
I
SST112 Min -1
Max
I
SST113 Min
Max
Unit
I
Test Conditions
1
nA
-5
-3
V
VOS - 5 V, 10 - 1 /LA
V
VOS - 0, IG - l/LA
-35
-35
-35
20
5
2
VOS
o V, VGS
mA
VOS - 15 V, VGS - 0 VOS - 0.1 V, VGS - 0
30
50
100
ohm
5
5
5
pf
VOS
= 0, VGS = -10 V, f = 1 MHz
28
28
pf
VOS
= VGS = 0, f = 1 MHz
28
NOTE: 1. Pulse test duration 3001-1-5; duty cycle .so3%
ORDERING INFORMATION
3-108
Device
Marking
SST111
Cll
SSTl12
C12
SSTl13
C13
15 V
1
Silicanix
NCB
Performance Curve PSAI PSB/PSC See Section 4
Small Signal JFETs
BENEFITS • LowCost • Simplifies Series-Shunt Switching when Combined with SST113, Its N-Channel Complement • Low Insertion Loss rOS(on) <850 (SST174) • No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver • Short Sample and Hold Aperture Time Csg(off) 6.0 pF Typical Cdg(off) 6.0 pF Typical • Fast Switching td(on) + tr 7 ns Typical
designed for • • • • • •
H
Silicanix
Analog Switches Choppers Commutators
ABSOLUTE MAXIMUM RATINGS (25°C)
=
Gate-Drain or Gate-Source Voltage (Note 1) ..... 30 V Gate Current ................................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) .. . . . . . . . . . . . . . . . . . .. 360 mW Operating Temperature Range ......... -55 to 135°C Storage Temperature Range ........... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) . . . . . .. . . ... 300°C
~ G
D
a--aJ 275MAX_,
..
=1,5 2.MAX
04L._ +
s
6
~O'5
Id--
D
,:~1'2MAX
TOP VIEW
\
005MlN DIMENSIONS IN MILLlMETRES
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) SST174
Characteristic
Min
IGSS
Gate-Reverse Current (Note 2)
VGS (offl
Cutoff Voltage
BVGSS
rOS(on)
Gate-Source
5
Gate-Source
10
30
Breakdown Voltage
-20
Static Drain-Source
Max
6
3 30
-135
-7
-70
Capacitance
r-1YE6
I
Cdg(onl Csg(on)
Drain-Gate on! Capacitance Source-Gate on
~
I TYP
Device
Marking
SST174
574
SST175
575
SST17B
576
SSTl77
577
TYP
1
4
O.B
Max
-2
Test Conditions
nA
2.25
V
VOS = -15 V, 10 = -10 nA
V
VOS = 0, IG = 1 /LA
VOS = 0, VGS = 20 V
-20
rnA
VOS = -15 V, VGS= 0
250
300
ohm
VGS = 0, VOS = -0.1 V
TYP
..!!!..
pi
VOS - 0, VGS - 10 V, 1= 1 MHz
..!!!..
pi
VOS = VGS = 0, f = 1 MHz
-35
I
Unit
1
30
6 32
SST1n Min
1
125
Source-Gate off
ORDERING INFORMATION
Max
30
Cdg(offl Csg(off)
32
SST176 Min
1
B5
ON Resistance Orain·Gate offl
SST175 Min
1
Saturation Drain Current (Note 31
lOSS
Max
6 I TYP 32
-1.5
6
32
-
NOTES: PSAIPSB/PSC 1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged. 2. Approximately doubles for every 10"C increase in TA. 3. Pulse test duration = 300/LSi duty cycle :G3%
Silicanix
3-109
Small Signal JFETs
Performance Curve NP See Sedion4
H
Silicanix
BENEFITS • High Input Impedance IG 5 pA Typical • Good for Low Power Supply Operation VGS (off) <1.5 V (SST201)
designed for ...
=
• General Purpose Amplifiers
~:
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) ... -40 V Gate Current ................................. 50 mA Total Device Dissipation at 25°C (Derate 3.27 mW/oC) . . . . . . . . . . . . . . . . . . . .. 360 mW Operating Temperature Range ......... -55 to 135°C Storage Temperature Range ........... - 55 to 1500C Lead Temperature Range (1/16" from case for 10 seconds) ........... 3000C
·=~I.L
04
t
.-
_a
~095
29MAX
095
~
o
C~--=}2MAX
TOP VIEW
\
005MIN
DIMENSIONS IN MILLIMETRES
SOT·23
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) SS1"201
Characteristic
Min
Gate Reverse Current
(Note 2)
VGS(off)
Gate·Source Cutoff Voltage
-0.3
BVGSS
Gate·Source Breakdown Voltage
-40
Saturation Drain
0.2
Current (Note 3)
-1.5
1.0
IG
Rt.
Common·Source Forward TransconauC18nce \Note 3)
90S
Common-Source Output Conductance
I lYP 1.0
Ciss
Common-Source Input Capacitance
I lYP
SST203 Min
-0.8
-4
0.9
4.0
500
1000
4
1!iOO
VOS = O. VGS = -20 V
-2.0
V
VOS = 20 V. 10 = 10nA
V
VOS = O. IG = l"A
3
I lYP 5 500
3.6
~
I lYP
~
I lYP
I lYP
4
-W5
2.0 4
I lYP 10
mA
VOS = 20 V. VGS = 0
pA
VOG = 20 V. 10 = 200 "A
3-110
Device
Marking
SST201
POl
SST202
P02
SST203
P03
SST204
~04
v. VGS =
~m!l0s
VOS = 2U
"mhos
VOS = 20 V. VGS = O. f = 1 kHz
O. f
pf
VOS = 20V. VGS = 0
nVl--./Fil. f= 1 kHz
VOS - 10 V. VGS - O. f= 1 kHz
= 1 kHz
NPA
NOTES:
ORDERING INFORMATION
Test Conditions
nA
I lYP
5
5
0.2
Unit
0.1
lYP
I lYP
4
I lYP
20
~ 5
5
Max
-40
-40 4.6
SS1"204 Min
-2.0 -10.0 -0.3
I lYP
5
Max 0.1
0.1
I lYP
Noise Voltage
Max
-40
Gate Current
en
Min
0.1
IGSS
lOSS
SS1"202
Max
1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged.
2. Approximately doubles for every 10"C increase In TA' 3. Puis. test duration = 2 ms.
Silicanix
n-channel DMOS FETs
Designed for Military and Industrial Applications
• • • • • • • •
High-Speed Switching Analog Switch Multiplexer Digital Switch A to D Converters D to A Converters Choppers Sample and Hold
...
Performance Curve DMCB See Section 4 BENEFITS • Ultra low feedback capacitance (0.30pF) • High switching speeds «1 ns) • Diode protected gate SOT-143 TOP VIEW
ltr i GJ
r~::::;-,
I
ABSOLUTE MAXIMUM RATINGS (OC) Drain Current .................................. 50mA Total Device Dissipation at 25°C Case Temperature ........................ 360mW Storage Temperature Range ......... -55° to +150°C Lead Temperature (1/16" from case for 10 sec.). ..... 300° C Operating Temperature Range . . . . . . . . __ 55° to +150 0 C
I
B
II L~~ II f-
rl
I
h
I
I
~ • 1... _ _ _ _ ...1
5
I
0
S
J
+10
+20
Vdc
+10
+10
+20
Vdc
+30
+15
+25
Vdc
Source-to-substrate
+15
+15
+25
Vdc
Gate-to-source
-15 +25
-15 +25
-25 +30
Vdc
Gate-ta-substrate
-0.3 +25
-0.3 +25
-0.3 +30
Vdc
Gate-to-drain
-30 +25
-15 +25
-25 +30
Vdc
Drain~to·source
+30
VSD
Source-to-drain'
VDB
Drain-to-substrate
VSB VGS VGB VGO
GtJJ DC
S0211 S0213 S0215 UNIT
PARAMETER
VDS
-
Typical Switching Waveform
TEST CONDITIONS
+5V - - - -r----~ 90 %
TO SCOPE
+voo
510
RL
,-A1
VIN
Switching
50% 10%
OV
Input pulse td, tr< 1ns Pulse width lOOns Rep rate = 1MHz
=
SWITCHING CHARACTERISTICS
SAMPLING SCOPE
td(ON)(ns)
tr<360ps RIN
=1 MQ
Voo
680 1 680
Typ 06 07
1k
09
RL
CIN =20pF I
*tOFF
IS
10 5 15
Max 10
tr(ns) Typ Max 07 10
Typ
OB
90 90
10
140
tOFF(ns) Max
I
dependent on AL and CL and does not aepend on the device characteristics
Siliconix
3-111
DC ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise specified.) PARAMETER Breakdown voltage Orain-to-source BVOS
1
2 -
......
...
~ en en
-
-
SST215 SST213 SST211 UNIT Min Typ Max Min Typ Max Min Typ Max
VGS=VBS=OV,IO=10,.A VGS=VBS=-5V, IS= 10nA
30 10
35 25
10
25
20
BVso
Source-to-drain
VGO=VBO=-5V lo=10nA
10
10
20
3
BVOB
Orain-to-substrate
VGB = OV, source OPEN lo=10nA
15
15
25
4
BVSB
Source-to-substrate
VGB =OV, drain OPEN IS = 10,.A
15
15
25
5
Leakage current lOS (OFF) Orain-to-source
25
V
-
-
TEST CONDITIONS
S T A T I C
6
7
ISO (OFF) Source-to-drain
Gate
IGBS
8
-9
VGS=VBS=-5V VOS=+10V VOS=+2OV
1
VGO=VBO=-5V VSO=+10V VSO=+20V
1
10
VOB=VSB=OV VGB=+25V VGB = +30 V
VT
Threshold voltage
VOS=VGS=VT,IS=lI'A VSB=OV
ros(ON)
Drain-to-source resistance
lo=1.0mA, VSB=O VGS=+5V VGS=+10V VGS=+15V VGS=+2OV VGS=+25V
1
10
10
1
1
10
1
10
nA
10
10
10
,.A 10
0.5
1.0
2.0
50 30
75 50
0.1
1.0
2.0
50 30
75 50
0.1
1.0
2.0
50 30
75
23
23
23
19
19
19 17
V
50
Q
AC ELECTRICAL CHARACTERISTICS PARAMETER 10
-
gfs
0 y 11
12 - 13
-14
N
Forward transconductance
Small Signal Capacitances (See capacitance model)
TEST CONDITIONS VOS = 10V, VSB = OV lo=2OmA, f= 1kHz
SST215 SST211 SST213 Min Typ Max Min Typ Max Min Typ Max 9.0
15
9.0
9.0
15
15
mmhos
VOS = 10V, f= 1 MHz VGS=VBS=-15V
A C(GS+GO+GB) Gate node
2.4
3.5
2.4
3.5
2.4
3.5
Orain node
1.3
1.5
1.3
1.5
1.3
1.5
C(GS+SB)
Source node
3.5
6.0
3.5
6.0
3.5
6.0
COG
Reverse transfer
0.3
0.5
0.3
0.5
0.3
0.5
M I C
C(GO+OB)
UNIT
pF
DMCB
ORDERING INFORMATION Device
3·112
Marking
55T211
011
55T213
013
55T215
015
Siliconix
Small Signal
Performance Curve NZB See Sedion 4
JFETs
designed for.
H
Silicanix
BENEFITS Industry Standard Part In Low Cost Plastic Package High Power Gain 11 dB Typical at 450 MHz Common-Gate • Low Noise 2.7 dB Typical at 450 MHz • Wide Dynamic Range Greater than 100 dB Easily Matches to 75 n Input
•
••
Amplifiers •• VHF/UHF Oscillators Mixers •
•
•
<275MAX_
~.~. "~: ~1
ABSOLUTE MAXIMUM RATINGS (25°C)
,.L __
Drain-Gate Voltage ............................. 25 V Source:Gate Voltage ........................... 25 V Forward Gate Current ........................ 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ..................... 360 mW Operating Temperature Range ......... -55 to 135°C Storage Temperature Range ........... -55 to 1500C Lead Temperature Range (1/ 16" from case for 10 seconds) ............ 300°C
r
G
095
W
I
t4MAX
s
D
cA;X
TOPVIEW
~
t12MAX
005MIN
DIMENSIONS IN MILLIMETRES
50T-23
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 55T308
Characteristic
Min
IGSS
Gate-Reverse Current
BVGSS
Breakdown Voltage
-25
VGS(off)
Gate-Source Cutoff Voltage
-1
55T309
Min
-1
Gate-Source
Saturation Drain Current
lOSS
Max
12
(Note 1)
gfs
Common-Source Forward Transconductance
NF
Noise Figure
Max -1
SO
8000
-1 12
-4 30
10000
~ 2.7
Max -1
-25
-25 -S.5
55T310
Min
-2
-S.5
24
SO
8000
~ 2.7
~ 2.7
Test Conditions
Unit nA
VGS
~
-15V, VOS
~
0
= 1 p.A
V
VOS ~ 0, IG
V
VOS
= 10 V, 10 = 1 nA
rnA
VOS
= 10 V, VGS = 0
J.l.mhos
VOS
= 10 V, 10 = 10 rnA, f = 1 kHz
dB
VOS
= 10 V, 10 = 10 rnA, f = 450 MHz NZB
NOTE: 1. Pulse test PW 300 p.s; duty cycle .. 3%
ORDERING INFORMATION Device
Marking
SST30a
zoa
SST309
Z09
SST310
Z10
Silicanix
3-113
l1li
-
monolithic dual n-channel JFETs
H
Silicanix
Performance Curves NNR See Section 4 BENEFITS Minimum System Error and Calibration • 15 mV Offset Maximum (SST404) 95 dB Minimum CMRR (SST404) • Low Drift with Temperature 25 p'vr C Maximum (SST404) • Operates from Low Power Supply Voltages VGS(off) < 2.5V • Simplifies Amplifier Design Output Conductance < 2 p.mho Low Noise • en = 6 nVVHz at 10 Hz Typical
designed for • • •
•
Noise FEY Input • Low Amplifiers and Me.dium Frequency • Low Amplifiers Impedance Converters • Precision • AmplifiersInstrumentation • Comparators ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage Forward Gate Current. Device Dissipation (each side) @TA = 85°C derate 2.6 mWtC Total Device Dissipation @TA = 85°C (derate 5 mwtC) Storage Temperature Range
ORDERING INFORMATION 50V lOrnA
Device
300mW
Marking
55T404
404
55T405
405
55T406
406
500mW -65 to 200°C
ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) 404 M,n Mo,
CharacterIstic
1
2 3 4
BVGSS
T
VOSlon)
-5
05
B
8
'G
Gate Current/Note 1)
aVG! - G2
Gate-Gate Breakdown Voltage Common Source Forward Transconductance (Note 2)
9
- '" 10 - '0' 11
~
,- N
-5
-25
-25 -5
2000
O.
100
05
VDG" 15 V,
-15
-15
-15
pA
-10
-10
-10
nA
'0 = 200p.A
V
VOS=O.VGS=O IG=±lI1A
±50
'50 7000
2000 7000
20
2000
20
9fs
1000 2000
52
501C-8 PIN
~O' Dl
52
51
D2
C
02
1= 1 kHz
2000
1000
2000 f= 1 kHz
Common-Source Output Conductance
20
Common-Source Input
C ISS
1000
20
20
30
30
15
'N
Equivalent Short CtrCUlt Input NOIse Voltage
20
20
20
CMRR
Common Mode Rejection RatiO (Note 3)
IVGSI - VGS21
Differential Gate-Source Voltage
15
20
Gate SourceVoltagp Differ en'~' ,)"ft \Note 4)
25
40
Capacitance
VOG"'5V, 10'" 200IJA
pF
I- T I.
Ves= IOV, VGS=O
20
30
~
TA = 12SoC
7000
80
~
5,
02
VOS=15V,IO=lnA
VOS=10V,VGS=Q
80
,-
4~
"'UU -~:::; V, iO - 20Dj.lA
mA
80
17
VOS=O,VGS=-30V
100
Common Source Reverse Transfer Capacitance
I-
pA
-25
Crss
16
01 VOS= 0, 10 =-lIJA
-23
-71
14
,-
Test Conditions
V
pmho
Common Source Forward Transconductance
1 C
100
1-50
Common Source Output Conductance
12 A gas
13
-25
UnIt
M"
-50
-25
-23
Vc!t;:g;:: (on)
(Note 21
-50
40B M,n
V
Gate Source Saturation Drain Current
5 C 'OSS
.,--
Gate-Source Cutoff Voltage
405 Mo, M,n
-25
(Note 1)
S VGSloff)
-,
-50
Gate Reverse Current
lOSS
~
Gate Source Breakdown Voltage
95
nV H,
f= 1 MHz
VOS'" 15V. VGS=O
f'" 10Hz
dB
VOG = 10 to 20 V, '0 '" 200IJA
40
mV
VOG = IOV, '0 = 200j.lA
80
/lvte
90
I
~
61VGSI - VGS21
6T
NOTES 1 Appro.lmately doubles for every 10 e Increase In TA 2 Pulse tes1 duration = 300J.ls,duty cycle" 3% Q
4 Measured at end POints. TA.
3-114
VOG"'lOV. 10 = 200JjA
3 eMRR=20IoQl0
Te and Te
Silicanix
T A" ~55"e. T6 = +25°e Te = +125"'e
[~] .~VOD=10V GS1· GS2
NNR
Small Signal
H
Siliconix
JFETs
Performance Curve NH See Sedion 4
designed for • • •
••
BENEFITS Low Noise NF=3dB Typical at 400/MHz Wide Band High gfs/Ciss Ratio
•
VHF Amplifiers Mixers
•
ABSOLUTE MAXIMUM RATINGS (25° C) Gate-Drain or Gate-Source Voltage ..... , ..... -30 V Gate Current ................................. 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWOC) ...................... 360 mW Operating Temperature Range ......... -55 to 135°C Storage Temperature Range •••• 0' • • • • • -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) ............ 300°C
(75MAX~I __
,~:
ooLttil"" W r
095
G
1--1 '4 MAX
s
0
TOP VIEW
~A;X t12MAX ~
005MIN
DIMENSIONS IN MllUMETRES
SOT-23
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic IGSS
Gate Reverse Current
Min
BVGSS
Gate-Source Breakdown Voltage
VGS(off)
Gate-Source Cutoff Voltage
lOSS
Saturation Drain CUrrent (Note 1J
9fs
Common-Source Forward Transconductance
90S
Common-Source Output Conductance
Max
Unit
1.0
nA
-30 -6 5
15
4500
7500 50
erss
Common-Source Reverse Transfer Capacitance
Ciss
Common-Source Input Capacitance
4
Coss
Common-Source Output Capacitance
2
9iss
Common-Source Input Conductance
biss
Common-Source Input Susceptance
2000
BOOO
90ss
Common-Source Output Conductance
45
60
boss
Common-Source Output Susceptance
700
3000
9fs
Common-Source Forward Transconductance
G ps
Common-Source Power Gain
NF
Noise FIgure
400 MHz TYP 700
VOS = 15 V. 10 = 1 nA
Device SST4416
f = 1 kHz
JLmho VOS = 15V. VGS = OV
f= 1 MHz
pF
Unit
IEII
Test Conditions
",mho VOS = 15V. VGS = OV
5500 20
13
1
2.5
dB
NOTE:
ORDERING INFORMATION
IG = 1 ",A. VOS = 0 V
rnA
O.B
100 MHz TYP 50
Characteristic
V
Test Conditions VGS = 15 V. VOS = 0 V
VOS = 15 V. 10 = 5 rnA VOS= 15V.IO= 5mA,RG= 1 KG NH
t. Pulse test duration = 300 "'S.
Marking
I
H16
Silicanix
3-115
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NCB See Section 4
Switches • Analog • Commutators • Choppers
BENEFITS I nsertion Loss • LowrOS(on) < 50 on (U202)
Off-Isolation • Good 10(off) < 1 nA
TO-tS
ABSOLUTE MAXIMUM RATINGS (25°C)
See Section 6
Gate-Drain or Gate-Source Voltage ............... -30 V Gate Current .....•......................... SOmA Total Device Dissipation at 25°C Case Temperature (Derate 10 mWrC) ......................... 1.8W Storage Temperature Range .............. -65 to +200°C Lead Temperature ( 1/16" from case for 10 seconds) ............•. 300°C
.~:
j
G.C
\
0
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) U200
Characteristic 1
1"2
-3 -4 -
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
VGS(off)
Gate-Source Cutoff Voltage
S
T A
T
Min
i
10(011)
Dram Cutoff Current
6
lOSS
Saturation Drain Current (Note 1)
7
rds(on)
Draln-~ource
5
-
C
8 -
0 Y C1SS
9
Crss
N
U201
Max
3
ON Resistance
Common-Source Input Capacitance (Note 1) Common-Source Reverse Transfer
Capacitance
U202
Max
3-116
Max
Unit
-1
-I
-I
nA
-1
-1
JlA
-3
-1.5
-5
-3.5
-10
V
1
i
1
nA
1
1
1
JlA
25
15
75
30
Test Conditions
VGS = -20 V, VOS = 0
-30
-30
I 150°C
IG=-IJlA,VOS=O VOS = 20 V, 10 = 10 nA VOS = 10 V, VGS = -12 V
150
mA
VOS = 20 V, VGS = 0
150
75
50
ohm
VGS = 0,10 = 0
30
30
30
8
8
8
150°C
f = 1 kHz
VOS=20V,VGS=0 f= 1 MHz
pF VOS=O VGS=-12V
NCB
NOTE: 1. Pu1se test required, pulsew,dth
Min
-1 -30 -0.5
Min
= 300 Jlsec, duty cycle .;; 3%.
Silicanix
monolithic dual n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NQP See Section 4
• Differential Amplifiers
BENEFITS
•
Good Matching Characteristics TO-71 See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage ______ ••••••••• -50 V
G,
Gate Current ••••••••••••••••••••••••••••••• 50mA Total Device Dissipation at 25°C (Derate 1.7 mW/oC to 200°C) ••••••••••••••• 300mW
s,
G,
Lead Temperature
10
o· o.
,0 '0
°1
from case for
S2
S2
Storage Temperature Range •••••••••••••• -65 to +200°C
(1/16"
~~ 10
0,
0 7 G2
s,
seconds) •....•••••.•••• 300°C
G2
Gt., 0,
Bottom View
~,
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
I-.!. 2 13' S 1'4 T A 15' T I -"- I 6 C
Min
IGSS
Gate Reverse Current
BVGSS VGS(o!fl VGS
Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Voltage
IG
Gate Operating Current
7
lOSS
Saturation Dram Current (Note 1)
8
91,
Common-Source Forward Transconductance (Note 11
1-
19 0 915 1'iO V 9o,
1000 600
Common-Source Output Conductance Common-Source Output Conductance
Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance
1-
EqUivalent Short CircUit Input Noise Voltage
en
Characteristic
Unit pA
-500
nA
-4.5 -4.0 -50
0.5 1000
Common-Source Forward Transconductance (Note 1)
N I "iT A 9o, M 112 I C1SS I~ c Crss 14
-50 -05 -0.3
Max -100
U232 Max
U233 Max
VGS=-30V. VOS=O
V
IG=-lI'A.VOS=O VOS=20V.10=1 nA
pA
VaG = 20 V. 10 = 200 I'A
-250 5.0 5000
nA mA
VOS = 20 V. VGS = 0
1600 35 10 6 2
I'mho
80
U231 Max
Test Conditions
U234 U235 Max Max
125·C
VOS = 20V. VGS = 0 VOG = 20 V.IO = 200l'A VOS = 20 V. VGS = 0 VaG = 20 V.IO = 200l'A
pF nV
Test Conditions
Differential Gate Current
10
10
10
10
10
nA
VOG= 20V.10=200I'A
16
(loss 1-1OSS2) IOSSl
Saturation Drain Current
5
5
5
10
15
%
VOS=20V. VGS=O
5
10
15
20
25
mV
10
25
50
75
100
17 M iVGS1-VGS2 i 1- A T 18 C t>iv GS1-V GS2i I-H t>T 19 I N 1- G (91,1-91,2) 20 91,1
Voltage Gate-Source Voltage
Oillerentlal Orilt (Note 2)
---
Transconductance Match
igo,l-9o,2 i
Differential Output Conductance
121
Match (Note 1) Differential Gate-Source
I'vtc 10
25
50
75
100
3
5
5
10
15
5
5
5
5
5
(Note 1)
1= 1 kHz
1= 100 Hz
IIGl-IG2 i
1-
1= 100MHz
1= 1 MHz
15
1-
1= 1 kHz
VOS= 20 V. VGS = 0
v'Hz Unit
150·C
VaG = 20 V. 10 = 200 I'A
125·C
TA = 25·C TB = 125·C TA=-55 C TB = 25·C
%
1=1 kHz
NOTES: 1. Pulse te,t required. pul,ewidth = 3001's. duty cycle';; 3%. 2. Measured at end point'. TA and TB.
I'mho
NQP
SilicDnix
3-117
IBI
matched dual n-channel JFET designed for • • •
•
H
Siliconix
Performance Curves NZP-D, NNZ See Section 4 . BENEFITS
Wideband DiHerential Amplifiers
• High Gain through 100 MHz 9fs = 4500 ",mho Minimum • Matching Characteristics Specified
TO-7B So. Section 6
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage ........•...... -25 V Gate Current ...•....•.................•.... 50mA Device Dissipation (Each Side). T A = 85°C (Derate 3.85 mWrC) .......•.•....•.....•. 250 mW Total Device Dissipation, T A = 85°C (Derate 7.7 mWrC) ........ '..........•.... 500 mW Storage Temperature Range .....••..•... -65 to + 200°C Lead Temperature (1/16" from case for 10 seconds) ...........•...300°C
G,
~~ s,
S:!
c G1
G2
82
405 D2 sO 0& 0 0 G2 20 7
0,
,0
A ~, _I D,
s,
BottomViow
ELECTRICAL CHARACTERISTICS (250 unless otherwise noted) Characteristic 1
"2 -3 "4 "5
S T A T I C
6
-; 8
-9
0
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
VGS(off)
Gate.source Cutoff Voltage
lOSS
Saturation Drain Current (Note 1)
10
Max
Unit
-100
pA
-250
nA
-25 -1
-5
5
40
4500
10,000
VOS=10V,lo=5mA
1= 1 kHz
4500
10,000
VoG = 10 V,lo = 5 mA
1= 100 MHz
Common-Source Output Conductance
200
90S
Common-Source Output Conductance
200
Common-Source Reverse Transfer Capacitance
1.2
12
en
Equivalent Short Circuit Input Noise Voltage
30
13 M A T 14
!.oSSl loSS2
Saturation Drain Current Ratio (Notes 1 and 2)
C
IvGS1-VGS2 1
Differential Gate-Source Voltage
H I
91s1
N 91$2 16 G 90s1-9os2 1
Transconductance Ratio (Note 2)
5
0.85
VoS = 10 V, 10 = 5 mA
1= 1 kHz 1= 100 MHz
pF
VoG= 10V,10= 5mA
!JY VFiZ
1 100
0.85
JLmho
1= 1 MHz 1= 10kHz
VoS = 10V, VGS = 0 mV VoG=10V.10=5mA
1
I-
1= 1 kHz Oifferential Output Conductance
20
JLmho
NZF-D, NNZ
NOTES: 1. Pulse test required. pulse width = 300 JLS, duty cycle .. 30%. 2. Assumes smaller value in numerator.
3-118
= 10 V, 10 = 1 nA
VoS = 10V, VGS= 0
Common-Source r orward Transconductance
Common-Source Input Capacitance
15
VoS mA
I 15ttC
IG=-lI'A,VoS=O
Common-Source Forward Transconductance
C1SS
'-
VGS=-15V.VoS=0
91s
Cr•s
-
V
Test Conditions
9fs
V 90S
N A M I'll ._ C
Min
SUiccnix
n-channel JFETs designed for • • •
c
H
Siliconix
Performance Curves NVA See Section 4
Switches • Analog • Commutators • Choppers
~ ~
BENEFITS
•
Ultra-Low Insertion Loss rOS(on) <3.0n (U290)
•
High Off-Isolation 10(off) <1 nA
8c
ABSOLUTE MAXIMUM RATINGS (25°C) TO·52
Sa. Section 6
Reverse Gate-Drain or Gate-Source Voltage ......... -30 V Gate Current .............................. 100mA Drain Current 1.5 A Total Device Dissipation at 25°C Free-Air Temperature (Note 1) ............... 500 mW Storage Temperature Range .............. -65 to +200°C Lead Temperature ( 1/16" from case for 10 seconds) .............. 300°C
11\
...............................
M
.~:
"I 0
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1
-
,23
1-; S
-5
'6
-;
-
T A T I C
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
VGS(off)
Gate-Source Cutoff Voltage
10(off)
8
9 10
IGSS
0
U290
Min
U291 Max
Min
Max
-1
-1
nA
-1
-1
J.lA
-30
Dram Cutoff Current
-10
-1.5
-4.5 nA
1
1
J.lA
30
70
mV
VGS=O,10=10mA
mA
VOS=10V,VGS=0
lOSS
(Note 2)
rOS(on)
Static Dram-Source ON Resistance
10
3.0
2
7
n
VGS = 0 V,IO = 10 mA
rds(on)
Drain-Source ON ReSistance
1.0
3.0
2
7
n
VGS=O,IO=O
500
200
CSGO
Source-Gate OFF Capacitance
30
30
12
COGO
Dram-Gate OFF Capacitance
30
30
CSG+COG
Source Gate Plus Dram Gate On Capacitance
160
160
14
!d(on)
Turh-ON Delay Time
15
15
15
i-
17
VOS = 5 V, VGS = -10 V
Drain-Source ON Voltage
11
16
VOS = 15 V, 10 = 3 nA
1
VOS(on)
Saturation Drain Current
150·C
IG = -1 J.lA, VOS = 0
1
V N A M I 13 C
-
VGS = -15 V, VOS = 0
-30 V
-4
Test Conditions
Unit
I
150·C
f = 1 kHz
VSG = 15 V, 10 = 0 pF
VOG=15V,IS=0 VOS~O,
f= 1 MHz
VGS = 0
VOO = 1.5 V, 10(on) =:30 mA, RL = 50n, VGS(on) = 0 V,
S
tr
Rise Time
20
20
W
td(off)
Turn·OFF Delay Time
15
15
V GS(off) = -12 V (U290)
tf
Fall Time
20
20
VGS(off) = - 7 V (U291)
ns
NVA
NOTES: 1. Derate linearly at the rate of 4.0 mW/'C. 2. Pulse test required pulsewidth 300 J.ls, duty cycle <:; 3%.
Siliconix
3-119
-
p-channel JFETs designed for • • •
H
Siliconix
Performance Curves PSA/PSB/PSC See Section 4
Switches • Analog • Commutators • Choppers
BENEFITS I nsertion Loss • LowrDSlon) < 85 n (U304)
Off-Isolation • HighID(off) < 500 pA
ABSOLUTE MAXIMUM RATINGS (25°C)
U
TO-18 See Section 6
;rr
~
Reverse Gate-Drain or Gate-Source Voltage (Note 1) .. 30V Gate Current ............................... 50mA Total Device Dissipation, Free-Air (Derate 2.8 mW/oC) ....................... 350mW Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 60 seconds) . 300°C
.~:
............
D
G~C
•
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1
12" 3'
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
~ ::
VGSlnffl
Gate-Source Cutoff Voltage
T 5 A T I
VOS(on)
Drain-Source ON Voltage
lOSS
SaturatIon Drain Current (Note 2)
-
6'
-7 -8
C
U304 Min
U305
Max
U306
Max
Min
Max
Unit
500
500
500
pA
10
1.0
1.0
p.A
30 5
Min
30
30
10
3
6
1
1
-30
-90
-15
-60
-5
125°C
VDS - -15 V.ID = -1,.A
-0.6
-0.8
I
VGS = 20 V, VOS = 0 IG= 1 /lA, VOS=O
V -1.3
Test Conditions
VGS = 0, 10 = -15 mA (U304), 10 = -7 rnA (U305), 10 = -3 mA (U306)
-25
mA
VOS=-15V,VGS=0
-500
-500
-500
pA
VOS = -15 V, VGS = 12 V (U304), VGS = 7 V (U305), 125"C VGS = 5 V (U306)
I o(off)
Drain Cutoff Current -1.0
-1.0
-1.0
p.A
"9
'OS (on)
Static Dram-Source ON Resistance
B5
110
175
n
VGS=OV,IO=-l mA
10
'ds(on)
Drain-Source ON ReSistance
85
110
175
n
VGS=OV,IO=O
CISS
Common-Source Input Capacitance
27
27
27
7
7
7
22: 12
0
Y N
13
S
14 15
W I T
1e Hc
Crss
Common-Source Reverse Transfer
td(on)
Turn-ON Delay Time
20
25
25
t,
Rise Time
15
25
35
teI(off)
Turn-OFF Delay Time
10
15
20
tf
Fall Time
25
40
60
Capacitance
pF
VOS - 0, VGS = 12 V (U304) VGS = 7 V (U305), VGS = 5 V (U306)
VOO ns
VGSloff)
RL VGS(on) 1010n)
U304 -10V
U305 -6V
f= 1 MHz
U306 -6V
12V
7V
5V
580n
743U
1800n
0 -15mA
0 -7 rnA
0 -3mA
PSA/PSB/PSC
NOTES: 1. Due to symmetrical geometry these Units may be operated with source and drain leads Interchanged. 2. Pulse test pulsewldth = 300 p.s, duty cycle .. 3%.
3-120
f = 1 kHz
VOS=-15V,VGS=0
Siliconix
n-channel JFETs designed for • • •
H
Siliconix
Performance Curves NZB See Section 4
Amplifiers • VHF End High Sensitivity • Front Amplifiers Osci Ilators • Mixers •
BENEFITS • I ndustry Standard • High Power Gain 16 dB at 105 MHz, Common-Gate 11 dB at 450 MHz, Common-Gate Low Noise 2.7 dB Noise Figure at 450 MHz • Wide Dynamic Range Greater than 100 dB • 75 n Input Match Common Gate
•
ABSOLUTE MAXIMUM RATINGS (25°C) TO·52
Gate-Drain or Gate-Source Voltage ............... -25 V Gate Current ............................... 20mA Total Power Dissipation at T A = 25°C 500mW Power Derating to 1500 C .................. 4.0 mWrC Storage Temperature Range .............. -65 to +[209"6 Lead Temperature (1/16" from case for 10 seconds) .............. 300°C
See SectiDn 6
11
..........
.~:
"' !H
s
0
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
1...2.
IGSS
2
I- S 3 4
T
15
T I C
Voltage
Gate-Source Cutoff Voltage
16
VGS(I)
7
1-
gIg 0 y
8 gog 1_ N 9
IW
111
1..2.!. 13 1I~
A Cgd M Cgs I C -en
I
11'7 118 1-
Min
U310 Typ Max -150
pA
-150
-150
-150
nA
-25
V
VGS VOS
= -15 V, =0
TA=125°C
IG=-II'A,VOS=O
-1.0
-4.0
-2.5
~.O
12
60
12
30
24
60
mA
VOS= 10V,VGS=0
1.0
V
IG=10mA,VOS=0
Common-Gate Forward Transconductance (Note 1)
1.0 10
1.0 10
17
Common-Gate Output
10
17
VOS=10V, 10=10mA
Drain-Gate Capacitance
2.5
2.5
2.5
Gate-Source Capacitance
5.0
5.0
5.0
Equivalent Short Circuit Input NOise Voltage
10
10
10
15
15
15
14
14
14
0.18
0.18
0.18
0.32
0.32
14
16
14
16
14
16
Gam (Note 2)
10
11
10
11
10
11
NOise Figure
pF nV
~
VGS=-10V, 1= 1 MHz VOS=10V VOS = 10V, 10=10mA
1=100Hz 1= 105 MHz 1= 450 MHz 1=105MHz
mmho
0.32
Common-Gate Power
19
1=1 kHz
250 .umho
250
Conductance
VOS = 10 V, 10 = 1 nA
mmho
17
250
90g
Test Conditions
Unit
-150
-25
Gate-Source Forward Voltage
Common-Gate Output Conductance
NF
Max
~.O
(Note 1)
Common-Gate Forward Transconductance
E Gpg Q
U309 Typ
-1.0
SaturatIOn Drain Current
gIg
R
Min
-150
-25
H
I~F 16
Gate-Source Breakdown
VGS(oll) lOSS
U308 Typ Max
Gate Reverse Current
BVGSS
1- A
Min
VOS=10V, 10=10mA
1= 450 MHz 1= 105MHz 1= 450 MHz
1.5
20
15
2.0
1.5
2.0
2.7
3.5
2.7
3.5
2.7
3.5
dB
1=105MHz 1= 450 MHz
NZB
NOTES:
1. Pulse test duration = 2 ms 2. Gain (Gpgl measured at optimum input noise match.
Siliconix
3-121
n-channel JFET designed for • • •
H
Siliconix
-----
Performance Curves NZB See Section 4
• VHF Amplifiers • Oscillators • Mixers
BENEFITS • High Power Gain 16 dB Typ @ 105 MHz, CommonGate 11 dB Typ @ 450 MHz, CommonGate • Low Noise Figure 1.5 dB Typ@ 105 MHz 2.7 dB Typ @ 450 MHz • Wide Dynamic Range-Greater than 100 dB
ABSOLUTE MAXIMUM RATINGS (25°C)
TO-72 See Section 6
Gate-Drain or Gate-Source Voltage ............... -25 V Gate Current ............................... 10mA Total Device Dissipation (Derate 1.7 mWrC) ..... 300 mW Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) 300°C
o~:
.............
~
~
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1
12 1- S 3 T 1- A 4 T
I-I
5 C
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
Min
Typ
Max
pA
-150
nA
-25 -6
20
no
Saturation Drain Current (Note 1)
VGS(f)
Gate·Source Forward Voltage
7
9fg
Common-Gate Forward Transconductance (Note 1)
B 0
gog
Common-Gate Output Conductance
Cgd
Gate·Dral" Capacitance
2.5
Cgs
Gate·Source Capacitance
5.0
-Y 9 N '10
150·C
VOS= 10V,IO= 1 nA
1 10.000
"If!.
VDS=1QV,'lGS=O
V
IG = 1 rnA, VOS = 0
17,000 pmho
VOS = 10 V, 10 = 10 mA
if = 1 kHz
pF
VOG= 10V,IO= 5mA
if= 1 MHz
250
NZB
NOTE: 1. Pulse test duration = 2 ms.
3-122
VGS=-15V.VOS=0 IG = -lpA, VOS = 0
-1
lOSS
-
Test Condition.
V VGS(off) Gate-Source Cutoff Voltage
6
i-
Unit
-150
Siliconix
-
n-channel JFETs designed for • • •
• •
H
Siliconix -----
- ---
Performance Curves NIP See Section 4
VHF BuRer Amplifiers IF Amplifiers
W N
•
• HighgfsGain = 120,000 ,umho Typical Wide Dynamic Range • • Low Intermodulation Distortion TO-39
c
W N N
~
See Section 6
Gate·Drain or Gate·Source Voltage ................ -25 V Gate Current ............................... 100 rnA Total Device Dissipation (25°C Case Temperature) ...... 3 W Power Derating (to 150°C) .................. 24 mWrC Storage Temperature Range .............. -55 to +150°C Operating Temperature Range ............. -55 to +150°C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C
N
o c
BENEFITS
ABSOLUTE MAXIMUM RATINGS (2S0C)
cW
l
.~:
s
0
ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) Characteristic I
1-
I~ sT
I";4 15 I6
A T I
e
I] 8
1-
U320 Min
IGSS
Gate Reverse Current (Note 1)
VGSloffl BVGSS
Gate-Source Cutoff Voltage Gate-Source Breakdown Voltage
-25
lOSS
Saturation Drain Current (Note 21
100
VGS(I)
Gate-Source Forward Voltage
'OS(on)
Drain-Source ON ReSistance
9fs
Common-Source Forward
Transconductance (Note 21
Typ
-2
75
U322
U321 Max
Min
Typ
Max
Max -3
nA
-0 5 -10
-0 5 -4
-0.5
pA
-1
-3
-10
-25
80
250
200
700
rest Conditions
Umt
-3
500
Common-Source Input
Typ
-3
-25
120
M,n
V mA
I
VGS=-15V VoS=OV ' IT = 100·C VoS-5V, 10= 1 mA IG=-lpA,VoS=OV VOS=15V,VGS-OV
1
1
1
V
IG = 1 mA, VoS = a V
10
11
8
n
VGS -
200
75
120
200
75
130
200
mmhos
a V, 10 -10 mA
VOS = 15 V, VGS =
0 V N 10 A 111 M I
C1SS
Cas
Gate-Source Capacitance
12
12
12
VGS=-10V,10-0
I':'::
Cgd
Gate-Drain Capacitance
12
12
12
VGO=-10V,IS=0
13
-en
EqUivalent Short CirCUit Input NOise Voltage
2
2
2
14
gig
Common Gate Forward Transconductance
55
55
55
9
I-
112 e
115
1-
Crss
H I G g,g H
Capacitance
30
30
30
Common-Source Reverse Transfer Capacitance
15
15
15
Commen-Gate Input Conductance
1-'-'- R
GPS
Common-Gate Output Conductance Power Gain (Note 3)
*
Ft NF
Gam-Bandwidth (Note 4) NOise Figure (Note 3)
16
117
F E
Q
909
56
56
56
05
0.5
05
9 400
2.5
pF
nV
~
mmho
9
400
MHz
25
dB
Silicanix
VGS = -10 V, VOS = a V
VOS = 5 V, 10 = 10 mA
1=1 kHz
1= 1 MHz
1=1 kHz
VoG = 20 V, 10 = 25 mA 1= 50MHz
dB
9
400 25
NOTES: 1. ApprOXimately doubles for every 10°C Increase," TA 2. Pulse test duration = 2 ms. 3. NOise figure ~SSB) and power gain measured In cIrcuIt shown," FIgure 1 4. Computed as 9fs/Crss.
aV
VOS= 15V,VGS=OV ValL= 20 V,!JL - 25 mA.11
= 30 MHz NIP
3-123
-
H quad-ring demodulator designed for ... Performance Curves NZB See Section 4
Siliconix
Double-Balanced Mixers • VHF • Analog Multipliers
BENEFITS • • • •
ABSOLUTE MAXIMUM RATINGS (25°C)
High IMD Intercept Point Conversion Gain High 1 dB Compression Suitable for PC Board Construction
Gate-Drain or Gate-Source Voltage .............. -25V Gate Current. . . . . . . .. . . . . . . . . . . ... . . . . . .. . . ... 25 mA Total Continuous Power Dissipation at (or Below) 25°C Free Air Temperature (Derate 8.0 mWrC to 150°C ................... . 1W Storage Temperature Range .......... . -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) .............. 300°C
PIN 2 0,. 04
., Bottom View
FEATURES
• 4 Matched U310 JFETS • Low Turn-on Resistance • High Transductance Reference Application Note AN72-1
+VGS
Ll,12_13"Hy Cl-001,.F C2 C1-o10",F C3 C4-30pF
+VDD
C5,C8-&8pF
Contact factory for Application Note AN 73-4.
ELECTRICAL CHARACTERISTICS (25'C unless otherwise noted) U350
Characteristic
,
IGSS
2
-S 3 T BVGSS -A T VGS{off) I C 5 VGS(f)
• -
•
. 7
-
•
0 y
N A _M
~~
"
,.
Voltage Gate-Source Cutoff Voltage
-2
Test Conditions
Unit nA
VGS = -15V. VOS = 0
!,A
(Note 1)
-6
TA - ..L125G C
IG
= -1 p.A, VOS = 0
10
= 1 nA. Vas'"
10 V (Note 1)
IG = 1 mA VOS "" 0 (Note 1)
Voltage Dram Saturation Current
2.
Common-Source Forward Transconductance
'0
go,
Common-Source Output Conductance
Cg ,
Gate-Source Capacitance
Cgd
Dram Gate Capacitance
Rds(on)
Dram-Source ON ReSistance
60
,.
'50
rnA
." pF
50
90
" dB
NOIse Figure
lOSS/lOSS
VOS"" 10 V, 10 = 10mA
f = 1 kHz (Note 1)
VGS"" -10V,IO - 0 VOO = -10V,IS
(Conversion Gam)
Saturation Drain Current RatiO
VOS"" 15 V, VGS = 0 (Notes 1 and 2)
mil
25
NF
=0
C grsfgls
17
VGS = 0, 10 = 0
f= 1 kHz
VOS - 20 V, VGS YzVOS(off). RO"" 1.700 n
f = 100 MHz (Note 3)
=
09
'0
VOS"" 15 V. VGS "" 0 (Note 2)
VOS"" 15 V, 10 "" 1 nA
gas/gas
09
'0
Common-Source Forward Transconductance
09
, 0
Differential Output Conductance
09
'0
VOS'" 15V, 10 '" 10 rnA
Other gate terminal clamped to -8 V
2 Pulse test PW 300 ~sec DC "" 3%
Siliconix
f '" 1 kHz
NZB
NOTES
3-124
f"" 1 MHz (Note 1)
Gate-Source Cutoff
_H
,
-,
Gate-Source Forward
M '5 A VGS{off}IVGS(off) Voltage RatiO _T
'6
Max
-25
gls
-
TVp
Gate Reverse Current Gate-Source Breakdown
lOSS
12 H G,
13 F
Min
3 See Figure 1
H
monolithic dual n-channel JFETs designed for • • •
Siliconix
Performance Curves NNR See Section 4 Minimum System Error and Calibra• tion
• •
• •
5 mV Offset Maximum (U401) 95 dB Minimum CMRR (U401-04) Low Drift with Temperature 10 Ilvrc Maximum (U401. 02) Operates from Low Power Supply Voltages VGS(off) < 2.5 V Simplifies Amplifier Design Output Conductance < 2 Ilmho Low Noise en = 6 nV/y'Hz at 10 Hz Typical TO-71
~p.:_oo. 0,
50V 10mA
G2
51
U4Ql
M,n
BVGSS
Gate-Source Breakdown Voltage
'GSS
Gate AeverseCurrent INote 1)
3
VGSlcff)
Gate Source Cutoff Voltage
4
~ VGSlon)
1
12
1-
I-~ I-
I
5 C lOSS
1-
I~
'G
1-
(Note 21
G~te·G~te
Breakdown
eVG, - G2
9
",
Common Source Forward Transconductance (Note 2)
'.,
Common Source Output Conductance
110
1-
11 ~ I- N 12 ~
1-
52
°1
~
17
~
,
U404
M..
Moo
-50
-25
-50 -25
-5
"'X
M,n -50
-5
-25
M,n
"'X
-50
-25
-2,5
U406
U405
M..
-25 -5
-25
-25 -5
UHlt
Test Conditions
V
VOS=O,IG=-lIJ,A
pA
VOS=O. VGS=-30V
-25
VOS=15V,'O .. lnA V
-23 05
-23
-23
-23
-23
-23
VeG = 15 V, '0 = 200lJ,A
100
rnA
VOS=10V,VGS=O
-15
-15
-15
-15
-15
-15
pA
VOG=15V.
-10
-10
-10
-10
-10
-10
nA
'0 = 200IJ,A
V
Ves = 0, VGS = O,IG" ±II1A
100
±50
05
100
±50
05
100
05
±50
±50
2000 7000
2000 7000
20
20
2000
100
7000
2000
20
05
100
±50 7000
2000
05
±50
7000
2000 7000
20
20
20
VOS'" 10V, VGS"'O
I
TA
IEII
"125~C
f= 1 kHz
I1mho
gas
20
Common..source Input Capacitance
80
80
80
80
80
80
c",
Common Source Reverse Transfer Capacitance
30
30
30
30
30
30
'N
EqulvalentShort,Clrcult Input NOise Voltage
20
20
20
20
20
20
CMRR
Common Mode RejectIOn RatiO (Note 3)
IVGSI - VGS21
OlfferentlalGate-Source Voltage
1000
2000
1000
2000
1000
2000
1000 2000
1000
2000
1000
2000 f= 1 kHz
I,-T 1-
M,n
-25 -5
G~~2
Bottom View
Common Source Forward Transconductance
1-
,.
Voltage
-25
07 G2
,0
Common Source Output Conductance
1 13 C CISS
15
-5
'0
5,
U403
"'X
,,~.
G, 30 0 506 °2
500mW -65 to 200°C
gfs
114
-25
Gate CurrentlNote 11
8
Moo -50
-50
Gate-Source Voltage lonl Saturation Dram Current
U402
M..
52
300mW
ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) Characteristic
18 N A.lVGSl - VGS21
--I1-T--
Gate·Source Voltage Differ· entlal Onft(Note 4)
-
BENEFITS
Noise FEY Input • Low Amplifiers and Medium Frequency • Low Amplifiers Impedance Converters • Precision • AmplifiersInstrumentation • Comparators ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage Forward Gate Current. Device Dissipation (each side) @ T A = 85° C derate 2.6 mW/" C Total Device Dissipation @ T A = 85°C (derate 5 mW/"C) Storage Temperature Range
c ~ o
20
20
20
20
20 VeG = 15V, 10 = 200l1A
pF
95
95
95
9S
90
nV h_
VeG = 10V, 10 = 200l1A
10
15
20
40
mV
10
10
25
25
40
80
"vfc
[jilv::,~eGS2J
f= 10Hz
VOG = 10 to 20 V, 10" 2oo,..A
10
3 CMRR = 2010910
Ves= 15V, VGS=O
dB
5
NOTES 1 ApprOXimately doubles for every 100 e Increase In TA 2 Pulse test duration" 3OOl1s, duty cycle" 3%
f"'IMHz
,avoe '" 10 V
VOG-IOV, 10 = 200J,lA
T A = -55°C, TS· +25°C TC" +125°C
NNR
4 Measured at and pOints, TA, Ta and TC
3-125
monolithic dual n-channel JFETs
H
.. designed for ••• ...
Siliconix
lit
Performance Curves NQP See Section 4
::)
o
::)
BENEFITS
• FET Input Amplifiers • Low and Medium Frequency Amplifiers • Impedance Converters • Precision Instrumentation Amplifiers • Comparators
• Low Cost • Minimum System ~rror and Calibration 10 mV Offset Maximum (U410) 70 dB Minimum CMRR (U410) • Low Drift with Temperature 10 IlV/"C Maximum (U410) • Simplifies Amplifier Design Low Output Conductance TO-71
See Section 6
ABSOLUTE MAXIMUM RATINGS (25°C) Gate-To-Gate Voltage _........................ ±40 V Gate-Drain or Gate-Source Voltage ............... -40 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA Total Package Dissipation (25°C Free-Air) _...... _375 mW Power Derating ........................... 3.0 mW;oC Storage Temperature Range .............. -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) .. 300°C
G, 0' 02
J
W ~
7
0, .,
ci,:D2
Bottom View
.
0, "
ELECTRICAL CHARACTERISTICS (2.5°C unless othilrwise noted) Characteristic 1
IGSS
Gate Reverse Current (Note 1)
VGS(off)
Gate-Source Cutoff Voltage
12
1_ 5
T 3 A BVGSS I-T 4 I lOSS C
-5
-
U410
Min
Gate-Source Voltage
Min
Typ
U412 Max
Min
Typ
"200 -35
-0.5
Max "200
Unit pA
-35
-0.5
Test Conditions VOS = 0, VGS = -30 V VOS=20V,IO= 1 nA
V -40
-40
-40
VnltAgp
Gate Current (Note 1)
-35
-0.5
Saturation Drain Current (Note 2)
IG
U411 Max "200
Gate-Source Breakdown
VGS
Typ
05
50
0.5
5.0
VOS = 0 V,IG = -lpA
0.5
"200
50
mA
"200
pA
-02
-3.0
V
4,000 1,000
4,000 1.000
4,000
1,200
1,200
1,200
"200
VOS = 20V. VGS= OV
VOG = 20V,I0 = 200llA 6 7 9f.
Ii
!i'o loy
90.
Common-Source Forward
Transconductance
-02
-3.0
1,000 600
Common-Source Output
Conductance
-N 11 ~ CISS -I 12 C C,..
-13
en
~
Common-Source Input
Capacitance Common-Source Reverse Transfer Capacitance
600
600
20
20
20
5
5
5
45
45
4.5
12
1.2
1.2
VOS=20V.VGS=0 V ~mho
VOS=20V,VGS=OV
f= 1 MHz
!lll.
VOS = 20 V,IO = 200llA
f'l00H-
VOG = 20 V,IO = 200llA
50
50
50
10
20
40
mV
10
25
80
pVrC
NOTES: 1. Approximately doubles for every lOoe Increase In TA 2. Pulse test duration = 300 /lSec, duty cycle'" 3%. 3. Measured at end potnts, T A and TB.
80
70
f = 1 kHz
pF
Differential Gate-Source Voltage
80
VOG = 20 V,IO = 200llA VOS= 20V. VGS - OV VOG = 20 V,IO = 200llA
Equivalent Short-Circuit Input NOise Voltage
lvGS1-VGS2) 14 -T alvGS1-VGS2 1 Gate-Source 15 ~ Differential Dnft (Note 3) AT f--I Common-Mode ReJection 16 ~ CMRA Ratio (Note 4)
3-126
-30
-0.2
vHZ
dB
VOG = 20V,I0 = 200llA TA = 25°C to TB = 85°C VOO = 10 V to VOO = 20 V 10 = 200IlA
NQP 4 CMAR = 20log10 [
avOO
d,aVOO = 10 V.
.el.IvGS1-VGS2)
Siliconix
monolithic dual n-channel JFETs designed for
H
Performance Curves See Section 4 BENEFITS
• • •
Electrometers Impedance Converters
Soo Section 6
Gate-to-Gate Voltage ......................... ±40 V Gate-Drain or Gate-Source Voltage ........... -40 V Gate Current .................•.•............ 10 mA Device Dissipation (Each Side). T A = 25°C (Derate 3,2 mW/oC to 150°C) ............. 400 mW Total Device Dissipation. T A = 25°C (Derate 6.0 mW/oC to 150°C) ....•........ 750 mW Storage Temperature Range ........ -65°C to +150°C
G,
~~ 5,
c G,
T
I-A 4 T I I---;-c
U421-3
U424·6
Min Typ Max
Min Typ Max
I6 17
Gate-Source BreakdoWn Voltage
-40 -60
-40 -60
BVG1G2
Gate-Gate Breakdown Voltage
±40
±40
IGSS
Gate Reverse Current (Note 1)
VGS{off)
Gate-Source Cutoff Voltage
VGS
Gate-Source Voltage
lOSS
Saturation Drain Current
60
0.5 500
-2.0 -0.4
-3.0
-1.8
-2.9
Test Conditions
IG=-lIlA,VOS=O
pA nA
T = +25°C T = +125°C
VGS = -20 V, VOS = 0
pA
T=+2s"C T=+12SoC
VOG = 10 V,IO = 30llA
VOS = 10 V, 10 = 1 nA
V
60
800
1500 300
50C
gf,
Common-Source Forward Transconductance
go,
Common-Source Output Conductance
lla°
10
10
Ciss
Common-Source Input Capacitance
3.0
3.0
300
0(', ~,
G2
'
Bottom View
30 30
10 25 250
1000
°2
IG = -lilA, 10 = 0, IS = 0
10
-0.4
o~
Unit
8 19
I-V 11 N Crss I_A 12 M !If, I-I 13 C gos 1-
~o
V
Gate Operating Current (Note 1)
5, 4 05
5,
BVGSS
IG
G2
82
0, '0 10
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)
1 I2 I3 S
VOG = 10 V, 10 = 30llA VOS= 10V, VGS=O
IlA
VOS=10V,VGS=0 pF
Common-Source Reverse Transfer Capacitance
1.5 120
f= 1 MHz
1.5
350 120
350
3.0
3.0
f= 1 kHz
Illl Common-Source Output Conductance
14
en
I15
Equivalent Short Circuit Input NOise Voltage
NF
Noise Figure
20 10
70
20 10
1.0 U421,4
Characteristic
IEII
f= 1 kHz
Illl
Common-Source Forward Transconductance
70
VOG = 10 V,lo = 30jlA nVA/Hz
1.0
U422,5
If
d8
U423,6
=
10 Hz
f= 10 Hz f= 1 kHz RG = 10M n
Test Conditions
Min Typ Max Min Typ Max Min Typ Max Unit 16 M IVGSl - VGS21 Differential Gate-Source Voltage I-A Differential Gate-Source Voltage 17 T IVGS1 - VGS21 liT Change With Temperature(Note 2) C I l a H CMRR Common Mode Rejection Ratio 90 {Note 3) NOTES. 1. Approximately doubles for every 1
In
TA.
10
15
25
10
25
40 IlVrC
95
_
-
TO,78
ABSOLUTE MAXIMUM RATINGS (25°C)
Characteristic
~
• High Input Impedance IG = 0.25 pA Maximum (U421-3) • High Gain 9fs = 120 J,tmho Minimum @ '10 = 30 J,tA (U421-6) • Low Power Supply Operation VGS(Off~ = 2 V Maximum (U421-3) • Minimum ystem Error and Calibration 10 mV Maximum Offset 90 dB Minimum CMRR (U421, U424)
High Input Impedance • Very DiHerential Amplifiers
•
Silicanix NNT
3. CMRR - 2010910
80
90
[,,"voo] AIVGS1 VGS2'
80
90
AVOD '" 10V
mV
dB
VOG = 10 V, 10 = 30llA VOG = 10 V,IO = 30llA, TA = _55°C, Te = 25°C, "FC = 125°C 10 = 30llA, VOG = 10 to 20V
NNT
4. Case lead not connected.
SilicDnix
3-127
monolithic dual n-channel JFETs designed for • • •
H
Siliconix
--
Performance Curves NNT See Section 4 BENEFITS • High Input Impedance IG = 5 pA (U427) • High Gain 9fs = 120 Mmho Minimum @ 10 = 30 MA • Low Power Supply Operation VGS(off} = 2 V Maximum (U427) • Minimum System Error and Calibration 25 mV Maximum Offset
High Input Impedance • Very DiHerential Amplifiers Electrometers Impedance Converters
•
ABSOLUTE MAXIMUM RATINGS
TO-78
(25°C)
Saa Section 6 Gate-to-Gate Voltage
±40V
Gate-Drain or Gate-Source Voltage
-40 V
Gate Current
10 mA
Device Dissipation (Each Side), T A (Derate 3.2 mW;oC to 150°C) . Total Device Dissipation, T A
G,
= 25°C
~~ 8,
400mW
= 25° C
82
S2
c
(Derate 6.0 mW;oC to 150°C)
750mW
Storage Temperature Range
405
o
G1
-65 to +150°C
01
G2
b
'0
,0
°2 0, 0 G2 7
A
S,
ELECTRICAL CHARACTERISTICS
U427
U428
M,n Typ Max
M,n Typ Max
Characteristic
1 I2
13
S
T I-A 4 T I ISc
-
BVGSS
Gate-Source Breakdown Voltage
-40 -60
-40 -60
BVG1G2
Gate-Gate Breakdown Voltage
±40
±40
IGSS
Gate Reverse Current (Note 1)
IG
Gate Operating Current (Note 1)
Gate-Source Cutoff Voltage
6
VGS
Gate-Source Voltage
7
lOSS
Saturation Dram Current
8
9ts
Common-Source Forward Transconductance
90S CISS
-0 10 y ---" N
_ A Crss 12 M _I 13 C 90S
9"
-
-0.4
-1.8
-2.9 60
800
800 300
500
Common-Source Output Conductance
30
5.0
Common-Source Input Capacitance
3.0
3.0
Common-Source Reverse Transfer Capacitance
1.5
1.5
Common-Source Forward Transconductance
300
120
350 120
-en
EqUivalent Short Circuit Input NOise Voltage
15
NF
Noise Figure
16 M IVGSI - VGS21 -A 17 T IVGSI - VGS21 LIT C -H lB CMRR
20 10
50
T = +2SOC T-+12SoC
VGS = -20 V. VOS = 0
pA
T "" +25°C T-+12SoC
VOG= 10V,10=30/J.A
pF
/J.15
20 10
70
nVNHZ
dB mV
Differential Gate-Source Voltage
40
80
/J.vfc
Change With Temperature(Note 2)
In
TA
3 CMRR
90
[.0. tl.VO~ GS2 I]
= 2010910 V I GS1 4 Case lead not connected
Siliconix
t = 1 kHz VDG = 10 V, 10 = 30llA
40
1 ApprOXimately doubles for every 10"'C Increase 2 Measured at end pOints TA. T8 andTc
t= 1 MHz
10
1.0
NOTES
t= 1 kHz VOS=10V,VGS=0
25
90
VOS=10V,VGS=0
/J.15
1.0
INote 31
VDS= 10V.IO "" 1 nA
VOG = 10 V. 10 = 30/J.A /J.A
Differential Gate-Source Voltage
Common Mode Rejection RatiO
IG = -1 /J.A, VOS = 0
pA nA nA
350
05
Common-Source Output Conductance
14
3-128
-20 -0.4
1000
~,
IG = -1 /J.A, 10 = O.IS = 0 10 10 5 5 -3,0
V 60
0,
Test Conditions
Unit
V 5 5 3 3
VGSlottl
-9
Bottom View
(25°C unless otherwise noted)
, 02
'I dB .o.VDD
=
10 V
I t = 10 Hz
t= 10Hz t - 1 kHz RG=10Mf!
VOG = 10 V,IO = 30/J.A VDG = 10 V,IO = 30/J.A, TA = _55°C. TB = 25°C, TC = 125°C ID = 30 /J.A, VOG = 10 to 20 V
NNT
matched dual n-channel JFETs designed for • • •
c
H Siliconix
to c
Performance Curves NZB-D See Section 4
Balanced Mixers • Differential Amplifiers •
t
-
BENEFITS Noise Figure • Low • Low30 IMD dBm Intercept Point
ABSOLUTE MAXIMUM RATINGS (25°C) TO-99/TO-78 See Section 6
Gate-Drain or Gate-Source Voltage ............... -25 V Gate Current ............................... 10 rnA Total Continuous Power Dissipation at (or Below) 25°C Free Air Temperature Derate 4 mWrC to 150°C... , ........... , ... 500 mW Continuous Device Dissipation (Each Side) at (or Below) 25°C Free Air Temperature Derate 2.4 mWrC to 150°C ................. 300 mW Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ............. 300°C
G,
~~ 51
c G,
(~ ~
G2
52
D2 050
P
01
r----
b G2 d
~0108
S2 NC C D2
s,
j
G2
D,
Bottom View
G,
"~, s,
ELECTRICAL CHARACTERISTICS (25° unless otherwise noted) Characteristic 1
"""2 3" """""4
"'"'5 6
-
7
8
9' 10
-
S T A T I
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
VGS(oll)
Gate-Source Cutoff Voltage
C
VGS(f)
Gate-Source Forward Voltage
lOSS
Saturation Dram Current (Note 4)
0
N A M I C
11
-
12
H I
13
""15 Ie
Cod
Q
9, Gc IMO IOSSl
M A 18 T
C 19
91s 90S
F R E
17
-
C9S
H
U431 Max
Min
Typ
-150
-150
pA
-150
nA
-4.0
12
30
-2.0
-6.0
24
60
Gate-Source Capacitance
50
5.0
Dram Gate Capacitance
25
25
T = 150°C
10
10
12
12
0.15
0.15
VOS= 10V,IO = 1 nA VOS-l0V, VGS-OV VOS = 10 V, 10 = 10 rnA
f = 1 kHz
VGS=-10V,VOS=OV
1= 1 MHz
~
VOS = 10 V,IO = 10 rnA
1=100Hz
mmho
VOS= 10V,10= lOrnA
Ilmho pF
1= 100 MHz
Intercept Point (See Notes 1 and 21 Saturation Drain Current Ratio (Note 3)
12
12
30
3.0
dB
+30
+30
dBrn
0.9
10
09
1.0
0.9
1.0
0.9
10
-9fsl 91s2
0.9
1.0
0.9
1.0
Transconductance RatiO (Note 3)
NOTES: 1. VHF single-balanced mixer dram load Impedance 2k 2. 2-tone 3rd-order IMD. 3. Assumes smaller value In numerator. 4. Pulse test pulsewldth = 300 /.is, duty cycle <;: 3%.
I
Vos=OV,IG=10rnA rnA
nV
VGS(off)l Gate-5ource Cutoff VGS(offI2 Voltage RatiO (Note 3)
IOSS2
VGS=-15V, VOS=OV
mmho
17 250
Common-Source Output Conductance Power-Match Source Admittance Conversion Gain (See Note 11
V
1.0
10
17
Test Conditions
IG--1 IlA ,VOS-OV
250
EqUivalent Short-Circuit Input NOise Voltage Common-Source Forward Transconductance
Unit
-150
1.0
10
Max
-25
-1.0
Transconductance Common-Source Output Conductance
Typ
-25
Common-Source Forward
90S
en
14
-
9fs
y
U430 Min
VOS = 20 V, VGS = 1/2 VGS(ofl) VG =OV
VOS=10V
10= 1 nA 10 = 10 rnA NZB-O
n
Silicanix
3-129
l1li
matched dual n-channel JFETs designed for • • •
H
Siliconix,
Performance CUr1fes NZF-D See Sedion 4
• VHF/UHF Amplifiers
BENEFITS High Gain 9fs = 4500 Ilmho Minimum Dual Version of J300 with Matched Gate-to-Source Voltage
• •
TO-71
TO-78
See Section 6
See Section 6 5,
5,
,a 0] G1
021
o
ABSOLUTE MAXIMUM RATINGS (25°C)
02 0 60
C 405 02 ]0 06 G, 0 0 G2 20 '
G2
7
a
,
0,
5,
BottomViaw
Gate-To-Gate Voltage .........•.............. ±50 V Gate-Drain or Gate-Source Voltage ...•....... -25 V Gate Current ....•..................•........ 50 mA Total Package Dissipation (25°C Free-Air Temperature) .............. 350 mW Power Derating ........................ 2,8 mW/oC Storage Temperature Range ........ -65°C to +150°C Lead Temperature (1/16" from case for 10 seconds) ......... 300°C)
G,
BottomViaw
-S~ s,
5,
102
ci
,0 5,
"
G2
82
~. I, \\,
~
ci
5,
TO-71 = U440. U441
TO-78 = U443. U444
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic
:2 1
S T A 12 T 4 I
I-
C
5
IGSS
Gate Reverse Current (Note 1)
VGS(off)
Gate-Source Cutoff Voltage
BVGSS
Gate-Source Breakdown Voltage
lOSS
Saturation Dram Current (Note 2)
IG
Gate Current (Note 1)
6 9fs I- 0 V 7 N 90S A B M C,ss
-
-~ 9
Common-Source Forward
Transconductance
U440/U443 Min
Typ
U441/U444
Max
Min
Typ
-500
-6
-1 -25
Max -500
-1
-6
-25 30
6
6
30
-500
-500
9,000 4,500
4,500
Unit pA V
Test Conditions VOS = 0, VG: = -15 V VOS=10V,10=lnA VOS=O,IG=-lI'A
mA
VOS= lOV, VGS=O
pA
VOG = 10 V, 10 = 5 mA
9,000 t= 1 kHz
pmho
Common-Source Output Conductance
200
200 VOG= 10V, 10=5mA
Common-Source Input Capacitance
35
3.5
Crss
Common-Source Reverse Transfer Capacitance
O,B
O,B
IVGS1-VGS21
Differential Gate-Source Voltage
t~
pF
1 MHz
M 10
A T
10
mV
VOG = 10 V, 10 = 5 mA
NZF,O
NOTES: 1. Approximately do~bles for every 10°C increase In TA 2. Pulse test dUration = 300 Ilsec; duty cycle <;. 3%.
3-130
20
Sillcanix
n-channel JFETs designed for • • •
• • •
c: ...
H
Siliconix
Analog Switches Choppers Commutators
;
•
c:
Plastic
.~:
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)
BVGSS
"2 "3
- 45
6" 7 -8 -9 -
S T A T I C
10
13
-14 15
16
o
U1898 Min Max
U1899 Min Max
-40
-40
-40
Dram-Gate Breakdown Voltage
40
40
40
40
40
40
IGSS
Gate Reverse Current
-400
-400
-400
lOGO
Draln-G.ate Leakage Current
200
200
200
ISGO
Source-Gate Leakage Current
200
200
200
200
200
200
1010ff)
Dram Cutoff Current
VGSloff)
Gate-Source Cutoff Voltage
lOSS
Saturation Dram Current INote 1)
VOSlon)
Dram-Source ON Voltage
'OSlon)
10 -5.0
-10
30
10 -2.0
-70
15
Unit
0 0
IG=-1,.,A,IS=0 IG=-1,.,A,IO=0
-5.0
VGS=-20V,VOS=0 VOG = 20 V, IS = 0 pA
nA V
VOS=20V,10=1 nA
mA
8.0
VSG=20V,10=0 VOS = 20 V, VGS - -12 V IU1897) VGS = -a V IU1898) TA=85°C VGS = -1l V IU1899)
0.2
0.2
0.2
V
VGS = 0,10 = 6 6 mA IU1897) 10 = 4.0 mA IU1898), 10 = 2.5 mA IU1899)
Static Drain-Source ON Resistance
30
50
80
n
10=1 mA,VGS=O
Drain-Gate Capacitance
5
5
5
VOG=20V,IS=0
5
5
5
VSG=20V,10=0
Cjss
Common-Source Input Capacitance
16
16
16
Common-Source Reverse Transfer Capacitance
-
VOS=20V,VGS=0
Source-Gate Capacitance
toff
S
D
Test Conditions
COG
N C rss A M tdlon) I t,
s
Bottom View
V
10 -1.0
G GO D
CSG
y
!
IG = -1 ,.,A, VOS = 0
Source-Gate Breakdown Voltage
17 iii _c 19
U1897 Max
BVSGO
12
Min
BVOGO
11
Gate-Source Breakdown Voltage
...
TO·92 See Section 6
Gate·Drain or Gate-Source Voltage ............... -40V Gate Current. .............................. 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWtC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C
1
...
•
BENEFITS Low Insertion Loss rDS(on) < 30 n (U1897) No Error or Offset Voltage-Generated by Closed Switch Purely Resistive
ABSOLUTE MAXIMUM RATINGS (25°C)
Characteristic
= c: ..",.
Performance Curves NCB See Section 4
pF
f = 1 MHz VOS=20V,VGS=0
3.5
3.5
Turn ON Delay Time
15
15
20
Rise Time
10
20
40
Turn OFF Time
40
60
80
NOTE: 1. Pulse test pulsewidth = 300 ,.,s; duty cycle';; 3%.
3.5
ns
SWltchmg Time Test Conditions U1897 U1898 3V 3V VOO 0 0 VGSlon) -12V -aV VGSloff) 430n 700 n RL 6.6 mA 4mA 1010n)
U1899 3V 0 -1lV 1100 n 2.5mA
NCB
Silicanix
3-131
voltage-controlled resistor FETs designed for • • •
H
Siliconix
Performance Curves NCB, NPA, NT, PSB See Section 4
Signal AHenuators • Small Filters • Amplifier Control • Oscillator Gain Amplitude Control • TO-1B (MODIFIED) See Section 6
TO-1B See Section 6
o~: o~: o~: Q ABSOLUTE MAXIMUM RATING (25°C) Gate-Drain or Gate-Source Voltage ................. 15 V Gate Current ................................ 10 mA Total Device Dissipation at T A = 25°C (Derate at 2.0 mW;oC to 175°C) .............. 300 mW Storage Temperature Range .............. -55 to +175°C
S
D
VCR2N VCR4N
o
~,c
G S
VCR3P
S
~
D
VCR7N
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) r~-Chaiii16;
VCR FETs Characteristic
1 S I-T 2 A I-T 3 I I""4 C 5 I-D 6 y.
VCR7N VCR2N VCR4N Unit Test Conditions Min Max Min Max Min Max -0.1 nA VGS=-15V,VDS=0 -5 -0.2 -15 -15 -15 IG = -1 !lA, VDS = 0 V -5 1.0 3.5 -3.5 -7 -2.5 ID = 1 !lA, VDS = 10 V
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
VGS(off)
Gate-Source Cutoff Voltage
rds(on)
Drain Source ON Resistance
Cdgo
Drain-Gate Capacitance
7.5
3
1.5
Csgo
Source-Gate Capacitance
7.5
3
1.5
20
60
200 600 4,000 B,OOO
NCB
NPA
n pF
VGS= O,ID = 0 VGD = -10 V, IS = 0
f = 1 kHz f= 1 MHz
VGS = -10 V, ID = 0
NT
P-Channel VCR FETs VCR3P 1
-
23
-
4 5
6
S T A T I C
IGSS
Gate Reverse Current
BVGSS
Gate-Source Breakdown Voltage
15
VGS(off)
Gate-Source Cutoff Voltage
1.0
5
rds(on)
Dram-Source ON Resistance
70
200
D Cd go y CSgo
20
Dram-Gate Capacitance
25
Source-Gate Capacitance
15 PSA/PSB
3-132
Siliconix
nA V
n
VGS-15V,VDS-0 IG = 1 #lA, VDS = 0 ID=-1 #lA, VDS=-10V VGS= O,ID = 0 VGD = 10V,IS=0
pF
VGS = 10 V, ID = 0
f = 1 kHz f = 1 MHz
VGS approaches VGS(off), ros increases very rapidly so that rds control becomes very critical and unit·to·unit matching is almost impossible. In Fig. 4, rds(on) (drain· source resistance at VOS = VGS = 0) varies as an inverse function of VGS(off)' In Fig. 5 rds has a typical 0.7%tC temperature coefficient for P·channels which decreases as VGS approaches the zero t.c. point. N·channel devices have a typical 0.3%tC t.C. Specific bias voltage to set operation at the zero t.C. point varies, as does VGS(off), from device to device. *
APPLICATIONS
,0' VOS<:;OlV
N-CHANNEL FET
N·Channel JFET Output Characteristic Enlarged Around VOS = 0 Figure 1
"
,
Ie:j
ri:
1
" ./
L
_v
, 0
04
0'
os
06
10
VGsNGS!olll
Fig. 3
FOUR FIXED RESISTORS
V-I Characteristic of Four Fixed Resistors Figure 2
The VCR FET has an a-c drain-source resistance, evaluated around VOS = 0, that is controlled by doc bias voltage VGS applied to the high-impedance gate terminal. Minimum rds occurs when VGS = 0 and, as VGS approaches the pinch-off voltage, rds rapidly increases. Comparing Fig. 1 and 2, for VOS < ±0.1 volt and VGS = constant, the VCR FET has a bilateral characteristic with no offset voltage, just like a fixed resistor. However, when VOS > ±0.1 volts, the VCR FET characteristic has noticeable curvature. This series of junction FETs is intended for applications where the drain-source voltage is a low-level a-c signal with no doc component. Thus the FET operating point will swing symmetrically around VOS = O. In the first quadrant, signal distortion depends on what extent the FET output characteristic deviates from a straight line or linear relation. Besides the linearity problem in the third quadrant, when VGS is near zero and vds > 0.5 volt rms, the gate-channel junction will become f.orward biased and cause additional curvature in the characteristic. Also, whenever the gate becomes forward biased due to any combination of VGS and vds, it ceases to be a high-impedance control terminal for the VCR. Fig. 3 presents a normalized plot of ros versus normalized VGS where VGS(off) is defined as that value of VGS at IO/IOSS = 0.001. The dynamic range of ros is shown as greater than 100:1. For best control of ros the normalized _VGS should lie between 0 and 0.8 VGS(off) because as
0 VGS"O
5
vc~!J"--~
.....
t--
, , 0
5
vGs·o
~"
VCA'N t--I'i
VCR4N
--'\
vJAiN'
, , "
.lJJ
,,'
'dl!ONI
",
III
DRAIN-SOURCE ON RESISTANCE (ohm"
-
",
Fig. 4
Fig. 5
For further information on using FETs as voltage·variable resistors, consult Siliconix Application Note AN73·1.
* L. Evans; "Biasing FETs for Zero OC Orift"; Electro Technology, August 1964.
3-133
..z voltage-controlled
H
Silicanix
~
~
resistor FETs designed for • • • Small Signal Attenuators • Filters • Amplifier Gain Control • Oscillator Amplitude Control • TO-71
See Section 6
G,
~~ S1
G2
S2
S2
° D2 ° G2 G, 0 3 2' 6,0 D, ° 2,
ABSOLUTE MAXIMUM RATING (25°C)
s,
Gate-Drain or Gate-Source Voltage ....... _......... 25 V Gate Current ................................ 10 mA Total Device Dissipation at T A = 25°C (Derate at 2.0 mW/oC to 175°C) .............. 300 mW Storage Temperature Range .............. -55 to +175°C
0'
Bottom View
,A
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)
Characteristic
VCR11N Min Max
Unit
-0 2
nA
Test Conditions
1
IGSS
Gate Reverse Current
2
BVGSS
Gate-Source Breakdown Voltage
3
VGS(off)
Gate-Source Cutoff Voltage
-B
-12
4
rds(on)
Drain Source ON Resistance
100
200
5
Cd go
Drain-Gate Capacitance
B
6
Csgo
Source-Gate Capacitance
B
VGS= -10V,ID= 0
7
rosml% rOsmax
95
1
VOS= 100mV
rOSl - 200l!
95
1
VGSl =VGS2
r[>SI = 2kl!
-25
Note 1 VGS1
3-134
V
n pF
VGS=-15V,VDS=0 IG = -lilA, VDS = 0 ID= lilA, VDS= 10V VGS= O,ID = 0
f = 1 kHz
VGD=-10V,IS=0
f = 1 MHz
NSH* + Control Voltage necessary to force rOS. to 200n or 21<0
'Contact factory for geometry information.
Siliconix
Geometry mill
Siliconix
c
Useful JFET Parameter Relationships (Approximate)
lc
""'II
....
III
Bulk & Junction Leakage Current vs Ambient Temperature
On Resistance vs Ambient Temperature
W
19
~105~~~~~~+=~~~==~ >10"-4-~-+~f--+-4--f--+-?~
~
r
~103f--4-~-+~f--+-4-~1/~__~
~10'r-~~-+~r-~L'~--r-~-r-i
a:
1 f--4-~-+-/-k--t--t--r-4-~-i
a:
B ~tj2~=l==l=tt=+=l:=j
/
17
>
~ 15
~
13
~ w >
/
g
09
a:
07
p
05
~
~
10"JL-.L...L-L---1__L-.L...L-L---1--l -75
...J
-25
25
75
125
AMBIENT TEMPERATURE
03 -75
175
1.2
,"
08
a:
3 ~
1/
04
o2 -25
25
75
125
-75
175
AMBIENT TEMPERATURE (OCI
(OC)
.. ., f ..-.
ii"
" '"
w 06
;l
a3 ~
14
~ 10
11
~
_#
~
'3 ~
~ 16
~
~
10'1
~ 10- 2
18
w
"
~,o2f--4-~-+~f--+-47~-+--~
~
Dram Current and Transconductance vs Ambient Temperature
o~
75 125 25 AMBIENT TEMPERATURE ("Cl*
fit
-.
175
-25
~
-":J> ""a >< fit
Typical rDS(on) vs Normalized Gate Source Cutoff Voltage
Saturation Current vs Cutoff Voltage MAX
MAX 14
"
w
o
w>
Z
e
12
>0 j:::u
o
wCl
ow
8
"';::
.... w
6
.....
"-
o
~4!
4
o
on
z:O:
Z
"'-
i!:'"
'\.
on~
0:>
"
Z
0:>
wZ
"-
~
:'lon 10
o
0:
ZO
"
0 ....
rOSlon)
I--
-+-
~ ~
MIN -, 0
-08
-06
-04
-02
~
!"-
/
~
0:
"
~
\ ........
/ / / / / /'
it
1\
on on on
9
MIN
MIN
MAX
-.3
LL
..-
1/ /
o z o
APPROXIMATE "ON" RESISTANCE
VOS(offl (NORMALIZED)
V
a:
I........
0:
/
~ 0:
a
V
~
.,? V MIN
MAX
VGS(off) CUTOFF VOLTAGE
l1li
Saturation Current vs ON Resistance MAX
\\
\
ffia: a:
\\.
~
<.J Z
\
o ~ 0:
~
"-
on on on
"- ."-.. f'... ........ l'-
..... ........
9
MIN
I"""" MAX
MIN rOSlon) ON RESISTANCE
'When 10> 5
X
102
Siliconix
4-1
H
n-channel DMOS FEY designed for " " " • •
190MILS BACKSIDE - SUBSTRATE
DIESIZE~190X
Siliconix
Ultra high speed switching High gain amphfication
BENEFITS:
• •
TYPE
Pf.CKAGE
PRINCIPAL DEVICES
Single
TO-72
S02100E. S0211 OE S02120E. S02130E S02140E. S02150E
Quad
Dual 10 LlOe 16 Pm Side Braze
S05000l, S050011 S050021
Dual 10 Line 16 Pin Plastic
S05000N, S05001 N S05002N
Surface Mount SO-14
S05400CY, S05401 CY S05402CY
Ch,p/Wafer
AvaJiable as above specifications
ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERS)
0004
0004
0004
0004
(0102)
;01021
(0"i021
;0;0])
Switching speed < 1 ns Gain gfs > 10,000 "mhos
DIESIZE=350XJ50MILS BACKSIDE ~ SUBSTRATE
PERFORMANCE CURVES (25°C unless otherwise noted) Drain Current vs Drain to Source Voltage
Dram to Source Resistance vs Gate to Source Voltage
80 r-:V-:-D-S~'-:-:,.-:-V,--,--,.--,----,
70~-1--_+--~-1-~~
E
100
Leakage vs Voltage
r-"TT11Wn""T"""T---.-r--.----r-""T"---'
10-; , - , . - - , - - , - - , . - - ,
:£ 108~_~_-+
« ~
~ < ~
u
~
~
30~-1--_+-i~~~1--~
5l
20~-1--~~~~-1--~
"'
':116"111 o
2
VGS
~
4
6
8
40~+-+-+-'
"g
~
5
J
vds ~ l v
30
~
z
~
~
u
25
20
II
VGS - 4V
I
vJs·lv
'0
......
80
,,6"I~
60
"'~ I
I I 12
16
40
Z
VGS - 2 V
VOS - ORAIN TO SOURCE VOLTAGE (VI
4-2
100
~
Q
20
20
25
Forward Transconductance vs Drain Current
u
II
20
Dram to Source Resistance vs Temperature
~
~
I,. I I
VOLTAGE (VOLTS)
u
:i
10
VGS - GATE TO SOURCE VOLTAGE (VOLTS)
VV
~
,. 1/ ~ iJ " I"' .....
z
10 10
Q
Dram Current vs Gate to Source Voltage V~S ~ 0 V
10 9~-+-~--~~-e~~
d
10
40
+-_~_-+
Q
z
GATE TO SOURCE VOLTAGE (VOLTS)
35
__
.
~ r-"
'::. ~
-60
-20
V
:::: ~~ ""k ;...
~ ~ ~ :::=:~r
)0= SmA VBS - OV
20
60
'00
TEMPERATURE ( C)
Siliconix
140 10 - DRAIN CURRENT (mAl
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Threshold Voltage vs Source to Substrate Voltage
Threshold Voltage vs Temperature
25
3 VBS~-10V
VBs~
2
VaS"'_TV
r-
1
VBS"'_O~
10 = lilA
I-
-L f-+f-+r-r-
~ ~r-
~ 0
20
~
15
"~ 0
> 0
10
~
05
i=
I"
....
V
1/
V
/'
V V 10 -lj.1A VGS = Vos = Vth
VGS = Vos '" Vth
-60
20
20
60
TA =25 C
100
140
lao
-10
TEMPERATURE [ C)
SOURCE TO SUBSTRATE VOLTAGE (VOL IS)
Capacitance vs Gate to Sou rce Voltage
Common-Source Output Conductance vs Drain Current
............. 5
........ 2 1
-
""
-
-
Leakage vs Temperature
VDSO lO::±-Vas = VGS F = 1 MHz
CI(GSt S8)
Ibo
8 5
1
t
~
JBI
12
GATE TO SOURCE VOLTAGE (VOL IS)
I~ ~
800
J"~
.J.Q~+·.:;)2 600
'//'t ':.I/'
40 0
~
g
~ IDGII 10
,
Z
C(GS+GO+GB!
C
1000
~
j
"z ~
I I I I
- 14
TEMPERATURE ('C)
200
I-
/~ /'
~~
--"!!~ ,.. ~
0
12
16
20
10 - DRAIN CURRENT (mAl
Siliconix
4-3
enhancement-type n-channel MOSFET designed for •••
1 L---....f----+-l
H
Siliconix
•
Audio Amplifiers
BENEFITS:
•
Analog Circuits
•
•
Digital Switching Circuits
Integrated Zener Clamp Protects the Gate
•
Commutating Circuits
•
Normally OFF
TYPE
PACKAGE
PRINCIPAL DEVICES
Single Single
TO-72
Ml16 Ml16CHP
Chip
ALL WMEPoSIONS IN INCHES (ALL DIMENSIONS IN MILLIMFTEFIS'
PERFORMANCE CURVES (25°C unless otherwise noted) Output Characteristics
Transfer Characteristic 20
20 V BS '" 0
VGS'" lOV
.§. 16 ~
~_ =>
'2
". '-'
"
f-VGS'" Vos Vss" 0
.....
"
II
9V=
/ J
.v
/'
6V
'"
,J
7V
C
I
o
Ii
3V
4V
/
SV
V
V
'0
10
VGS - GATE-SOURCE VOL lAGE (VOllS)
Vos - DRAIN-SOURCE VOLTAGE (VOL TS)
Forward Transconductance vs Drain Current
Low Voltage Output Characteristics 5000
a
2
+25~
Vss" 0 f= 1 kHz
r---
~
I
vJsJ"t
r-
/'
f-+--+-+--t-h
--r---
,/' ./
+125 C
--
- 1-- ! -
/'
'/
"
'""
'/
C
I
- 1--
0'
2
"
6
8
10 - DRAIN
Vos - DRAIN-SOURCE VOL lAGE (VOL is)
10 12
14
CURR~NT
16
18
20
(rnA)
Output Conductance vs Drain Current
Drain-Source ON State Resistance vs Gate-Source Bias
-1--
- -- -
,--
+12S'C
1---1-----
!'-V-+_+_+-_+___ _. __ _ '0 0~~2----C4----C~6-=.-:'':-0-':':2----:"4:--:'':-6-:':'.~20
'0 0~~2----C4C-6::-~.-:'0':---:':':-2-:':'4----:"6:-:'~.-"20· 10 - DRAIN CURRENT lmA)
VGS - GATE-SOURCE VOLTAGE lVOL lSI
4-4
Siliconix
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Substrate Capacitance vs Voltage
k-+- I! 1~H' +-++-+-+---j
w
"~ 0
16
I----'t'--+---i--I-+-+-+++--j
~ 121--\~__l-r~~~I-+-+-r.-+~ C,b ~
I.
0
12
~~
Z
~o
~~
'-~
w
81-~~+-+--1---+-'--~~~~~
~
~
.~t==C"=!~::~$:~~Cd~bir-~
" I
@
> 16
12
20
-I-YGs·Jos 10= lOIlA
16
>
g
u
5
-
20
2'r-'--r-r-'--r-~'--r-r-'
~w
I.
Gate Threshold Voltage vs Substrate Bias
./
V V
10
V
/
• L
6
• 2 0
-5
-10
-15
-20
Vas - SUBSTRATE-SOURCE BIAS (VOL IS)
VSS/VOB - SDURCEIDAAIN·SUBSTRATE
VOL lAGE (VOL lSI
Gate Leakage Current vs Gate-Source Bias
Gate Capacitance vs Voltage
C,d
/f--2
I-
12
16
1
20
o
10
15
20
25
30
VGS - GATE-SOURCE VOL TAGE (VOL lSI
VGSIVGO - GATE-SOURCE/DRAIN VOL lAGE (VOL lSI
Source-Drain Leakage Currents vs Voltage
II1II
Siliconix
4-5
enhancement-type !Khannel MOSFET
H
Siliconix
designed for ••• • •
Analog and Digital Switching General Purpose Amplifiers
•
Smoke Detectors
BENEFITS:
all dimensions In inches lall dlmensions in millimeters)
TYPE Single Single Single
•
High Gata Trensientlfeltage BreakdDWn Eliminates Need for Gate Protective Diode Ultra-High Input Impedance
• •
Low Leakage Normally OFF
•
PACKAGE
PRINCIPAL DEVICES
TO-t8 TO-72 Chip
MFE823 3N163-64 3N163~4CHP,MFE823CHP
PERFORMANCE CURVES (25°C unless otherwise noted) Output Characteristics -so
Vas
1-40
-16V
0:
::J -30
....... r-
I.
"i5
~ -10
l-
V
J
::'2J.= ....
- t:::"!;J-: 1=
A/ r-
I
V
8'!.= I;;;:; I;;;:;
l .....
V
6"-=
V
~io'
-
-'0
-20
-40
-30
-
-50
Vos - DRAIN-80URCE VOLTAGE (VOL TSI
-800
VBS=O
s= -10V,
V
-600I--t--t--t-+-+~~ ~V
'"
gAr;..-
:~DS=:'5V
,.
-
,-
n~;+~c: ~'2'
...... y.~
200
~
lH.
~0j-~~S6~~~~r---r---t-+-1-~
c
k
l/hW
600
§
"l-
800
'000 c....,,L--"'-,J ,,-,--,--,---,--,--,--, 04
02
-<11
-02-04
Vos - DRAIN-SOURCE VOLTAGE (VOLlSI
1010nl- DRAIN ON CURRENT (mAl
Common-Source, Short-Circuit, Output Admittance vs Drain Voltage
Common-Source, Short-Circuit, Output Admittance vs Drain Current
'OK VBS-O f=1MHz
I
." w
\
" 'K
~ ~ ~
100
~-,oml_
\
§
10(ON)=-10mA-
I
~
'0 o
I -5
-10
-15
-20
-25
-30
VoS - DRAIN-SOURCE VOLTAGE (VOLTS)
4-6
-20
'OK
I
-2001--+-Ir---j-+-+'~~..-1''''-;IH
z
-16
Common-Source, Short-Circuit, Forward Transadmittance vs Drain Current
I -4001--+-++-+-I=~~~~~ ::>
-12
VGS - GATE-SOURCE VOLTAGE (VOLTS)
Low-Level Output Characteristics -'000 r'--r-"T:-:-r-r-'..-r-,.-,--,
¢
J
-14V
...- -
Ib
-20
c
P
_~DS"VGS Ves=D
..... r- ~,.J.= l=I-- r-
ffi0:
~
Transfer Characteristic
VGS--20V
0
10 (on) - DRAIN ON CURRENT (rnA)
Silicanix
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Drain-Source ON Resistance vs Gate-Source Voltage
Low-Level ON Drain-Source Voltage vs Gate-Source Voltage
lOOK
~ 25 o
'o-'~O~~ vSS-o_f--
~
--
10= lOrnA
ID",OmA
~
515
"-
>
w
"5'" 1.0 "I z <1
TA"'+125 C
!3
Q
r-+-+-i' 'i2SjC
'0 0 o
-2 -4
-6
05
"
I
:g
I
>
-2
-8 -10 -12 -14 -16 -18 -20
VGS - GATE-SOURCE VOLTAGE (VOL TSI
/
CISS
24
y
ii:' 21
'z"
18
~
12
~
~ 15
~
-8 -10 -12 -14 -16 -18 -20
Drain-Source Leakage Current vs Temperature
Voltage 27
-4 -6
VGS - GATE-SOURCE VOLTAGE iVOL TS)
Capacitance vs Gate-Source 30
10
I
o ID(Off)-VGS-VBS-O.VDS=-20V~~ ISloft) - VGO = VsO" 0, VSD os -20 V
;....-t-r
)7
v'os J-'S'V vas" O
Coss
'i'
I- ....-
I I
,oHm,1
20
ISloff)
MHz
IOfof,t-
I I
09
c",
O.
,
f--'"
I
03
-'2
I 16
00
20
VGS - GATE-SOURCE VOLTAGE (VOLTS)
,
10
30
50
70
90
T-TEMPERATURE
Siliconix
110
130
150
rei
4-7
III
n-channel JFETs
U
H
designed lor •
Z
•
1 ""
• • •
(Om;
j
Silicanix
Analog Switches
BENEFITS:
Commutators
•
No Offset or Error Voltages Generated by Closed Switch. Purely Resistive. High Isolation Resistance From
•
High Off· Isolation IDloffl
•
High Speed tON
Choppers Integrator Reset Switch
Driver
< 100 pA
< 20 ns
TYPE Single
PACKAGE TO·18
Single
TO·92
Dual Single
TO·71 Chip
Dual
Chip
2N5566 Chip Set, DN5566 Chip Set
On Resistance & Output Conductance vs GateSource Cutoff Voltage
Gate Operating Current vs Drain Gate Voltage
ALL DIMENSIONS IN INCHES /ALL DIMENSIONS IN MILLIMETERSI
PRINCIPAL DEVICES 2N3970·72, 2N4091·93, 2N4391·93 2N4856·61, 2N4856A·61 A. FN4392,93 U200·01, VCR2N 2N5638·40, 2N5653·54, Jlll·13 PN4091 ,93 PN4391·93 Ul 897·99 2N5564·66, ON5564·66, ON5667 All of above single devices available In ch ip form
PERFORMANCE CURVES (25°C unless otherwise noted) Drain Current & Transconductance vs Gate Source Voltage ~
76~Lt.ll00
200
.ffi
.s
~ ~
lOSS. Vos '" 20V. VGS = OV DIs VOS=l5V,VGS=OV VGSloffl. Vos = 10V. 10 = 11lA
0: 0:
1l
I
z
~
o Z o
100
~
V
V17
IY
V
V
"1
I
I-
17 o ./
~
!il ~
~
m
"
II:
45
;I ~ > Pii
30
C
17,,0....
15
~ ~
3"
o
~
I- ~
10=
t-
-5
-10V
f')c
2
t-- ~ r-
"'",k
I -
9r
S'
1/
rOSlon)' VGS
I
....
100~A
=0
'0
10j' jA
J
I
~~~ : ~5~
o
VGSloff) - GATE·SOURCE CUTOFF VOLTAGE (VOLTS)
1000
100
/II \
i i
Til IZ
10m~~
I-I
S (fNI
20 -10
-5
'0
0
I
g~:::~g~:~OV_
'=1MHz
s
n1f~1!!!V
J E
.sw
."" "" .""
JI
111111111
VGSloff)- -8 0 V
• to....
ens
1"·8
I!:
l- t-- I-
a
-12
V
0.,
-16
·20 VOS - GATE-SOURCE VOL TAGE (VOLTS)
01
111111
111111111
111111
111111111
10
10
Transfer Characteristics
16o
\
I
~~ -~Q
o.
l' ~ -2
-4
~ 120
~ 30
:::t
DO
o
I
.9
40
"
-10
""z :::t
~~~r ~~~
'iIIIo, -8
40
z
0:
-6
VOS = 20V
1 .
Z
VGS - GATE·SOURCE VOLTAGE (VOLTS)
4-8
Transfer Characteristics
1 1l
~~
40
,0
1
10 - ORAIN CURRENT (mAl
VOS"20V
!;
\ ~ 120 0: ;..~~""~ il E
~ 0.1
50
160
!;
80
-6V
Transfer Characteristics
VOS = 20V
Zi
!
200
1
VES(OFFI = -2V
...:
0,
11100
.1
Jlilll
10 - DRAIN CURRENT (mA)
200
a: c
100
30
ig f~~~kHr5~ 111111 I 11111111 :is 10 I!'$ '"
VGS(off) = -2 0 V
"0I
26
,00
~i
0
20
Transconductance vs Drain Current
~
01
Z
~CISS
·4
z
111111111
VGS--50V
~
I'\.
'"
,.
Z
21,\
4
Common·Source Output Conductance vs Drain Current
'5
VOG - ORAIN GATE VOLTAGE (VOL lS)
VGS(OFFI-GATE·SOURCE CUTOFF VOLTAGE (VOLTSI
Common-Source Capacitances vs Gate-Source Voltage
r- 2 m~
IGlon)@IO • _
JLLgos
\
~Z ~~ 50 II:~
I ..... I--"'V l- J-,,~
§
60
VGS(OFFI VOS = 'OV-
I I I I 1.1
l-
o.
I I
-~o'\r-6'o
I
..... :::::;;;
"'"
Silicanix
Q
Q
tS~~~
9, 0
-2 -3 -1 -5 -4 VGS - GATE-50URCE VOLTAGE (VOLTS)
~~~.
20 ~~
0:
o
~~
\
0
'--r--'~ ........
05
~ ~~
10
I'.
15
20
VGS - GATE SOURCE VOLTAGE (VOLTS)
25
Z m
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (V GS(off) = -1.5V) VGS=IO/~
'I
VGS·~3V
/
I.'! iff, I
,
V~
......
I---" 02
f-
- I-
VG1S=05V
-
--IJ
~-
VGS' -0 2~
12
- ..:c:.1 11
J~ i--'" I. 00
f.v;t.,lov 5 2v
r-
VGS=1
4~j
VGS",,6V
as
04
V s= 16
12
i.--" 1-1"""
30
V 1/l- f-
1... b a: a:
f/l/
""z ~
V
10
e,
i--"
9
r-
BV 20
;J-
I vI '/ 1/
a: a:
1/, 1 / / r/,
""z
",
1//, ~ '/
a:
e
9
4
,
/
VGS=-15V
....1
VGr-25V
~
J~ /
80
S
1/
a:
/
IiI 1/ il / /1 V / III if / ......
~ /,; V A~ ~ I---"
00
01
v~s=-~v
VGS I-O,8V
r--
VGS=-10V
::
VGs=-12V
e
,s
r-
Is
'/ /'
" Z
so
9
~ iil
...~ e
a:
~
o 05
VOS-DRAIN-SOURCE VOLTAGE (VOLTS I
.J5·j
I \l\
+12S"C
10
5~~
f.- ~~::~
r;12.·C
~~
,1\
~
,\ \'1\
I
l\k~
I
i
VOS=20V f= 1 KHz
-5S"C
i2 0
-04
-08
~~
-12
-16
-20
-24
VGS - GATE SOURCE VOLTAGE (VOLTS)
~
Vjs=lv
"_m
~gW'OO•
vrr
,,, I
•
t!j
v r lv v1s v
11
'l
~
-5
0
e
~
I~
20
-4
-3
Equivalent Input NOise Voltage and Noise Current vs Frequency
VGS"'O
~
a: ~ 40
-2
! ,.
20
~ 80
~
l\
-,
W
12 '6 VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
!i
VGS=-6V
1\
Transconductance Characteristics
VGS=-2SV
.E.l00
\
VGS - GATE SOURCE VOLTAGE (VOLTS)
VGS--30V
'" -
+12S"C
5
;Ii
VGS=-20V
o
I +12S"C
I
20
VOS=20V f= 1 KHz
+t,\ I \1
+2S"C
ii2
v,,1""1°V VGI"-'5V
~
o
-5~'C
JcI
~
VGS=O
I-
20
'<
..... "GS'-SV
04
, Dr--
5 z ~
-06V
vGr o.v
120
- -
VGr4r- -
03
Z
't;"
Output Characteristic (VGS(off) = -8.0V)
VGS'-3V ,
_f- r02
V
I
VG~'OJ
"
6S=" BV VG =-1 BV
i--"'I"""
Output Characteristic (VGS(off) = -8.0V)
/1/ VGS';'V,
i-
W
VGS;-'4V
f-
'ea:",
00 02 04 06 08 10 VOS-DRAIN·SOURCE VOLTAGE (VOLTS)
I
---
I
V
I 1
vf.=10v
'0
Transconductance Characteristics -; 15
I 1
!<
.9
I.
,I-"'" __ I"""
,
-8
VGS - GATE·SOURCE VOLTAGE (VOL TSI
VGS=-04V
VGS
'00
""~ 40 b
VGS"-2DV
......
r l-7
~
-4
;Ii
20
;--
~
I
16
GS
I--
++, +125"C,
- r-+l~5OC \
VOS-DRAIN SOURCE VOLTAGE (VOLTS)
~ 60
J I
5
ii2
Output Characteristic (VGS(off) = -5.0V)
/VG.'O I. vG:s = ~o 5~ IvGSj-T f -
W12
Z
VGrOl
12
Output Characteristic (VGS(off) = !..5.0V)
cc 16 S ...Z
, l - I-
~ 20
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
20
i-
10
...e~
-
VG~.O'2VJ-
V' ~~ ,I-"'" ~ ~ I---" I-
+25°C
Output Characteristic (VGS(off) = -3.0VI
I I 1/ V VGSj04ir/ 1/ f/V 1/ vGforv hI/": V ...... VGS =0 BV
~/,
-r5'C
e
VOS-DRAIN SOURCE VOLTAGE (VOLTS)
Output Characteristic (VGS(off) = -3.0V) =0
i-
05~ t:::
VGS--06V-
o
08 10 VOS-DRAIN-SOURCE VOLTAGE (VOLTSI
v
VGS=-04V-
VGS
f= 1 KHz_
_550C
1'5 ~
VGS"'-07V
o
os
20
-
l :KOS=20V
20
W
VGS--03V
~
Vqsc 07V VGS-D9V
04
V~s.l-o ,Iv
I
vts.bsv
VGS = 0 BV
~
......
TI
I
I
JGslo
12
VGS=04V
V l.-- f-
'I.
, J
'4
0 1 ~L
VGS
V VGS!02V, , -
n
Output Characteristic (V GS(off) = -1.5V)
I
if
VGS=-5V VGS=-6V
o
4
8
12
16
20
Ves-DRAIN SOURCE VOLTAGE (VOLTS)
Siliconix
4-9
m u Z
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Common-Gate Reverse Transfer Admittance vs Frequency
Common-Gate Forward Transadmittance vs Frequency
Common--Gate Output Admittance vs Frequency ,oo~_ Y"
VDG" 10 V lo=10mA
,o_~
10_~
~
-brg
10~~
'o~n ~
f
01,Lo-----'-'/"""3~:--'-:SLO.'---:l,0:-'-"--'-OO:--='200
f - FREQUENCY (MHz)
f - FREQUENCY (MHz)
Common-Gate I nput Admittance vs Frequency
0
':;:"
Turn-Off Switching
~ ~
0
-
trAPPROX 10
INDEPENDENT
~:S;~~~b =
\
15
'\. triON)
1 Z
100
J
Z
10 r-25 rnA -60 V
;9 Z so f!
o
't\.
...... tdlbN) -r-...
I I I 10 = 6 6 m~ 1
~
-12 V _
1
~IS=I-
-20
-40
-60
-a 0
-10
VGS(OFF)-GATE· SOURCE CUTOFF VOLTAGE IV)
Siliconix
'u"
I\.
z :;:
~
9
it 0 ;9
TA = 25"C VOO = 30V VGS = -12V "'(OFF) DEVICE VGS(OFF) :ND~PE~DE7T
ao
60
tOFF.'
~, ~
..,....
o
0
§
r
-,...... l"'- ~I
"
4-10
1- FREQUENCY (MHz)
I DD =30V
20
909-
0'10 L----'-----:3"-0--'-"Os""0.LJ1O,--LJ''''OO:-----=-'200
Turn-On Switching 25
f - FREQUENCY (MHz)
~
-9rg
0 \LO---'---:'30'-'-:'S"-0.Ll 70:-'-',-'-oo'--=',oo
bog -
40
I
"
VG~(O~F) l
.;:::: r-..
7 SV ...... 20
o
t-tld(O~
I"
I
-d 2V
I -4.0V I
f"Jo
20
40
60
aD
IO-DRAIN CURRENT (mAl
10
GATE IS BACKSIDE CONTACT SOURCE AND GATE ARE COMMON
n-channel JFET current regulator diode
Siliconix
designed for •••
iiJ
,
•
Current Regulatign
•
Current Limiting
•
Biasing
Z n
H BENEFITS: • Simple Two Lead CUrrent Source • Simplifies Floating Current Sources No Power Supplies Required
•
i I
-I ~~~, I-
ALLDIMENSIONsrNINCHES
TYPE
PACKAGE
Single Single
TO-92 Chip
Low Cost
PRINCIPAL DEVICES J500-505, J506-511, J553-7 J500CHP-505CHP, J506CHP-511 CHP
{ALL DIMENSIONS IN MILLIMETERS}
PERFORMANCE CURVES (25°C unless otherwise noted) Oynamic Impedance vs Limiter Current 100
Knee Impedance vs Limiter Current 10
VF"'25V
"
"
0
VF ' GOV
"
w
i2
01
I
,if
01
10
10
00 1 01
10
10
IF - LIMITER CURRENT (mAl
IF - LIMITER CU~~ENT (mAl
Limiting Voltage at 0.910 vs Limiter Current
Capacitance vs Forward Voltage
100
0
VF" 25V
f= 1 MHz
• 7
k"
V 5
0
\
4
"-
3
......
2
1 10
10
10
01
10K
5
I
2
(MH)
I
I (<>1
r-I--
K
±
= ~IF/~VF =I~VFI"F -J504
4
6 VFIV)
-
~
'--
--
I-I--
5
2 VFi 25V
J501
o
50
10 (STEADY STATE)-
J507/8
~GOS
40
=10 (PULSED. DATA SHEETVALUEI==
J511
/
o
30
Typical Variation of 10 with Temperature Steady State and Pulsed Value
Family Curves
I-~Fl
20
VF - FORWARD VOl.T AGE (VOLTS)
IF -LIMITER CURRENT (mAl
100 -50 10
-25
25
50
75
100
125
T - TEMPERATURE ("Cl
Siliconix
4-11
...
n-channel JFET
%
H
designed for • • •
Z
ALL DIMENSIONS IN
IN6~:1}
Silicanix
•
VHF/UHF Amplifi.rs
•
Oscillators
•
Mixers
•
Low Input Capacitance High Speed Switch
BENEFITS: • Low Noise NF = 3 dB Tvpical @400 MHz
TYPE Single Single
PACKAGE TO-72 TO-92
Single
Chip
(ALL DIMENSIONS IN MILl/METERSI
•
Wid.band High 9fs/Ciss Ratio
PRINCIPAL DEVICES 2N3966, ?N4416-16A, 2N3819, 2N4223-4, 2N5484-6, 2N5555, 2N5668-70, MPF102, MPF10B, MPFI12, PN4416, J304-5, MPF109, MPF111
All of the above devices
PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance & Output Conductance vs GateSource Cutoff Voltage
~ §.
400
Drain Current & Transconductance vs Gate Source Cutoff Voltage
r--r~~~~~~----;---'40
_
U
~,
Z
0
w
~ 300 1---+-\~r-""':r-"':-r--W'--l30 c
~~
~
8
~200
20e;
i
~
,
~ 100 ~ o
10 m 3
!
I
26 ,---.,.---.,.---.,.---.,.---.,.-..,.. 7
! ~
20
~ ~
U
Z
:o
15
5
o
10
4
~
3
~
2
~
100
.,.
Vas-GATE·SOURCE VOLTAGE IVOLTS)
Output CharacterIStic (VGS(off) = -4.0V)
~
~
0'
!
32
~ >
........... "-
., w
U:;'-!'5~ IO=5mA
2. 24
,. 12
"
is Z
I
,';f
a
o 10
15
15
Equivalent Input Noise Voltage vs Frequency
0
10
10 VOG-ORAIN GATE VOLTAGE IV}
"~
VGS(off)0I-2V
20
25
30
,0
Transconductance vs Drain Current
,K
'00
'OK
100K
f - FREQUENCY 1Hz)
Vos - DRAIN-SOURCE VOLTAGE IVOLTSI
'6
Transconductance Characteristics 7
VGS a
V'
VOG - 15V f - 1 kHz
1J
VI-
vGS,' .~ 5V
l/
VGS
, OV
I 1 VGf
'1 5v
vGf
2 10v
VGS
25V
VGS
3 OV
6
....... -2V
~
5
VGSIOFFI = -35V
'/ 12 vDS
16
20
DRAIN-SOURCE VOLTAGE jVOLTSI
l\
r.....
VOS= lSV '''1 kHz
I'
N, "- ~
I"
r--..~r\.. 3 4
"
_55°C
~+25°C I-f-
~125OC
J~~ J".. ,,~ ~ ,
2
4-12
o
:s -~ \
~,\VGS(offl· -4 v
~
B
·'2
01 mA
o:-§
VGS= f-1kHz=
w
"
·B
~
Vas loffl-GATE-SOURCE CUTOFF VOLTAGE (VOLTSI
§, ·4
9""
'mA
100
~
= 5 mA
3"
~
o
~
0
,
""
o
~
10
~
I-"
'-'" -..:: ::::-
w
oS
~
§
'000
I
0
~
c
Common-Source Output Conductance vs Drain-Source Voltage
I
~ ~
Z
Common Source Input Capacitance vs Gate-Source Voltage
~ ~~g:~~~v
IGIONI@IO C[ 1000
::D
~
~
~~os!ov
~
I
~ VGS(offl- GATE SOURCE CUTOFF VOLTAGE (VOLTS)
I
Gate Operating Current vs Drain- Gate Voltage
',0 ID-ORAIN CURRENT ImAI
Silicanix
'0
+25.C7. +12S·C ..........
., I'
·2
-3
I'~ ·4
·5
VGS - GATE-SOURCE VOLTAGE (VOLTS)
z
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (VGS(off) = ~1.0V)
Output Characteristic (VGS(off) = -2V)
,u
14
I/VGS=OV
I I l/vGS--04v 1
_16
".s >a:i
I III
12
1/ I
a: a:
::>
r/,
CJ
z
DB
;;
VI.
a:
c
~
VV
,•
04
o
~GSi-T
I-
v
....
o
IGSI O
I-'
VGS=-12V
~
- -
04
02
VGS=-14V
04
08
1 2
1 6
o
2,0
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
VGS-OI
-12
/
'I hI 'III / V
01
~
0
....
-16
+125°C~
-20
9
JI),
/
1
J.
iiia:
1
1
::>
If r-
z
VGS=,
a: I
92 00
10
VGS·O/.
I
'/
.s ~
~ 06
12
~ 04 ~
o
I
,/
rl
f/
II
1
/
ffia: CJ
2
a: C
I
I
9
VGs'-16v
VGS'O I
II
1-
02
04
06
08
10
Vos - DRAIN SOURCE VOLTAGE (VOLTS)
,/
/'
'1/ / .....
VGS= -1 2V
4 12 16 20 VDS - DRAIN SOURCE VOLTAGE (VOLTS)
Siliconix
fl.V IE.
..-
00 VDS
TT
/
/I I. I 'II /
14v ' - VG~.tJ
I
/VGso-l OV I /VGso-15V
I- -
VG!=
VGS'~OB~i~GS'-1 OV
-16
Output Characteristic (VGS(off) = -4.0V)
a:
z ;;
-12
-B
-4
VGS -GATE-SOURCE VOLTAGE (VOLTS)
I
vGS=-'2V
o
00
VGi·-J2V
::>
VGs=-Dav
1//
20
-
5
~GS!OV - I-
VbS'-06V_ f-
...-
16
r-.
VOS -lOV
Output Characteristic (VGS(off) = -1.5V)
/l
CJ
o I .9 02
I
/VGS'-r v
IJI
a:
::>
1
~os"
ov
VDS-DRAIN SOURCE VOLTAGE (VOLTS)
vds. 02J I
'\
5-~0 ...
VGS=12V VGS=14V =16V VGS=' BV GS=2.0V
C
Output Characteristic (V GS(off) = -1.5V)
4' 08
-5
1\
VGS 06V VGS OBV
....
CJ
;;
VOS-DRAIN·saURCE VOLTAGE (VOLTS)
10
-4
I
VGS" 04V
r
a:
~
I
VGS: 0 2V
I VG'S--J 2V 05
-3
Common Source Reverse Feedback Capacitance vs Gate Source Voltage
vGs=ol
.s>-
1
-~GSh, rv
~J /'
,
"""
-2
VGS - GATE-SOURCE VOLTAGE (VOL TSI
25
I
-,
.........IVGS=-OBV
0
VOS - DRAIN SOURCE VOLTAGE IVOLTS)
;; B
'VG~.j6V-
I, /
>-
::>
-8
VGS._02:{+= , , ,
III V
55 C
-1
-4
Output Characteristic (VGS(off) = -3.0V)
VGS=-04V
;;
Is; I/J t-- :~~~~c
-5~0L"\ l\. .~ [.25°C ~
10
02
"z
0t Q4V
VGS= -05V
o
Output Characteristic (VGS(off) = -1.5V)
-'~ a:
~GS; VGS=
1
"'-,,,'\\ I'\.
i
VIGS -0 IV
a:
9
21\
II
"z 06 ;;
~DS~ 15 v_
I I
6 \
VGS = -0 tV
~ 08 ::>
lVGS=-10V Jl
V
!,o
/
::l
I
Transfer Characteristics 20
II
12
~GS'· -d6V l - I-
1/
::c
VGs=-20V
I
_--,1;-1 'fGS;-2t : VG f·- 3,oV
4 12 16 20 DRAIN SOURCE VOLTAGE (VOLTS)
l1li
4-13
::t Z
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Common-Source Input Admittance vs Frequency '00
~VDS-16V !===vGS-o
I
b'!,..
Yls· ... +Jb,1
"' '0
~
...
,
£
i
,
g
200 300 400 600 8001000 f - FREQUENCV (MHz)
-t-ttt
b..
yos=aos+Jbos
--'".
00 'DO
200 300 400 GOD BOO 1000 f - FREnUENCY (MHz)
!"~
,
E001100
200 300 400 600 BOO 1000 f - FREQUENCY (MHz)
5 Parameters 511 Common-Source vs Frequency ~
~ 09
r---.....
~""
..........
8
~
~
~07
-50~
~
4~
~ 061---+V -,4--'-I-+-H+H-30
g
~
.-"
100
200
300
500
700
m
-10 1000
5 Parameters 522 Common-Source vs Frequency
'
~
~.
~09
-401
~
~~
!iDS
-30~
~07
20-
~
~~
!::ld4 1111111~:1 200
300
500
f - FREQUENCY (MHz)
4-14
Siliconix
09 VOS"'5V 08 VGS=O
60 50
"- •
3D
\.
10
700
1000
:im"
7
,
80
70
OS
100
200
300
~
20'"
, ~ ,
ZG=ZL=50n+Jo
•
..
40,
600
f - FREQUENCY (MHzl
f - FREQUENCY (MHz)
100
, , , , ,
0
-90
-GO
----300 400 600 8001000 200 f - FREQUENCY {MHz}
5 Parameters 521 Common-Source vs Frequency
-100
~ ~~~: ~5 v +--+--+'-'!.'-+--hl1-H-80 ~
~ 05
-b n
-Uri
r-
I 0 100
... ~
_~DSI:15V
-VGS-O
~O"~~!!BI ,
i-""'-bh
~ 08 ZG = ZL .. 50 U+ 10 f-+-+\-'l.4-iH-i-70 m
,
10 Y12
_
~
... ,0F====::C:::-TllrnTn- 110
y22
=~DS·'SV -VGS-O
,
....-
10
~
ICommon-source Output Admittance vs Frequency
0
-gfs
~c
! ~
'0
~
Common-Source Reverse Transfer Admittance vs Frequency
w 10 Yrs--grs-lbrs~V
yfs" gil pJbfs
~ f(
./
0
~~~~:~5V
"'
~
~
i,
Common-Source ForWI!!"Q -;Transfer Admittance vs Frequency 10o Y21
700
60 1000
n-channel JFET
H
designed lor • • •
ALL DIMENSIONS IN INCHES /ALL DIMENSIONS INMILLlJ.lETERSJ
Silicanix
•
Low ON Resistance Analog Switches
BENEFITS: • •
Low Insertion Loss Small Error in Meesurement Systems VOS(onl < 50 mV (2N54321
•
High Off-Isolation IO(om
• •
High Speed td (on I < 4 ns Low Noise Audio-Freq Amplification eN < 2 nV l../Hz at 1 kHz
•
Commutators
• •
Choppers Integrator Reset Capacitors
•
Low Noise Audio Amplifiers
TYPE
PACKAGE
Single Single Single
TO-52 TO-92 Chip
-"z
< 200 pA
PRINCIPAL DEVICES 2N5432-34 Jl0B-l0 All of the above devices
PERFORMANCE CURVES (2S·C unless otherwise noted) .
Drain ·Current &-i=o-i'wardTransconductance vs Gate Source Cutoff Voltage
~ 800
"DSJ.
vds·. kv
J.
ffi TI.VGS~OV ~ 800 _ VGSloffl.'VD~~'OV 'D~'"A / i3
V
~
"y
is ~
200
~
•
60
fl~. VOS= 10V lI VGri
I
0
o
~
•
00
60
'0
'A-
..
~ ill '" -I
~-
III
..:<:
C
10sy
.l. f.--' ~
I
200
Vl
/
~
i'l
J
1/
~
,..... 260 ~
/
z
c 400
L
On Resistance & Output Conductance vs GateSource Cutoff Voltage
~
.6
10-10SS
!!1 ge ~ '0
•
0Z
-I
n C
10
IO=1/o1A
2
"'-
0
o
!
IO=200pA
~
,
c:
~
~
] .0
f
1
100
0
~ u
60
./~
'0
10
16
~ 20
26
30
VOG-DRAIN-GATE VOLTAGE (VOLTS)
Equivalent Input Noise Voltage and Noise Current vs Frequency
Common Source Input Capacitance vs Gate-Source Voltage
eo
D~'mA,ji
IO=10mA
VGS(off)-GATE-SOURCE CUTOFF VOLTAGE IVOLTS)
w
J
;!
~
~S=10V
6
4
'00
~I
10
I
.00
~"c
•2bs !
\
g z !l !; c~
Common Source Reverse Feedback Capacitance vs Gate Source Voltage
~
reSlon): VGS" OV le""OmA
,/
w~
I~
.00
w
VGS(off)-GATE-SOURCE CUTOFF VOLTAGE (VOLTS)
~
•
....... ..V"". 48
Dot: VOS· 10V
u"
f;l
Gate Operating Current vs Drain-Gate Voltage
ii'
~
I
z
!'oo~
40
1\ \\
\
"
/VOS~6V
0
D' f--.\.. 1.
VD~P10V 00 -4 -8 -12 -16 VGS -GATE-SOURCE VOLTAGE (VOLTS)
Transfer Characteristics VOS=20V
<400 ~
!Z
.i3
~300
z
a 200
1
u
:J
c Z c Olz
\ \ "-
c
r-.. ~-
-
..
~ t:::::~::"':===>J...mlllll....L.LlllIW • .-'· 1K 10K .OOK .00
-8
-12
-16
f- FREQUENCY 1Hz)
Forward Transconductance vs Gate Source Voltage .80
.........
120
VDS .. 20V f a 1 kHz
b,.
i'- t'.....
1\
\ \
,
~
~
\
r\
60
~
" '" "'"
-.
. .." .. I-
'\I"
~
o-'5~
!!1 I :=r
1
-4
10
g ill
VGS-GATE-SOURCE VOLTAGE (VOLTS)
I-
I
~
~~sl'oV
o
~
\
:5
9,00
o
IoS
600
oS
.......... VOS=OV
,~ ...... VyDS~,6V
YOs=OY
20
~~ g
0' 0-14~ ,
o .
-1
-2
-3
-4
-5
-6
VGS - GATE-SOURCE VOLTAGE (VOLTS)
VGS - GATE-50URCE VOLTAGE (VOLTS)
Siliconix
4-15
-
I
A. Z
PERFORMANCE CURVES (Cont'd) (2S0C unless otherwise noted) Output Characteristic
Output Characteristic (VGS(off) = -1.5V) 20
0
I VGS-O
II
'f
"~ E
,I"t-
vtT
~ 10
,"
:>
".;;
'/
is,
'/
r
~
00
/'
.... ,... ,...
--
~
1<, 0 :> I<
-VGS~-O
4V
1VGS·-O 1 5V
t-"
I<
,
~
I~
7V
VG~='D~V -
vJS"rV,-
l - I-
H~S"-:OBV
O.
04
/h
Ie 00
, 0
DB
50
.Ii 40
V
E-
ffi ..
.
30
."
20
-I-
V V
Q
I
9'0
-
-- -
:>
~
i.-
....
" E-
VGS='O 2V
.......... y.::;
" Z
30
Q
20
.
;;
VGS·-O 5V I
I
VGs=·Q 6V V 's=-O 7V
,.
40
!5
1 1
~rOt I
~
"..-
'2
10
~:::::
0
VGS' _0'2V
f-"
IVGSI•
Lv
Vas=
04V
E-
'"
VGS"}ov VGS=·1.6V
1,/
0: 0:
0:
~
VGS=-20V V~6V
,...
;;
07V
,.
VdS"-J5V
rV "Uz 200 y/
,YGS· ~ VGS -09V 12
"..-
'/
~ 300
VGS= _06V a
!I
"
VGS -05V
-
10
IVGs"o
400
f-"
0
VOS-DRAIN·SOURCE VOLTAGE (VOLTS)
08
Vas=O
VGS" -'11\'
I ..... ..-
!?
20
I
y
VGS-'O 8V
00
..-
V
50
~
IVG~_-O ~v
06
500
70
r-++O!V
04
v
Output Characteristic (VGS(off) = -6.5V)
(VGS(off) = -2V) 60
t:::t
02
Output Characteristic
~VGS OV
,...
--
VGS'"
VDS-DRAIN·SOURCE VOLTAGE IVOLTS)
VOS-DRAiN.SOURCE VOLTAGE (VOLTS)
Output Characteristic (V GS(off) = -1.5V)
/'
V
.1':/
V~S=-12V
02
....f~V -
/
//
VGS"'-10V
I-
00
VGt"2J-
1/
I.
I
VGS"'1V
II 1/
V
Vos-ORAIN·SOURCE VOlTAGE IVOLTSI
I
l-
I
""
C
VGS -0 BV VGS~'O
'I 'I
"z ;;
VVGS"OV
/YGs"-02V
I I / I V II
~
-
JGS--r 3V
'00
vGS~1
-
/,VGS--02V
I, 'IV ./
Output Characteristic (VGS(off) = -6.5V)
(VGS(off) = -2.0V)
100
VGS=·36V
~
~
o
VGS=·3.0V VGS=·40V G8=·46V
o 4 B 12 16 20 VOS-DRAIN·SOURCE VOLTAGE (VOLTS)
20
VOS - DRAIN SOURCE VOLTAGE (VOLTS)
Output Characteristic (VGS(off) = -9.0V) 'DO
+_ I
VGS"OY vGS;'r
VGF"2y
'll V VGSi3V
BO
/,1 ,/
~ /' V
o o
..
iQ
0.4
08
0••
~
~0:
...
;; Q
w
V
'0
~
~
bIg
Q
~
~
w
>
1 '0
~ I
50
;
70 100
f _ FREQUENCY (MHz)
BOO
1
600
~
.. ~
:;) 400
" Z
~ ~
200
~
....
---
V~
It ~ r/ .... V .... V
.....
v:: ..-
I-'
-
'0
VGS-O
~DDI= ,I5V I 1_ VGSIOFF) -'2V TA +2i c
vGs--Io
80
VQSO-;Z
ov =1=
VGS--25V
~ ;::
I
.0
2
~ I<
VGS--30V
VGS--35V G8--40V VGS"-45V
v,s~-i 0
=1
e
VGS-·'5V
I'....
40
20
12
'6
20
4-16
r-....
1~=J'mr
~ ~
-
-20
!
40
~
-60
-80
'0
VGSIOFFI-GATE-SOURCE CUTOFF VOLTAGE IVI
Siliconix
T~ ='25°t
' '_
VtSTFF\ =
ti-
VGS{OrFI = -8SV
I, .'
VGSIOFF) = -55V
1'0.: ~
20
1 -10
.'\
30
o -40
200
100
VOO= 1$V
::J
1
o
50
t:: t? zI<
.....
70
f - FREQUENCV (MHz)
Switching Turn-On Time vs Drain Current
;::
lo=36mA
1 I
o VOS-DRAIN·SOURCE VOLTAGE WaLTS)
-
I
I
F:!
r- -
= 1
50
10
~
Switching Turn-On vs Gate-Source Voltage
VGS-5V
I
0'
w
0;:
200
VOS-DRAIN SOURCE VOLTAGE (VOLTS)
Output Characteristic (VGS(off) = -9.0V)
10
w
~
1.0
'0
.. .... .
-gig
if
I
VOG=20V lo-20mA
~
0:
JGS"~V
I02
~ '00
I- Et:J~
JJ.~
I.
~
w
VOG-2DV I =20mA
~
... VGS"6V I
-; 1K
E-
1l
l-
I
,...
II/, '/
Reverse Transfer Admittance Common Gate vs Frequency
i
VGS"'4V
/1 / fl.
Forward Transfer Admittance Common Gate vs FrequenCY i 1K
'"
VGrOJFIJ
o
~
t'--
-T I': b.:: t:--
IJ J
1
50
'0
'5
20
to-DRAIN CURRENT (mAl
25
n-channel JFET current regulator diode
H
Siliconix
designed for • • • BENEFITS:
• •
Current Regulation Current Limiting
• •
Biasing Low Voltage References
• •
Simple Two Lead Current Source Current Insensitive to Temperature Changes. Temperature Coefficient Better Than O.15%rC On All Devices
ALLDIMlNSIDNSININCHlS rALL DIMENSIONS IN MILLIMETERSI
TYPE Smgle
PACKAGE TO-IS (2-lead)
Smgle
Chip
z p
PRINCIPAL DEVICES CR022 Thru CR062 CRR0240 Thru CRROS60 All of above
•
TO·1S Package for Improved Current Control
•
Simplifies Floating Current Sources No Power Supplies Required
PERFORMANCE CURVES (25°C unless otherwise noted) Knee Impedance vs Regulator Current
Dynamic Impedance vs Regulator Current
Limiting Voltage @ 0.8 IF vs Regulator Current 10
100
VF = 25V
VF= 25V
~w
...iii u 2
~0
~
.......
10
w
'~"
c 10 >
;!l
i
'E" ~;; 2
~ 10 c>I ~
DOl 0.1
~-L-L~~~
01
10
IF-REGULATOR CURRENT (mAl
Temperature Coefficient -SSoC';;Tj';;2SoC vs Regulator Current
u
~
010 1--I-I-+++HtI--+-++++1ttI
I
0.05
1~
01
10
1---t-t-+-t+lMl---t-t+++1ttl
i
Thermal Resistance vs Power Dissipation
015 \--I-I-+++t+lt--+-++++tttI 010 1--t-:-f+++I+tI--+-t+H11tH
~ '-
1000
-OJ.:.:,_
~ 0 05 I----t--J.-+-++tttf---+-++~H+I
~ -005 1---++-1I-ttl1t----jH+l+tttl
1-0 10
* i!!
-0.15
1---t-tH--t+H+I---t-t+++1ttl 1---t-t-+-t+tttf----t--t+++1ttl 01
1.0 IF-REGULATOR CURRENT (mAl
~ -0.05 1--++HH+1t-H-++1l+tftl
*
-0 15
10
0.1
1.0 IF-REGULATOR CURRENT (mAl
"
'=1MHz
5
170
~ 150
10
20
40
1
"
I'
i
L SOD
--
I
CR043-
I
300 400 IF !!>AI
500
600
o
CR030
Y If-'GOS ZFl
200
-
400
06
.!!- 04
50 100
300
08
02
3D
200
Family Curves
110
VF - FORWARD VOL TAGE !VOL TSI
100
PD - POWER OISSIPATION (mW)
"- ~
130
I-
10
ABOVE
TC - 25"c INFINITE HEATSINK
o
10
~
r-...
10
RDS vs IF Geometry: NKL 190
0,
~IER~~~~~~~~~ IN
1---+--t+++tttl---+-t+~H+I
Capacitance vs Forward Voltage
5
1--:--- RANGE TA- 2S·C STILL AIR, CURRENT '
~ -0.10 I---+-++++I-*I---+-++~H+I
0
~-
- -~~ --=
w
25
:::±,.t;
0J-c
8w
W
II:
10
IF-REGULATOR CURRENT (mAl
Temperature Coefficient 2SoC .;; Tj .;; 12SoC vs Regulator Current
~ 0.15 \---';I-H-t+tHt--If-VF = 25V
~
__~~WWULU
10
IF-REGULATOR CURRENT (mAl
o
(MHI = ~IF/~VF (!ll = ~VFI"F 4
ftCR022
6
10
VF(VI
NOTE: IF. Regulator Current is specified under pulse conditions. In operation, final current will be a function of junction temperature. IF (steady state) = IF x [' + 01 (Tj - 25°C)] where 01 is the temperature coefficient of IF and TJ is the junction temperature. Tj may be found by Tj for all devices.
= Tamb + 0j-aPO = Tcase + OJ-cPO. T' must
not exceed l50°C.--'--or-'--is the derating factor 0j_ a 0j_ c
Silicanix
4-17
~ z
n-channel JFET current regulator diode
CATHODE IS BACKSIDE CONTACT
~
r 1_~'O030
i
'00'"
designed for • •
·• ··
~~ IIIII1 1-:]'1 A
~ I-r'"
I
~
(OJl40)
(ALL DIMEr.lSIONS
IN MILLIMETERSI
.
BENEFITS: Simple Two Lead Current Source Current Insensitive to Temperature Changes. Temperature Coefficient Better Than 0.15%1" C On All Devices TO·1B Package for Improved Current Control Simplifies Floating Current Sources No Power Supplies Required
Current Regulation
•
Current limiting
•
Biasing low Voltage References
SlOg Ie
PACKAGE TO·18 (2-lead)
PRINCIPAL DEVICES CR068 Thru CR150 CRR0800 Thru CRR1250
SlOg Ie
Chip
All of above
TYPE
i"43J
ALL DIMENSIONS IN INCHES
H
Siliconix - -
• •
PERFORMANCE CURVES (25°C unless otherwise noted) Dynamic Impedance vs Regulator Current
Knee Impedance vs Regulator Current
100
Limiting Voltage @ 0.8 IF vs Regulator Current 10
10 VF" 25V
;;
VF"'6V
~
~
w
~ w
w
u Z
«
U
z 10
10
S
"~
«
S ~
iu
0
«
i2
z 10 ~
I Ii:
I iii
V-
10
> z ;:
w w
;;
VF= 25 V
~0
;;
"
01
;; :l
I
~
> D1
u ~ ... ill
1
001 01
10
10
10
Temperature Coefficient -55°C ~ T J ~ 25°C vs Regulator Current
Temperature Coefficient 25°C ~ Tj ~ 125°C vs Regulator Current
Thermal Resistance vs
~...
VF" 25 V
u
i.l
010
~
005
Power DIssipation 1000
VF= 25V
015
~
...u w
DOS 0
8w
0
Ir
I
0
~
«
_-+
~ -010
~
-
~-0151
II
01
~I
II
1111111 10
.!.. -0 15
1111111 10
.....
,
f= 1 MHz
15
§ ...
5
a
r--.. 10
II: II:
::J
900
30
40
50
300
400
500
CR150
1.6
",
I III
12
"
3 Iii 1
DO
CR120
CR~91
,
08
::J
"'i'--, 20
200
20
II:
"\
II:
I
u
100
1.1
~
'" ~'OOO
10:\
g
\
1100
w
~
0
Family Output Characteristics
1200
20
•
REGULATOR 2fi IN AROVF CIRCUIT BOARD TC - 2SOC INFINITE HEATSINK
Po - POWER DISSIPATION (mW)
RDS vs IF
Capacitance vs Forward Voltage
« ...
.-
IF - REGULATOR CURRENT {mAl
25
~
10
10
10
01
IF - REGULATOR CURRENT {mAl
I! I i i
~= 25°C STILL AIR. CURRENT
I
.-
~
',-,
---~-
----l +-;-r :-
~f~ ~- ·];~rt'1t-r~ ~ -~~- t~j --- ~ - RA~GE
i:
~ -010 I
--.~
100
~
"~ -005
~
r!~.
r- 1-
z
Ir
~ -005
--}jl- JI=
I- c--
u
u
w
10
IF - REGULATOR CURRENT (rnA)
010
u
10
IF - REGULATOR CURRENT {mAl
015
*"
01
IF - REGULATOR CURRENT (mAl
CROSB
II
0
800
5
6
7
8
9
10 "
12 13 14
0
2
0
6
8
10
VF-FORWARD VOLTAGE IVOLTS)
IF (mA)
VF - FORWARD VOL TAGE (VOLTS)
NOTE: IF. Regulator Current is specified under pulse conditions. In operation. final current will be a function of junction temperature. IF (steady state) = IF x [1 + 81 (Tj - 25°C)] where 81 is the temperature coefficient of IF and Tj is the Junction temperature. Tj may be found by TJ = Tamb for all devices.
4-18
+ 8j-aPO
= Tcase
+ 8j-cPD. Tj must not exceed 150'C.-.-1-or ~iS the derating factor 8J- a
Siliconix
J-C
n-channel JFET current regulator diode
Siliconix
designed for • • • •
Current Regulation
BENEFITS:
•
Current Limiting
•
Simple Two Lead Current Source
• •
Biasing Low Voltage References
•
Current Insensitive to Temperature Changes. Temperature Coefficient Better Than 0.15%f C On All Devices
•
TO-18 Package for Improved Current Control
•
Simplifies Floating Current Sources No Power Supplies Required
Single
PACKAGE TO·1812-leadl
PRINCIPAL DEVICES CRl60 Thru CR530 CRR1950 Thru CRR4300
Single
ChID
All of above
TYPE
ALLDIMENSION$ IN INCHES fAll DIMENSIONS IN MllllMETERSI
z
H
S
PERFORMANCE CURVES (25°C unless otherwise noted) Dynamic Impedance vs Regulator Current
Knee Impedance vs Regulator Current
Limiting Voltage @ 0.8 IF vs Regulator Current
i 1
IF - REGULATOR CURRENT (mA)
IF - REGULATOR CURRENT (mAl
IF - REGULATOR CURRENT (mA)
Temperature Coefficient -55°C';; Tj .;; 25°C vs Regulator Current
Temperature Coefficient 25°C';; Tj .;; 125°C vs Regulator Current
Thermal ReSistance vs Power DISSipation
u ~ 0" .... ili 0'0 u
~ 0
o 010L,,_-'-.Li...LJ~,.Lo---'-_....J.lJ,0
'0
0'
VF= 25V
~.... 15
0'0
IE
005
oos
VF =25V
0"
8
"a:
w
\.
w
" -0 05 1---t--t+t+lftj---Fr-++++tI+I
:
~
-010
1---t--t+t+t-ttt-+++++tI+I
~
-015
f--+-+-HI+tttt--++t+Httl
0'
a:
"~
-0051--+-++iH+++l-_+*"+-+l++l-I ~ -010 f--+-++Jf-l+++l--++'H-++IH i!! ~ -015 f--+-++f++++l--++t+++IH
'0
'0
f= 1 MHz
\.
0
320 15 \
5I '
"
5
'0
"-
.........
0:
r---t20
30
Family Curves
--
CRi70
c
.......
....
Po - POWER DISSIPATION (mW)
,
S en 280
0
+--
'OoLT~C~-~~~:~~~I~NF~~:~:~TE~H~:~~~T~SI~N~~_O~~'oo
RDSvs IF
360
5
~
-
IF - REGULATOR CURRENT (rnA)
Capacitance vs Forward Voltage
!"
'0
'0
0'
IF - REGULATOR CURRENT (mA)
~ - 4 - RANGE TA = 25°C STilL AIR. CURRENT REGULATOR 251N. ABOVE CIRCUIT BOARD
-
...... .......
GOS IMHI = OIFIAVF ZF, Inl = AVFIAIF
~ CR240
cJ.O
240
40
50
o
200
1.0
VF - FORWARD VOL TAGE (VOLTS)
20
30
40
50
o
6
IFlmAI
10
VFIVI
NOTE: IF, Regulator Current is specified under pulse conditions. In operation, final current will be a function of junction temperature. IF (steady state) = IF x [1 + 81 (Tj - 25'C)] where 81 is the temperature coefficient of IF and Tj is the junction temperature. Tj may befound by Tj = Tamb for all devices.
+ 8j-aPO
= Tcase
+ 8j-cPO. Tj must not exceed 150'c.~or~is the derating factor j-a
SilicDnix
j-C
4-19
~
zz
monolithic
~l :Iii
H
dualn~hannelJFET
Siliconix
designed for ••• • • • •
FET Input Amplifiers Low and Medium Frequency Amplifiers Impedance Converters Precision Instrumentation Amplifiers
•
Compartors
BENEFITS • Minimum System Error and Calibration 5 mV Ollset Maximum (J401) 95 dB Minimum CMRR • Low Drift With Temperature 10 p.VI"C (J401)
-,::,~ ALL DIIiENIIOICII IN INCHEB tAl. DIMEMlIONS IN /'/lLll"'ETfR~1
TYPE Dual Dual
.... S 0:
.."
60
_~DS=10V
2
II:
C
Z
f.
-!Its
U
VGS=ov
~
40
... :;"
k'" '£DSS
20
Gate Operating Current vs Drain Gate Voltage
1\
k
p
90s
\ \
400
VGSloffl
Vos=
8
c :;I C -<
IDi'~A-1 0
-1 5
-20
o
-215
VGS-GATE.SOURCE CUTOFF VOLTAGE (VOLTS)
-05
z
0
c
4
"
rOSlon)
...........
-1 0
-1 5
~
-
-2 0
£' 2
\
~~
,\
1='l s
i
~ ~r--.
i
i
2
-4
-'6
Transfer Characteristics
..,
'0
I
-16
-12
II'" I -08
-04
Vas - GATE·SOURCE VOLTAGE (VOLlSI
25
~
16
20
24
i
w
t~~ l ,~J
20
15 , \ 10
'0
= 20Dp.A
~
nSlllo f'I=
o
-'2
-8
12
Equivalent Input Noise Voltage vs Frequency
10
100
VOS-GATE-SOURCE VOLTAGE (VOLTS)
Medium VGS(off) Unit (-2.2 V)
h
8
l!lz I~
VOj lOV
~
VDG-DRAIN-GATE VOLTAGE (VOLTSI
w
Transfer Characteristics
;::v v.;j5"C
0' o
0
LowVGS(off) Unit(-1.5V)
++t.IV~
..
>
I -'6
-8 -'2 VGS-GATE-SOURCE VOLTAGE (VOLTS)
~55'~f
--=
!2 ,;, !2
VO"OV
v
VOIG"~V
005 mA
10
Z
"~
I
o~
-4
02mA= (;:/j
100
g
I I
y'VO~5V
4
;;;
1-- r-v
§ ~
Common-Source Input Capacitance vs Gate-Source Voltage
...
)!kVDS~5V
~
~
05mA
~1000
-2 5
f'llllllill 1\
."
VGS-GATE-50URCE CUTOFF VOLTAGE IVOLTS)
Common Source Reverse Feedback Capacitance vs Gate Source Voltage
Vos=O
~
,.~ "1 Z
VGSloffl VOS=10V1O=1JlA
-05
•8
// //,.,
\
~ I 0
15V
VGS:: ov
V
VOS=15V
....... V
9
Vas" ov
500
>(
/
I
4-20
2N3921-2. 2N4084-5. 2N5045-7. 2N6905-7. U401-6. 2N5046CHP-47CHP. U403CHP-06CHP. 2N4085CHP. 2N6905-7CHP
Chip
rOS(on) 10 -= 100jJA
~ iiiII:
4
V V
0
~ II:
~
Low Noise en = 6 nV/y'Hz at 10 Hz 1\'plcal
10000
"z
lOSS -VOS=1ISV VGS=ov
•
PRINCIPAL DEVICES
w
80
Simplifies Amplifier Design Output Conductance < 2 p.mho
On Resistance & Output Cond ucta nce vs GateSource Cutoff Voltage
Drain Current & Transconductance vs Gate Source Voltage
iiiII:
PACKAGE TO-71
•
1K
10K
100K
I-FREQUENCV (Hzl
Forward Transconductance vs Drain Current '0
JOG~ '5~
f-
55"{I fL ~ 'j
1 ~
VGSIOff)=~I~r;2/
U1;I:Hf
+25°C
II: II:
""z
~
I
V~~;off) "'-2 'OV
/
~
o I
9
l,,1li
o -20
-16
Vi..?' j125jC- } ~~ I -12
-08
-04
Vas - GATE SOURCE VOLTAGE (VOLTS)
Siliconix
05 VOG= 15V
0,
"1' 1"1'1111 001
01 10 - DRAIN CURRENT (mA)
10
zz
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (V GS(off) = -D.6V) 020
g
016
a:
"u
rl rl
~008 I 9004
o
g
-02V
I V II. I
~ 01 2
a:
" VGS
<"
l- I-
. 0'
VGS
-D3V
I
VGS"-04V
I
9
Vas
......
y" ~ ..... o
4
'2
VOG",5V 1= 1 kHz
BK
1/
.K
'/
z
I
i
03
04
05
,/
1/ /'
2K
o I::'" -20
VGS=03V
VGS=-D6V
GS
VGS" -01V
'6
o
20
-t--
~
.
f
-
z
0
z
'0
"i= "I
VGS- GATE SOURCE VOLTAGE (VOLTS)
OBV
VGS=-10V VGS=-12V
o
20
o
'2
,.
20
VDS-DRAIN-SOURCE VOLTAGE (VOLTS)
CMRR vs Drain Current
w 110
VGS - 0 MEDIUM VGS(off) UNIT
~
c 0
VGS(offj"-22V
::;
I I I I VGS = 0 LOW VGS(off) UNIT
,./f'\.
z '00
0
VGStoff) =-l52V
::;
- --
u 1 a: a: ::; u
::;
r-
0
-04
VGS - -0 BV
I
9
1 kHz
==
E
8f-
-08
JGS~-<JI.v
:; a: c
120
S w u
~ -12
JGsL~v
V
Output Conductance vs Drain Gate Voltage
, j
,/ +'2~'C P ~
,2
o
V"
"uz
a: a:
Vos - DRAIN SOURCE VOL TAGE (VOLTS)
g""
-~
,.
GS
"iii
LGsL J2V
f-
vGs!-o~v
~
-16
I vd.=o'
VGS-025V
++ P
V
0 g 4K
f-
02
~
g
04~
VGS-
GS·04~ ...,. VGS=D45V
"cz
"a:
VGls=.~ 4V
Output Characteristic (VGS(off) = -1.7V)
VGS=-D3V
VGS=02V
u
z
VG~
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
JGsJ-oJv
JGS20,~v
'OK
;:u
0'
OV
I I
-I-
Iv.l.o I
Transconductance vs Gate Source Voltage Medium VGS(off) Unit (-2.0V)
S w
o
Output Characteristic (VGS(off) = -1.2V)
Ves-DRAIN-SOURCE VOLTAGE (VOlTSI
f
o
00 01 02 03 04 05 VOS-DRAIN SOURCE VOLTAGE (VOLTS)
JGsJo,L
9 o
VGsl. .,Iov
VOS -0 IV
1/I -
I
JIV ~ .....
02
VGr-i BV V~=.1
"
,/
~ ./
VGS-Q05V-
'/ / 02
I~/'j
I
I I
25
04
"z
1/
c
B
V
'I/,
04
vps=,O~J
,/
a: a: u
-0 BV
I
VGs=-06V,_
1/ V / r
I
a:
,.. "
05
04
03
IV
O,B
~a: o.
"uz
IJ
06
f-
~
f//
Output Characteristic (VGS(off) = -Q.6V)
g
VOSa-D6V
0, A
VGS I= -J5V 02
1
,/
I
"
Vos- DRAIN SOURCE VOLTAGE (VOLTS)
"iii
/
'I
ffi 03 a: a: u ~ 02 a:
VGS· -o2Vl~.+VGS=-04V
VGS=OV
V
c
10
o
_I
04
, 0
/II Gs =-04v
) , VGS=O
-
vGs=-02~7
I I
J_
!z
c
05
I VG~~~ = ~o ,~
~
Uutput Characteristic (VGS(off) = -1.7V)
Output Characteristic (VGS(off) = -1.2V)
,
o
ID=200~~ I--10
15
20
r-
~
~
VOG - DRAIN GATE VOLTACE (VOLTS)
Siliconix
0
90
80
70 00' 002
005
01
02
05
10
10 DRA"IN CURRENT (mA)
4-21
...
z
8ACKSIDE .. UNCTION ISO~ATED
monolithic dual n-channel JFETs
fROM ACr'VE CONTACTS
0024 lUlU,
I'
z
1
.H
Silicanix
designed for •••
IIIlDI
~J
•
Low Leakage FET Input Op Amps
BENEFITS:
•
pH Meters
•
Ultra·High Input Impedance
•
Electrometers
•
Good Voltage Gain
•
Low Noise
TYPE Dual Dual
ALL DI!III$'Dft!lN I.cHU
IALLD'IIfNSIOUI.IIIILUMltfRS,
PACKAGE TO·78 Chip
PRINCIPAL DEVICES U421·28 U423CHp·428CHP Improved Replacement for
2N5902·9 Series
PERFORMANCE CURVES (25°C unless otherwise noted) On ReSistance & Output Conductance vs Gate· Source Cutoff Voltage
Drain Current & Transconductance vs Gate Source Cutoff Voltage i
10~ I
15
E
'ass. Dis Vas" lOV
;::
iii
12
08
""u Z D.
O.
~
a:
c
\
<J
"in""
\l ~
!;
~
5
'"w
~
VGS=OV
•
" Z > "~ f' ""c: ~ fil n " z
*
~ ~
VGS::
rOSlon)
'.'
O.
~
D.
..Ii".
03
02 VGS (offl Vas = l0V
I
E
0
0 10
20
..
......-
I
S
[
e
30
~
i
" "~ " <J
/,/ I
10
~
-JOS !-D2OV re...--
V V ......
I
E
II /
1/1
~
iiia:
,/,
a:
"U
~t-D~DV
;;
01
a:
"I !?
~J. /
j V
~
040V
05
III Ifll / V
2
VGS" -035V VGS'"
a
VGS~O/
1
VGS= -D25V-
~ f.-
o
£
~
~a:
" "
V
02
/'
,...
u
;; ~
C
01
I
;;
U=.L
I I
./ VGS= -ol6v
'"'" -
l" tv
VGS
I
I
~
f-"'"
02
VGS=D
I /
1
/
~
~
I
a: a:
"u
1
2 ~
a:
c
""'"
" "~
VGS=
20
-06
..
VGS=-06V
/VGS'-08V
j, ,~
/VGS=-10V
/
1
II, III' rlJ / "
f..-~GS=-1 2V
v~sj .~-
lit ~ ...--
o
IVGk~·,16V
--10
05
Vas-DRAIN·SOURCE VOLTAGE (VOLTS)
Output Characteristic (VGS(off) = -2 OV) 10
012V
;;
VG~~~
08
/
£
1
04V
iii ~
" "~ "I !?
06
VGS= -02V
......
~GS ~
\VOS;; -D6V
VGS= -Dav
VGS=-1
2~-+-+-
o
4 8 12 16 20 Vas-DRAIN·SOURCE VOLTAGE (VOLTS)
Silicanix
.'4V
VGS=-06V
u
C 02 I
·1
-08
~osL -.'4V 1
If; /
I
1 JGS~~ 1
-04
VGS- GATE SOURCE VOLTAGE (VOLTS)
o
I
I\.
-02
VG1s,·J 2V
Ivosl•
,
~
I I I
100
!?
VGS--10V
Vas-DRAIN-SOURCE VOLTAGE (VOLTS)
4-22
.~
~ ~
~
o 16
-
VG~=-08V
!?
05V
0 12
2
.
Output Characteristic (VGS(off) = -iOV)
V~S=102~4t --
Vos= -D6V
0
4
30
~
iii U
VGS"'-04V VGS;;
£
~ 04
lGS~J3V
I
!?
20
,... ,....
06
~GSI= _012V
-
•
"""i-.. .'\ r\ TJ.'2~ I -I
-
Output Characteristic (VGS(off) = -1 5V)
I 1..1,
--
200
05 10 Ves-DRAIN.SOURCE VOLTAGE (VOLTS)
Output Characteristic (VGS(off) = -0.5V) 03
300
o
10
Vas - DRAIN SOURCE VOLTAGE (VOL TSI
;;
r--l--
VGS=-04V
1
'I V 'I 1/
~
T=.21
" ~ """
c:
8
l'\.
400
" ~ §
!l
10 0
YGSloff) Ves = 10V 10=1 IJA
10
02
VGS" -0 15V
..3
W <J
z
12 n
Output Characteristic (VGS(off) = -1.5V)
rfGS~o.l .L TiOSj-D:DV
;;
..3
" ~
/
VO~=lDV
- N=·5~'C
500
0
Output Characteristic (VGS(off) = -0 5V) -
"~
I
VGS-GATE-SOURCE CUTOFF VOLTAGE (VOLTS)
VGS loffl-GATE-SOURCE CUTOFF VOLTAGE (VOLTS)
20
g
1
"-... /
1
"
3
1.
:/905
2
~ ~
3"
::lp..A
10
VOS=10V VGS = OV
y
~
~
g
rOS(on)\
0
600
18
1
w
Z
C
20
ov
ID=10~A
1\
3
Transconductance vs Gate Source Voltage Low VGS(off) Unit (1.0 V)
D'
Vas"
V
08V
VGS~·' 0
02
VGS~·l
2V
=-14V
V V
~.
6V
0 0
12
16
20
VDS-DRAIN-SOURCE VOLTAGE (VOLTS)
z
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted)
!i
Transconductance vs Gate Source Voltage Common·Source Output Conductance vs Drain Current High VGS(off) Unit (2.5 V) 10
15K
:g J.
r--..
12K
II'"
;:u
"0 ~
:-....
~
900
::0 0
VCS""10V f'" 1 KHz
;;::
T=25~
600
;2
,
0-
r-
300
125°C
0 0
-D'
-0 B
-12
~
::0 0
,
a
-2
01
-2'
~
0-
10 -iO .. 100pA
::0
u
"'", ~
III
II
06
fo
'"
~
0
>
'"0 z, 0
0.1
~ 001 0
6
10
,.
2.
30 20 3' VOG -DRAIN-GATEVOLTAGE (VOLTS)
e",
0
-4
-8
-12
-18
-20
VaG - DRAIN GATE VOLTAGE (VOLTS)
CMRR vs Drain Current '20
..1\
~
I:D~30jJA
'GSS
10
"-
0 lK
Equivalent I nput Noise Voltage vs Frequency
i
~
II
1
u
30
0:
15
10 - DRAIN CURRENT (PAl
Gate Operating Current vs Drain·Gate Voltage
'""'" "~
III 100
10
100
e,u
0-
VGSloff,'"' V
VGS -GATE SOURCE VOLTAGE !VOLTS}
iii0:
"" ~ "u,
0-
1"14 -16
'"
u
VGSI~I.'1·2~
"u0
!'.;t\
1 1
ii
2
IO=30 /AA f= 1 MHz
1 .......
~
0-
r--..C\ r-... ~
.....
.a-
::0 0
I' I\.
;--.
l. ""u
I'...
25
10V '''1kHz
VOS'"
1l
r .. _55°C
Capacitance vs Drain Gate Voltage
1\
20
,.
w 110
Q Q
i\
:;;
z
0
:;;
1\
r--
~30"A
•
10
'iiri 100
lK
10K
f - FREQUENCY IHzl
~
90
is
80
a: a:
.... !'--
10
100
:;;
,ODK
1---
-
-
JJJ111,J1
tf
CMRR
= 20 log -6VDG -6VGS' - 2
10 00, 002
IIII I D.III
DO.
01
02
10
ID DRAIN CURRENT (mA)
BIll 1
I
Silicanix
4-23
n-channel JFET
1
··
i~ Etl 0023 (0584)
•
High Power Gain
Oscillators
•
low Input Capacitance
TYPE
PACKAGE
PRINCIPAL DEVICES
Dual
TO-78 TO-71 Chip
2N5911-12, U257 U443-u444 U440-41
Dual Dual
~
.
BENEFITS:
Mixers
,-o-rm;
~~
'~2J
Siliconix
High Frequency Amplifiers
·
(0;;;;
(0
H
designed for • . •
.
MS911CHP, MS912CHP, M440CHP, M441CHP
ALlDIMEf<SIONSININCH{S rAlL DIMENSIONS'" M,<"."rERS,
PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance & Output Conductance vs GateSource Cutoff Voltage
Drain Current and Transconductance vs Gate-Source Cutoff Voltage 12
Vas;- lOV
gfs & lOS
VGS" OV
/ /" 9f~/
Vv
/
9 B
p-~
10
"
~~
~~ ~ 0
7
Vos
~~
',All I I
,~
~
10V_
5 6
VGS(off)
GATE SOURCE CUTOFF VOLTAGE (VOLTS)
Common Source Feedback Capacitance vs Gate-Source Voltage
~ 20
\
~~
O~
'00 90S
100
-0
-1
- 2
50
3
'00
"I
10
0
1
1
- 5
~
,-
Z
0
i;
'5, p'"
IGSS
0.1
- 6
o
8
12
16
DAAIN~GATE
20
24
VOLTAGE (VOLTS)
Equivalent Input NOise Voltage vs Frequency VOG - 10 V 10 - 10 rnA
~VO'OV
\\1 ..ivos
12
-
5V
~III '~vos 'O~_ ~
"-
"'- ::--. r.::--
16
--
-
c-- ---
'0
'6
'2
-B
f-
Output Characteristic (VGS(off) = -2_8V) 12
" .§
/
~
z
VI---
10
~
u 2
~ 0 ,
E
'0
o
VOS"15V grs\uJ f" 1 kHz
VGS"
02V
VGS=
04V
i
;""
VG5=-08\1
It:::
VG =-1 2\1
20
Siliconix
I
16:nA
L
-;f, ""-
/ V
~
VGS=-1.4V
"
lOOK
I I
124mA
VGS=-10V
VOS-DRAIN-SOURCE VOLTAGE {VOLTSI
IIII
ilill
"GS" ~06V
,.
'OK
:~~~ - 10~A I
~
VGS=-l 8V
o
'K
FREQUENCY (Hz)
Forward Transconductance vs Dram Current
VG~.O I
15
GATE SOURCE VOL TAGE (VOL lSI
100
\lGS - GATE-SOURCE VOLTAGE (VOLTS)
GATE· SOURCE VOLTAGE (VOLTS)
Transfer Characteristics
4-24
4
VOG -
'001l~§
,.....
4
VGS
IO=500pA
'0= 100 pA
VGS(off)-GATE-SQURCE CUTOFF VOLTAGE (VOLTS)
Common Source Input Capacitance vs Gate-Source Voltage
=
[
't "'1'
- 4
10 " 5mA
1000
~ w ~ >-
~ ~~
VySlr"'1 V'IS
o
~':Iml] 111 ~ ~
/
='G@'O
w
VOS 0
~~
VGS
>-
1
50
j'«~VOS'O
~
V
~
'50
}VDS 5
~
V
~
~ ""~
I
I ~
gO: ~
__ 10000
150
\
~~
I
OV
I I I
1\
~
~ ~ 250
~"
=
\
9
~ ~ 200
~~
rDS(on) @ 10 - 1 rnA VOS - OV
\ 90s@VOS= lOV, VGS
300
c~
0'
n" me
I
VGS(off)
. nO
10f
VV V
350
'1 ;l 10 a
Gate Operating Current vs Drain-Gate Voltage
i
0 01
05
02 10
DRAIN CURRENT (mA)
10
n-channel JFET
H
designed for • • •
Silicanix
•
Small Signal Amplifiars
BENEFITS:
•
Choppars
•
Low Noise NF
•
Voltaga·Controlied Resistors
•
Oparation From Low Powar Supply Voltages, VGS(off) < 1 V (2N4338)
•
High Off· Isolation As a Switch I D(Dft) < 50 pA
•
High Input Impedance
Single Single
TO-72 TO-92 Chip Chip
Single AUDIMlNSIONSININCHU
Dual Single
{IILlDI",fNSIO//SI//!oIIW",ErERSi
PRINCIPAL DEVICES 2N4338-41, VCR4N 2N4867-9, 2N4869A-9A 2N4220·2 2N4220A-2A, J201-204, PN4302-04, J230-2 All single Part No's above
PACKAGE TO-18
TYPE
< 1 dB at 1 kHz
PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance & Output Conductance vs Gate-Source Cutoff Voltage
Drain Currem & Transconductance vs Gate-Source Cutoff Voltage :i
.iii
10
<7 V
!
/'
II: II:
:J IJ
"~ "° ..ti..
/
c
~
/
I
/
2
\
VGS{off]. VOS=10V IO=1pA
/
I
B
=100.u 1200 -\-Vgs = ov gas: VOS =20V .usee rOSlon)' 10
/'
0
Common Source Reverse Feedback Capacitance vs Gate Source Voltage
:!
I)/DSOO
~~
WOS=10
V I' L.
. ,"
"a u
",-
~z
m
~
"S!I
,+oJ
0'
I +25"~_ 1 - - 1-72"F~ iI0 ,YA" 1 - - -2"L0 J;-;: ~~"O ....r~ ..-:;
-02
VGS - GATE-SOURCE VOLTAGE (VOLTS)
30
40
60
SO
~
g
YOS=10V
~ 10
g I
-4
z
I-
-.
-'2
-'6
'K
'00
10K
100K
+25"~-=
+85"~~
Z
'/ /
g
~
40
~:
35
2
0 I
-20"C,=
/ ' o "~ z
+25"0""
08
c
g
-
~B5°C
-08
-04
VGS - GATE-SOURCE VOL TAGE (VOLTS]
Silicanix
1ft' -2O"C
043'
+25~C
~
+~fC
02 ~8
44
40
-16
o
30 I
c
25 ~
Z
20
"
~
"....
-'2
~ IL-
+25~C
'l-t
+B5·C
:'i
-'6
I
Transfer Characteristics
,
-20"0- 06 ~
02 ~
"3
I
F-FREQUENCY (Hz]
VOS·15V
-20"0=
e
--
6
'0
15 V
o I 04 g
01
20
w ~ 16
05
-20~0
+,soC
10
0
~
Al1S06~
Transfer Characteristics
03
, 55 ,0
~ 20
J>
'If "
10
Noise Voltage vs Frequency
VGS-GATE-SOURCE VOLTAGE (VOLTS]
VDS
JJ 11/
100
VOG - DRAIN-GATE VOLTAGE (VOLTS)
."-
-16
VDS=15V
0.4
~
<> C
n
06
-06
~
Z
0
..g.
rDS
~~~
Transfer Characteristics
-08
n
o ~
,,-
'l
3
VGS-GATE-SOURCE VOLTAGE (VOLTS)
-10
w
.!:i... .. ".
6
",-
~ ~
4
I
-12
C
IO{on)@IO
26
!:: 6
YOS=6
-
'0
~ 1000
Common Source Input Capacitance vs Gate-Source Voltage
w u
o
./ '5
k:.
/'
20
10000
'" T 0
VGSIOFF) GATE SOURCE CUTOFF VOLTAGE IVOLTS)
"ii:
o
" >< V
-
,
o o
VGS (off]-GATE-SOURCE CUTOFF VOLTAGE (VOLTS)
\ /
i\.
.;'
loSS
IV'
\
IDSS,9ts VOS=20V VOs=OV
:J
= ,OV ID = , p.A
VGSloff) VDS
/
/
4
II:
25
1500
~
Gate Operating Current vs Drain-Gate Voltage
~
~ -12 ~8
,
g ~
5 m
:'i
,0"3 ~
05
~4
VGS - GATE-SOURCE VOLTAGE (VOLTS)
4-25
£f
PERFORMANCE CURVES (Can't) (25°C unless otherwise noted)
Z
Output Characteristic
Output Characteristic
(VGS(off) = -o.5V)
(VGS(off) = -o.5V)
02
I
VGS~O
II Y/ J II fl
;( 0.16
g
iii
~ 012 a: ::>
"~ 008
I I
~s·:-OT
I--- II-
...
v
II
Vr.s.= -0 30V
02
04
06
08
VGS=O
• ~
~Ol
a:
-
II,L fl
,
11'1 /
01V
- II I VGS--1 4V - I-
VG =-O3~_
V
v IS"1051_
V
11
B
a:
c
J
I
EaD4
'0
!J./,GS ~ -0 iv.!
::0
"~oo
Vas e
r-
I.~
-
VGS=-06V
-I
< 08
02
03
~
v~s-I-o.~
~ 06
02
04
05
12
tVGS~O.~
VGf=-"2V
...z
! i~ S~-! 4
a:
'I
~012 ::0
Ii
"
~008
v
'I
I ,9004
~ 3.0
1/
a: a:
1/
04
03
01
02
03
I
I I
r 17
+25"c
+~5°~_
O.BV
VGS=
VGS- 1.0V
VG$~-
---
VOS-DRAIN·SOURCE VOLTAGE (VOLTS)
••
20
/
8
~
-
-5
/>' 'Y
v·4
tiC~w ,
&
•. 2V
""-, V G =-1 BV
12
,
-20"C_
VGs=-14V
os
05
Transfer Characteristics
Vas" -06
i.-
,910
04
Ves-DRAIN·SOURCE VOLTAGE (VOLTS)
VGS" -04
"""
c
BV
IVG~~_2 OV 02
o
VGS" -02
v-
~
I
V
0'
....
"z 20
vos=-'
20
VOS=15V
g
5=-16V
..........
,.
......
vJob
4.0
y
~ C
.
~(;S~~06. VGS=-10V
g
:;,...
Output Characteristic (VGS(off) = -2.3V)
(VGS(off) = -2.3V)
.......
~/
VGS- -0 BV
-OBV
Ves-DRAIN·SOURCE VOLTAGE (VOLTS)
Output Characteristic
r<,016 r-
VGS
VGS=-36V
V ~}Jov
~~
VGS·-05V
"""
Vas=-3 ov
II-)'.
VGS .. -04V
C
... VGS--2 6V
'J
VGS =-0 3V
a:
.9
V~S=-:2.0 ~_
rT /!/
::>
"~ 04
20
I/VGS~.I.~E VGk::·15V
I I I
a:
16
(VGS(off) = -4.2V) '0
g
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
018
12
Output Characteristic
VGS=-01V
I
01
GS::-3 BV
o
VOS-DRAIN-SOURCE VOLTAGE (VOLTSI
VGS=D
~
I
VGS=-07V
~-
o
20
Output Characteristic (VGS(off) = -1.0V)
(VGS(off) = -1.0V)
:ito 16
VGs=-3V
o
Vas-DRAIN·SOURCE VOLTAGE (VOLTS)
Output Characteristic
°
VGS::-Z BV
,.
12
10
VDS-DRAIN·SOURCE VOLTAGE (VOLTS)
02
\'GSL-2J
VG$' -03OV
-03
o
VGS=-l BY
;'
VGS= -02SV
VGS" -025V
VGS~O
1J}5V VGS~-' bv
/
r/
vGl- -b 1Vl vG~- j, ,J. vG~-j,2vl
fo-""
I
'1 'I
~
......
VG~' j,05t
II
VGS" -0 zov
I
~004
I IT
1
GS=O
~ls·~'~- I-- I-i..--
(VGS(off) = -4.2V)
'0
1I I
I
VGS=-O Q5V
C
o
04
Output Characteristic
+~5"C
T7r
"
-4
-3
-2
-1
VGS - GATE-SOURCE VOL TAGE (VOLTS)
Vos - DRAIN SOURCE VOLTAGE (VOL iSI
Output Characteristic
Output Characteristic
(VGS(off) = -3.0V)
(VGS(off) = -3.0V)
, 0
V~s~~
rGS~OV I, 1~'~;f- IVqs"'-:o
1/ III II rL
<08
£ ~
~06
VGS"' -02V
v~s ~I-o
U,
a:
::0
" "a:
~
'(f
!:04
IltV WI
C
I
,902
V
J.'/ 02
GS~·Tv I I I
~ C
06
08
10
Ves-DRAIN-SOURCE VOLTAGE (VOLTS)
4-26
4
1/
""z 2
9
~
o
VOS-15V fo: 1 kHz
1400
;,O"C=;
bt I-
+25"C
V fo-""
tJ,L
V
JGSl2 O~ 12
'6
17~
Ves-DRAIN-SOURCE VOLTAGE (VOLTS)
Siliconix
'7
-10
-08
-06
!!; !'l
400
§
~25°~_ 200
)!
+85°C'-04
800 ~;I
600
-,O"C/C;C
20
~
li!
Fe
r7
VIGS~~2 6~
~
1200 0
1000 ;;
+85"C
vU.ol_
....
o
'600
1
v~stJ.
1/'"
I
I 04
~
a: a:
VGS--05V
I-o It: l-
o
1V-f-
1
Transconductance Characteristics
-02
VGS - GATE-50URCE VOLTAGE (VOLTS)
!!!
~
z
PERFORMANCE CURVES (Con't) (25°C unless otherwise noted) Transconductance Characteristics
I
VOS'" 15V , .. , KHz
/'
/I -20'S- '2·Y V V V K;. J Vl(.:' 'M~
~?c If r
~ VI ~ A~
L Qi' -1.6
-1.2
//I
!
...
I
-
VGS - GATE..$OURCE VOLTAGE (VOL TSI
o
o
-2~C7
<...~ ~7
-I
500
3500;VOS-15V 1:1 1 kHz
-2"CX
" 1500 i! z 8 1000
Transconductance Characteristics
2800
Vos= 15V f"1kHz
I
Il
A'
il!.
f-
+8S"C
L--'
-24 -20
-1.6 -1.2
1500
+isa:g
+25"C
-2.8
?ii
"i! -I
-20"C
1000
+8S"C
I
+8S"C-
.N A".11
II 2500 2000
c:
I
I 3000 ~
+25°C
1
!§
~
iL,
1
+BSoC
;;-
~ ~+25"C -08
2500 ~
2000
~
Transtonductance Characteristics
500
z
~
z
"5
~
;;-08 -04
VGS - GATE-SOURCE VOLTAGE (VOL TSI
-6
-5
-4
-3
-2
-1
i
VGS - GATE-SOURCE VOLTAGE (VOLTS)
l1li
Silicanix
4-27
A.
8ACKSIDE .!UNCTION ISOLATED FAOM ACTIVE CClHTACTS
G
monolithic dual n-channel JFET
Z
H
Siliconix
designed for ••• •
General Purpose Differential Amplifiers
TYPE Dual
PACKAGE TO-71
Dual
Chip
BENEFITS:
•
Low Cost
•
High Input Impedance
PRI,NCIPAL DEVICES 2N3954-55. 2N3954A-55A. 2N3956-58. 2N5046-47. 2N5196-99. 2N5515-24. 2N5452-54 U231-35. U410-12
(06101
2N3955. 2N3966-58 2N5047. 2N5199 2N5454. U233-35 U411.12
ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERS/
PERFORMANCE CURVES (25°C unless otherwise noted) Drain Current & Transconductar1Ce vs Gate-Source Cutoff Voltage
-
10SS.9fs VOS '" lOV
IVGS-OV-
-
?
3
/.~
n" 0;:-
V/
" I e~
850
\
w 2
U
~ iiia:
750
"
850
p
go,
~~ n:O
u
1 ~
;; "
VGS(oJ) VOS = 10 V 10=1fJ.A
, 3
VGS(off)- GATE-50URCE CUTOFF VOLTAGE (VOLTS)
Gate Operating Current vs Drain Current
~
A 1\
~S'o.'
/
--,--
Vos == tOO mV \ GS = ov I I A r\:GS(r'f)7:~ t= ;:v
"
"'v /1
a: 450 0
I
c
1
'OSlo.J'\J
I'-+-
V
350 0
10
r I
o
1/
\
a: 550
~
VOS=20V VG5~,OV
\
me iil
//
/.
i:g
"0 n:o w
/10 , 5 - I--
~",
:0
., 2
g"/V
1/
.,.
On Resistance & Output Conductance vs GateSource Cutoff Voltage
.
..8~ 2
g ~
~
2 ;;-
o
1
-1 -2 -3 VGS(off)-GATE-SOURCE CUTOFF VOLTAGE (VOLTS)
Common Source Reverse Feedback Capacitance vs Gate Source Voltage
10
25
~
3.6
.!! ~
32
~
28
;
VOS -10V
~
c3 20
'"u
'8
1'2 I
08
ur:!
04
k
vcs-s
V
~\\
VOS=10
"- / 8
10
12
14
,
16
~~
VGS-GATE-SOURCE VOLTAGE (VOLTS)
Common Source Output Admittance vs Drain-Source Voltage '00
11
.3 "
~
VGSloff)--33V
10
i
:--F
~JJt"0~
I
I11I I
"
I.
IIII
1
o 10
t2
16
14
'0
100
'K
'OK
lOOK
f - FREQUENCY (Hz)
Common Source Forward Transconductance vs Drain Current
VOG" 15V f-1 kHz
VGS(off) "'-33V
'0
~~~~~~~;;~~~~
8",
5
~ VGSloff) '" - 81 V
5o
I
g
VGS(off)- -0 a1 v 0 ' _ __
I
0' o
.i 10
15
20
25
'g~o'~~~O~,~-LUli~'~O-LLU~~
30
VOS - DRAIN-50URCE VOL TAGE (VOLTS)
00'
0'
10
10 - DRAIN CURRENT (rnA)
4-28
i' 'O'200pA I"~l
'O~_
~
'0
'0
i5
VGS-GATE-SOURCE VOLTAGE (VOLTS)
if
w
"
Common-Source Output Conductance vs Drain Current
f - ' kHz
~ .3
'5
0
Vos=10
o
"~ $
I 1
'\ l\.
o
~...
VDS=5
'\\ V
o
~
,r-..
w
24
VOs=O
50
20
~
\
40
Equivalent Input Noise Voltage vs Frequency
Common Source Input Capacitance vs Gate-Source Voltage
40
u:-
30
20
VOG - ORAIN·GATE VOLTAGE (VOLTS)
Siliconix
'0
10 - DRAIN CURRENT (rnA)
z
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (VGS(off) = -1.0V) 0200
VGS=O
li
a-a 160 z
I I VGS--03V
l
lI. 1/
0:
" U
II '/ / f!J '/ i--"'r-
~ 0080
C
Eo 040
, --
o
01
02
II / / I-' -f I
1/ /' !f// vr-
fJJ VV
!l~
VG' __ Lv
I#. ;....03
04
05
01
VOS-DRAIN·SDURCE VOLTAGE (VOLTS)
~
i="" 06
~ ~
" u z
vLs.ll
20
I I I
C( 16
0:
C
VGS= -O.4V
9
VGS= -O.5V
I 02
VGS
~
'//11-
"
C
~
02
a 04
05
E
Ci
a
02
C
I
.9
04
I I VGS·-02V--
VGS= 04V--
3
"
VGs=-06'li-f--
;;
VGS--OBv'-f--
Z
vGs .. -oav
0:
C
VGS"-10V~b
9,
vGs=-' 2V
I
VGS=-14V
VGS=-10V
,.
20
4
o
VOS-DRAIN-SOURCE VOLTAGE (VOLTS}
B
12
VGS=-16V
,.
12
20
16
20
Vas-DRAIN. SOURCE VOLTAGE (VOLTSI
VDS-DRAIN-SOURCE VOLIAGE (VOLTSI
Transfer Characteristics Low VGS(off)
,0
08
VG~-ok====
:< ,
U
VG~= ~6VI-
/
0:
06
04
Vas-DRAIN-SOURCE VOLTAGE IVOLTS)
~
VGS"-04V 08
VG~=}.v
VGk=-Jov
E
I I
U Z
VG~=).v f-'"i I
~
~
VGS"'-02
~12
-
Output Characteristic (VGS(off) = -2.3V)
I I
~ "
r-
l-
VGS::-1.4V
{fl.'/, V ~:/" V
0:
."
VGS=-1.2V
V
I'll>
0'
vcis--l2V 03
,tt
III- rJ V~~:jlB:V
I r/. '/
06
U
;;
I I vris--lov
-06
'2
1 . Z
VGl--+-- r-
V~S=~02~ v~s-I 03~_ I-:::
;;
02
VGs· ...
r/vGs·.-o~v
08
0:
VGS--OBV
-
VGS-O!
Output Characteristic (VGS(off) = -1.5V)
VGS" -0 tV
a'
'a
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
Output Characteristic (V GS(off) = -1.0V) 08
VG~-~06V
V
vCli= ... 6V
V-.
a
II I
VGS=-05V
~ /'
I
~GS~j2~±= I 1/ I I ~VGS·-04it-
e-
£)
Output Characteristic (VGS(off) = -2.3V)
VGS=O
r-- I-
VGS'"-04V
~ 0 120
05
V~S·~02~- :-- e-
LLj
..s
Output Characteristic (V GS(off) = -1.5V)
Transfer Characteristics Medium V GS(off)
Transfer Characteristics High VGS(off)
08 VDG=15V
T=-55"c -..J
VOG=15V
T = +2S·C 1
1
T=+l25°C
/J
/
~
06
T=-SSoC V
1
T+soii
,.'" C
04
02
W
VOG"'lSV
6" T=+25°C
'"'"::1 ...
T<>+12S 0 Ci /
~
~V
g
IT =+25"C
'j
Z
T= +12S"C
W7
.-
::::::: :?' -16 -14 -12 -1.0 -08 -06 -04 -02
-40
-35
30
'-20~15 -10
25
05
VGS - GATE-SOURCE VOLTAGE (VOL TSI
Transconductance Characteristics
Transconductance Characteristics
Low V GS(off)
Medium V GS(off)
"8 2000
1'500
~ 4500
~
C
~
::o
~~
1
i
g
3000
"\ ~\J.T·+f5°C
...~
r----. .~ 500 I--
~ 1500
T=~ ~ ~
02
04 -06 -08
10
12
ii2 14
16
VGS - GATE-SOURCE VOLTAGE (VOL lSI
1
i
~
//
)- , /
~ ~V ~F"'"
-'5
00
VGS - GATE-SOURCE VOLTAGE {VOL TSI
l1li
CMRR vs Drain Current
I
'20
w 110
c
0
1\ 1\
5z
.......... !=-55°C 1000
f= 1 kHz
w
r\
-30
V
1 r--/
V~G' ,IS V
6000
f= 1 kHz
w
"8
1
V~G' ,~V
1
-
0 0
VGS - GATE-SOURCE VOLTAGE (VOLlSI
/
V
:!
"\ ). ~
z
'00
:! :! 0 u
90
0
/ ' T=-SS"C T= +25°C
"'\ ~
i'-
~ "'I"'"" ~
I
II: II:
:! u
80
T"I'2Sor" 0
-05 -10 -15 -20 -25 -30 -35-40 VGS - GATE-SOURCE VOLTAGE (VOL lSI
Siliconix
70 005 02 05 00' 002 IO-DRAIN CURRENT (rnA)
a'
, 0
4-29
...I
GATE ALSO BACKSIDE CONTACT
~
n-channel JFET
SAND D AliI' SYMMETRICAL
z
H
designed for • • •
Siliconix
•
Small Signal Amplifiers
BENEFITS:
•
VHF Amplifiers
•
•
Oscillators
Wide Input Dynamic Range High IG Breakpoint Voltage
• •
High Gain Low Insertion Loss Switches
•
Mixers
•
Switches TYPE Single
ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERSI
PACKAGE TO-72
Single
TO-92
Single
Chip
PRINCIPAL DEVICES 2N3821-4. 2N3921-22. 2N4220-2 2N4220A-2A.2N4223-24 2N3819.2N5457-9
MPF109. MPFlll, MPF102. MPF108, MPFl12 All of the above
PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance 8t Output Conductance vs Gate-Source Cutoff Voltage
Drain Current & Transconductance vs Gate-Source Cutoff Voltage
--
• V
4DD.
• ./
-2
,
Vos= 15V VGS= 0 gfs@lf""kHz VGS(off) @ 10 = 1 nA
./ -1
2
I
1/ -3
-4
-5
-6
-7
Output Characteristic (VGS(off) = -2.0V)
-Lo.L.J- f-
•
-02V
II
3
rf
2
,
-J•• J- f-
~
V V--
-D6V
~
-10V
-Dav
-,
200
~ili
Co:
0
, ,
"
~
S .s>-
0 Z
g ~ " ~Z "~
.,
~
00
;;;
0
0
.-3 !
6
, ,
. 2
-01 V
-02V
-.'~-I-
~
-05V
04
ry ,. Vos - DRAIN SOURCE VOLTAGE (VOL lS)
Transfer Characteristics
Transfer Characteristic
I
I
2~ f--
·x
VOS=15V
TA~-'8.lc
~
·"·0
." ""K' ,.J.;;-::
l'\. ~-4.·C
.
-4"~
-,
~'\ "I
~
-z.
~
-3.
-4.
Vas - GATE-SOURCE VOL lAGE (VOL TS)
Leakage Currents vs Ambient Temperature
Transconductance Characteristics
-6
Transconductance Characteristics ~
1'-..
~
7 1/
+85°C
c
•
75
100
T - TEMPERATURE ('C)
125
-1
150 VGS - GATE-SOURCE VOL lAGE (VOLTS)
Siliconix
~
'\
/ 50
-
TA=+85°C
"5·CI'-,.\ ~ ~;S-...
IG
25
Vos= 15V
f-lkH,
V'2.·C \i'-.. k': 1'< '\- .... c
I=-'GSS
/
I I
6000
~
:gS:~DvGG~ 15-~~~ ~~50=1J~~ ~
-7
VGS - GATE-SOURCE VOLTAGE (VOLTS)
]
t=
-h3J
V
c
VGS(OFFI-GATE SOURCE CUTOFF VOLTAGE IVOLTS)
,.
V
V- I-
6
0
~2•• C
,.
~
<1
10 ~
~z 100
.
-000
4-30
l~ z",
20
Vas- DRAIN SOURCE VOLTAGE (VOL lS)
0
~.
30
'l300
o:W CO
3 TA'
-12V -14V
-,•
~
I I I
JGsL.L f-
0
e
VGS- GATE SOURCE CUTOFF VOLTAGE (VOL TSI
•
w
z" :;:s. 3000
I
, I I
I
0 0:
I--
I/,OSS
•
000 ~
"7
/
74
I-2
•
Output Characteristic (VGS(off) = -O.BV)
~
-2
-3
-4
'"
~
-5
-6
-7
VGS - GATE SOURCE VOLTAGE (VOL IS)
PERFORMANCE CURVES (Can't) (25°C unless otherwise noted) Equivalent Input Noise Voltage and Noise Current vs Frequency 10-14
100
1000
,;:1 1
~
2
~
0
10
0
~
.
'",@iR "ID~
w ~
w
~
i5 z
In@IO'"OlI0SS
1
~'D·~·'1tl en@IO~
z I.
10
lK
100
100
.1
10
VGS(off! 10
,.,.-
,-,
-
-3ZV
I-I-H-
\
VGS(offl
:g
16
1'·-1·:
-1ZV,=
I I I
1
10-16 lOOK
10K
~~D~~.'5V
VGS 0 f 1 kHz
~
...2 ~ ;; " i; " ~ ~ "';'
>
Common-Source Output Admittance vs Drain Current
S
iii !l "c: ~ 10-15~
w
:;" "
Common-Source Output Admittance vs Drain-Source Voltage
I
24
III1
0' 001
40
32
Vas - DRAIN-SOURCE VOLTAGE (VOL TSI
10 - CRAIN CURRENT (mAl
f - FREQUENCV (Hz)
Common-Source Capacitances vs Gate-Source Voltage
I.s
5 Vos" 15V f=l MHz
1\ 1\
10
VOS=15V
V21
VGS-O
1:--9f5
z
~
U
Z
~
I----b~
" ,
"~ 0'1.,..--'"
Z
~
1
~"
;;
:r -
-4
~
/'
~ ~
Q
en,
bl~
~
~ ..........c~
'"
Vas'" 15V VGS=O
.sw
/
~
"-
10
~ E
w u
_\
Common-Source Input Admittance vs Frequency
Common-Source Forward Transadmittance vs Frequency
001
50
10
100
V
00 1 10
200
50
100
200
f - FREQUENCY (MHz)
f - FREQUENCY (MHz)
VGS- GATE-SOURCE VOLTAGE (VOLTS)
Gate Operating Current vs Drain-Gate Voltage
Common-Source Reverse Transfer Admittance vs Frequency
-10
10 Y12
j
VD.
~ ~
.sw ~
~
"~
"
~-o.o1
~ID"'mA
o
10
15
20
~
25
30
'ON' Resistance vs Ambient Temperature 5 14
~
J
~ ~ w >
2
u
g 1
~
e
1
"~ ;; "
1
"
001 10
~
-'n 50
100
00 1 10
200
Drain Current and Transconductance vs Ambient Temperature 15
I I
w 14
:-
;i
13
u 12
~
1/
11
Vos"15V VGS"O
"\
9fs@f=1kHz
"\ "\
~
~ 10
/
"I......1"-
3
09
9fsANO losS
~ 08 w
:3
07
07
"> 06
06 -55
-15
25 65 105 T - TEMPERATURE lOCI
200
Common-Source Forward Transconductance vs Drain Current
8
o5
100
f - FREaUENCY (MHz)
V
9
50
f - FREQUENCY (MHz)
>
10
gos~
0
VGS=O
1
~~,~ .,/
~
::"
/
10= lDOjiA
VoS=15V VGS=O
Q
~
"
VOG - DRAIN-GATE VOLTAGE (VOLTS)
w
01
~
ID"'OO~A-
.oDD 1
:3
I - - I--b"
~
!i1
w u
z
~
1/
V22
I.s
!l
-0 1
10
15V
VGS=O
E
1-10
Common-Source Output Admittance vs Frequency
05 -55
145 10 - ORAIN CURRENT (mA)
Siliconix
-15
25
65
T- TEMPERATURE
I l'\. I 1'\.1 105
145
rc)
4-31
-
I
GATE ALSO BACKSIDE CONTACT SAND D ARE SYMMETRICAL
n-channel JFET
H
designed for • • • •
Siliconix
Ultra-High Input Impedance Amplifiers Electrometers
BENEFITS:
•
Low Power lOSS < 90 IlA 12N41171
pH Meters Smoke Detectors TYPE
ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERSI
High Input Impedance IG < 1 pA 12N5906-091 PRINCIPAL DEVICES 2N4117-9.2N4117A-9A. FN4117-18. FN4117A-18A. VCR7N PN4117 Thru PN4120 PN4117A Thru 4120A
•
Smgle
PACKAGE 10-72
Songle
TO-92
Dual Smgle
TO-78 Chip
All songles above.
PERFORMANCE CURVES (25°C unless otherwise noted) On ReSistance & Output Conductance vs GateSource Cutoff Voltage'
Drain Current and Transconductance vs Gate-Source Cutoff Voltage g
;c
05
9fs, lOSS VOS = 10V VGS" OV
E
~
~ 04
:J a: u
_
~
V-
03
a:
l/'
c
oZ
02
!ia:
/".
V f-"'"" V
~
I/
025!¥ ~ 16000
~ ~ 12000
/
~
1, ~r . V
~
0 0
-1
VGSloff)' V010V IO=lp.A
1
-2
-3
-4
8000
~ ~
6000
m Q
4000
~ ~
005
01
on I
w
8~
g~
010
:J
!;t
~
... Z a 15 ~ ~ 10000
~ i
a
VGS(off) - GATE-80URCE CUTOFF VOLTAGE (VOLTS)
lIIIiS
~ ~
100
'0-
1
1000
;;;' , z
!;l t;
"
~
~z ::"
~
10
10-15 j;
100
,.
10K
I~GS(Offl =-1 v.
100
VGS(off)
~
~, ili
10-16 lOOK
..... 10
01
~
o
20
10
30
50
40
60
VOG -DRAIN GATE VOLTAGE (VOLTS)
Leakage Currents vs Ambient Temperatu re
_100~.L.~ 1 ~
V
l]wft~'111
-3V
10
100
o
1000
25
50
76
100
125
150
Reverse Feedback Capacitance vs Gate Source Voltage
Input Capacitance vs Gate-Source Voltage 036
0:
! f"'"
20
~
032
19
~~ 5
028
l'lz
""
;: 0
10
~
" ~
U t-
~
~
, J
0
J 100
1000
prVos=ov I
17
01 10 - ORAIN CURRENT (~AI
VOS=10V
,....... 18
l!,
10
'G55= 1==
E
&"
22 VGS(off) = -4 & V Vos.,20V f-lkHz
u/
1. 0
~
I I OS =6V ,
- --
p<... "- '"S --.. r-- r-....
~
t--
:-r-12
-16
VGS-GATE SOURCE VOLTAGE (VOLTS)
4-32
?E ~
g'2!
§
T - TEMPERATURE (GCI
!i
is
2
10 - DRAIN CURRENT (,uA)
10
I
100
gila ~ Z
111111111
10
Common-Source Output Conductance vs Drain Current
~
4
I illllill
L
f - FREQUENCY (Hzl
C
IDt'f
~
~
~
,i' 10
6
1111
:J C
~
z,
w
~~
Vas 10V f"l kHz
w
g
g 6
n
1~~~A3~
lK
Common-Sou rce Forward Transconductance vs Drain Current
'3
"~
ill
10
J
~.~OI::~r-
~/f"'"
!.
Q
I I '82000 ..... ~ 0 -1 -3 -2 -4 VGS(oll) _ GATE-SOURCE CUTOFF VOLTAGE (V)
ur 14
w
12 I
r"-.. ./
Equivalent Input Noise Voltage and Noise Current vs Frequency lK
90:"
~s(on)
1: w ~~ C" --t ~
200fJA
IG@IO===:
g -
V
\
iii
10K
14 '"
rDS(on,: ID = 100 mA VGS = OV gOS: VGS=OV
'z
g ~ 14000 020::e
Gate Operating Current vs Drain-Gate Voltage
Siliconix
\D~~OV \ I'
"
1"24 I 020
J
.::-.
I"'--
.......
VOS=5V VOS=10V
1 -4
-8
-12
-16
VGS-GATE SOURCE VOLTAGE (VOLTS)
....z
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (V GS(off) = -l.DV) 50 4"
VGS=D
.3
~a:
30
'{II.
" 20
~V.v
C
10
o
1--
~
I
E
,/
Wy
u
~
200
,VGS'-O'V I VGS- -0 'Vi
I. Z v~GS"'-03V /) :tV Vas'" -04V
40
--
1
...
-02
I
06V
160
IEa:
12 0
a:
a:
f/ , /
-06
-08
Ib /
I
E
0
o
-010
V
o
03V 1=
I
VG~5V
~
80
C
I
E
I
, 2
08
VV
~
VGS=
~
a: a: u
02
V
"z
;; a: c 0' I E
05V 07V
I I
/' ,/
...-
20
'6
'2
Z
I
04
;; g
VGS=-06V
00
" U
I
..
40
16
#
0
~ vf-'" ~/ ~ V-
~+v vds";~ ov
02 4 6 B 10 VOS-DRAIN.SQURCE VOLTAGE (VOLTS)
20
Output Characteristic (VGS(off) = -3.5V) 05
VGS=~
02V
VGS'"
120
Vo =·20V
03
VGS=
VGS=
I V 'I. v 1/ VGJ=-Jov ';';:11 1/1' '/ V ~Gs=-' SV
~
VDS-DRAIN-SOURCE VOLTAGE (VOLTS)
I
VGS=-04V
'I
\;
1 1 1 :-"I'GS1''I"
/,
Output Characteristic (VGS(off) = -2.5V)
VGS=-OlV
/
~.,:ov
£. l-
Output Characteristic (V GS(off) = -l.DV) tGslo
g
l-
/ v;Gs~~~O sJ-
Oi 160
~r-15V
~
VOS-DRAIN-SOURCE VOLTAGE (VOLTSI
60
I I
V-
'/
0
200
V~S"J _
//
"
u
z ;;
Vas'" cav -04
V
V
/
c VGS"'-07V
j~ I..-
o
VGS""-05V Vosg
~
g
1
,..'1
Output Characteristic (VGS(off) = -3.5V)
Output Characteristic (VGS(off) = -2.5V)
V~I
I-
I--"
I-
-
VG1=Josv
L
VGS=-10V
/ /'
h
, ,
VG~oJ 5V
V'
lGS l_015v ;""1
,v
VGls··,lov
I VGS=-15V
Lr-
VGS=-20V
VG~"215V
VG1s=J ov
I
VGS'"·30V
II 20
'6
12
Vos - DRAIN-SOURCE VOLTAGE (VOLTS)
o
o
·4
·8
·12
-16
-20
VDS-DRAIN-SOURCE VOLTAGE (VOLTS)
VDS-DRAIN-SOURCE VOLTAGE (VOLTS)
Transfer Characteristics
Transfer Characteristics '00
JDs .,6v-
« 80 .; ... .\ ,,-\ ~ a: 60 a:
c
""
I 920
~
"z u
~ 40
~
'..." "~ a
-20"9
V
,~
/I
25°C BSoC
'P~/
/
~/::,..
7'
~
'\ \
E 50 ~ ~
-06
-DB
-10
-12
~~
~
I~ ~
"<:: !!;;:;.J..
-04
400
-08
~1-2O°C
2S"C 8S o C
z
I'~
'"
a~
i""'I -12
-
f-t'
C 1200
~
E
~y.
-,
-'6
-3
-2
"""
-4
-5
VGS - GATE-SOURCE VOLTAGE (VOLTS)
Transconductance Characteristics
Transconductance Characteristics
Transconductance Charactenstics
20 0
tDs·,Lf= 1 kHz
0
'"
~ 40
~ ~
0
-02
-04
"
~
-06
IS::150
~
~ 100
...C ~
~
-10
-12
VGS - GATE-SOURCE VOL TAGE (VOLTS)
I _~Ds!"olvI f= 1 kHz
I'-...
1"~
Z
~
-08
~
'"
~5;
~
\~
7250
w 200
I
~
o
I
8S·C
II
600
VGS - GATE-SOURCE VOLTAGE (VOLTS)
r--v-: 5Z '2 O~ V 7 ' -2~~.C I -:/ 85'C ~ O~ 7: ~ ~ 8 .......... ~ ............. ~ ... i
X~
100
~
...r:;
2OOC , 25°C
lOV-
VDS
VGS - GATE-SOURCE VOLTAGE (VOLTS)
1 .. '6
~
1'\ ~ r-
I
I / '-l
-04
.\
150
Transfer Characteristics 800
~DS~ 'O~_
1\ 200
C
...... ~ -02
13
250
~
I>< ~ k ".:\
I.........
~
I
a
-04
:it; 5Z ~
-'2
I
200
160
Z
~
08
240
~ 120
~
~
50
I-- I--
.......
1('"\
~
i
-20·C 2S"C 8S·C
~ 1/.... c?
1~ ." ., 80
"
.'\'"
'"
~
-'6
Vas - GATE-SOURCE VOL TAGE (VOLTS)
Siliconix
I
i
a
f'lkH,
6
25;~"J_ 1---
r--... '\. ~"'" Vi r--. ........ I"-
,
"\
40
~
JDs 2,oL
. -,
~Y.'
~
~
'? K
-2..
l1li
-,
-2
...... !,
~
-4
'"
~ -5
VGS - GATE-SOURCE VOL TAGE (VOLTS)
4-33
n-channel JFET
.H
designed for • • •
Analog Switches Commutators
•
Choppers
Siliconix BENEFITS: • Vary Low Insertion Loss 'OSlon) < 2.5 Ohms IU290)
•
ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILUMETEI1S)
High Off·lsolation
TYPE
PACKAGE
PRINCIPAL DEVICES
Single Single Single
TO·52 TO·92 Chip
U290·1 Jl05-7 U290CHP-l CHP, Jl05CHp·7CHP
PERFORMANCE CURVES (25°C unless otherwise noted) Saturation Drain Current and Drain-Source 'ON' Resistance vs Gate-Source Cutoff Voltage ~ 20
!
600
7
IOSS@VOS-10V
~
z"
PULSE. TEST
"
1 2f- ~~SI~ff} ~VDS = 10V
10= 10nA
~
o
rOS(on)
/
Z 0B
o
~
i I
45
o
<"400
Z
~300 0: i3 250 ~2OD
~
in
g:g 3
1l
"-m 30
-t- r"-,
fOS{on) @lIe" 1 rnA VGS=O
I--"
~
~_Irs
I
r"--I.£'
V
4
0
I
/6
I
\!
0 1000
"
450
f- ~~GS=O
ffi 1 6
Drain-Source Resistance vs Normalized Gate-Source Voltage
Output Characteristic
~
;350
h'C.
50
I~ ;..-::!--
0 _10_20_30-40_50_60_70_80_90_100
l- I-"
-02V
!--I"""
-D.4V
,.....--~
I
~
~
-1.0V
I
I
10
~
09
0:
OB
!...
07
£E'
'"
V
V
_I--" 0010203040506070.80910
Leakage Currents vs Ambient Temperature
Equivalent Input Noise Voltage vs vs Frequency 12 VOS=5V lo·,OmA
~
10
~
w
iL
\
'
g w
6
II!
4
I I~
2
g
"-
06
05
-55
0 -15
105 65 25 T - TEMPERATURE fOCI
145
100
1
~
160
1
""w
G:' 140 S wl20
IO"'5mA
~ -01
~I
~_
'J
40
IO"1mA
!?
~
-001
o
80 60
,...
20
,
" Z
r- ~
,.... ,.... -4
16
20
60
~iPul C~~ClTjCE
J
40
0
I
E
20
V
e", -8
-12
-18
-20
VGS - GATE-SOURCE VOLT AGE (VOLTS»
VOG - ORAIN GATE VOLTAGE (VOLTS)
SilicDnix
I--
0:
r- -
vG~·4L -
r-
1/ /
0:
:>
;;
V
I
Z
~
VGS"2V
[I
I-
~
TRANSFER CAPACITANCE 12
VGS· 1V VGS" 3V
II.
80
S
" II ~100
~
VGS-O
r!1~~~V-
180
~
lOOK
Output Characteristic (VGS(offl = -7.5VI
Common-Source.Capacitance vs Gate-Source Voltage 200
~-1 0
10K
lK
f - FREQUENCY (Hz)
-10
~
100
10
Leakage Current vs Drain·Gate Voltage
4-34
1
VGSIVGS (off) NORMALIZEO
l:fnl ItJH11 >
,.
0:
-ur;
Ves - ORAIN-SOURCE VOL TAGE (VOLTS)
Drain-Source 'ON' Resistance vs Ambient Temperature
10 = 1 mA
i2w
~
-
@
100
>
12345678910
VGS(off) - GATE-SOURCE CUTOFF VOLTAGE (VOLTS)
i"w
fos(on)
w
" ;I
VGS;!...
0150
~'OO
E,VGS@lVOS"'10V I=VGS(Off)@VOS"'10V I-lo-100nA
~
!;(
-lVGS=5V
I
v
JGs 16v
o a
02
04
0.6
08
Vos - DRAIN-SOURCE VOLTAGE (VOLTS)
1.0
n-channel JFET designed for • • • •
•
VHF/UHF Amplifiers Front End High Sensitivity Amplifiers
•
Oscillators
•
Mixers
•
Wide Dynamic Range
•
75 Ohm Input Match Common Gate
Greater Than 100 dB
Gate Operating Current vs Drain-Gate Voltage
BENEFITS •
Industry Standard
•
High Power Gain _
PACKAGE
PRINCIPAL DEVICES
Single
TO-52 TO-72
U308-10
w
'""
Chip
'0
"''"E
U4301,4350 J308CHP-l0CHP,
TO-78
•... if--
'00
~w
U311 J308-10,2N5638-40
TO-92
;.--
lJj ~
IGon@IO
1000
~
/AU DIMENSIONSINMILLIMETERSI
TYPE
Z l> ........ Z N m N
10000
16 dB at 100 MHz, Common Gate 11 dB at 450 MHz, Common Gate
Songle Single Dual Single
Siliconix
Low Noise
3 dB Noise Figure at 450 MHz
•
All DIMENSIONS IN INCHES
H
BENEFITS
I
~~
IGSS
'0
U308CHP-l0CHP, U311CHP
Dual
Chip
U430CHP-1CHP
.'7
0'
o
PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance & Output Conductance vs Gate-Source Cutoff Voltage 90
I--
60
200
~
gos Vcs = 10V VGS" OV
\
/
i'-..V
V
c:
60 ::-J
~
~
g
140
o
i
I"--.
I--
o
~
rOSlon)
"I
80
f-J-'
g.
1
!
00
4
VGSlollj-GATE-SOURCE CUTOFF VOLTAGE (VOLTSj
'0 o
1
10
g
8
g
"-
~
I
I~
~
J
I
So
~ I S!
'/ / 6
///
il
"
4
/I.
0:
C
~ ~~
I
S!
2
~
~
~
C
I
S!
DB
12
16
20
VOS-ORAIN-SOURCE VOLTAGE (VOLTS)
o
II
. . . "1 1 1 ~-~BV
......
VV' f20
~G~._,lov
'2
12
16
20
1
,.
1
VGS=O
J !12v
-I-
Gs
1/
V V
--
tsLL
-I-
Lliav J
Gs : _DIBV
VGS=-10V VGS=-12V
o 20
Vas-DRAIN-SOURCE VOLTAGE (VOLTS)
Siliconix
IBI
Vas"'-12V DB
2.
-~Gi-+
V' f-
04
-
VGS"'-06V
Output Characteristic (VGS(off) = -1.7V)
lJ,lv LGJ._,I.v
VGS=-2SV 04
V
/
Vas-aRAIN-SOURCE VOLTAGE (VOLTS)
I LsU,v
Iv f-
""z
1 1
J;
100KHz
~Gslo
40
0: 0:
V~-20V
f/
10KHz
1I.r
So
1 1 1 1
1KHz
60
I-
II f!I/
100Hz
Output Characteristic (VGS(off) = -3.0V) ;;
VGS=-1 5V
,
/
IZ
i
v~s= I-O~V_ VGS=-04V
FREQUENCY (Hzl
+_ re-
/IVG :.-10V
-,.
,J, -
VGS-D.I_
~,....
'1/
'2
4
1\
10Hz
VVGO·p VGS.-~ 5V 16
-'2
-B
I
1
Vos= lOV 10= lOmA
o
I
:----+-
-4
'0
IIIIIIIII
2
Output Characteristic (VGS(off) = -3.0V)
~
o
VGS-GATE-SQURCE VOLTAGE (VOLTS)
l!
-4 -8 -12 -16 VGS-GATE-SOURCE VOLTAGE (VOLTS)
0: 0:
.
f.,.(
~
Output Characteristic (VGS(off) = -1.7V)
6
o
""
~
10
'o"
i
20
)/00·0
./
~ I 2. 0:
w
~
VDS=10V
!:iW
~
",
'/'oss
\
": 36 \ V LvDs·' 05"10 Ii!
4
~
\
ct
[~
15 -m
~ 46
Noise Voltage vs Frequency
\voo·o
3
5
~~
12
1
~ I~
",-I
on
20;~
/
a.
w ~ 56
VGSfoffl-GATE-SOURCE CUTOFF VOLTAGE {VOLTS I
I
,
~~
c:o ,,2 no
AT
Common Source Input Capacitance vs Gate-Source Voltage
'3
25
'j
g
120
30
IV"'"
/
2
100 ~
I..........
V
4.-
~
lOSS. g1s VCS'" 10V VGS'" OV
o
,
IC= l}lA
Common Source Reverse Feedback Capacitance vs Gate Source Voltage
35
/
VGSloff) VOS:.20V IO:.1}lA
180~
~:i~:if) I~~~ :"~~GS = ov -
1\
20
Drain Current & Transconductance vs Gate-Source Cutoff Voltage
10 15 VOG - CRAIN GATE VOLTAGE (VOLTS)
o
4
8
12
16
20
Vas-DRAIN-SOURCE VOLTAGE (VOLTS)
4-35
m N Z
PERFORMANCE CURVES (Con't) (25°C unless otherwise noted)
-
Forward Reflection Coefficient Common Gate
cC N
100
VOG-tOV lo"'10mA
Z
.30
~ .§
30
w
.2. r-15~
.,5
...- 14
'f'
V
~
-40
/<8"
.",..
~
;;
z
/' 30.
600
~
]
e e-
"
b,,, I
I
..V
,
-20 1000
b ls ...".,..
;;
10
e e-
" m~
-60i::
Vos" 10V lOrnA
'D
,.
~
g,,,
l! ril
-80~
,
vos .. ,ov lo""0mA
~ .§
-100
.25
..
Input Admittance Common Source
Input Admittance Common Gate
-120
035
~ I
~:!J
3 ••
FREQUENCY (MHz)
V '"
1<
600
.,
,.0
1000
200
500
1000
FREaUENCY (MHz)
FREaUENCY (MHz)
Forward Transmission Coefficient Common Gate
.9.
--
••5
.8.
'0 lOa
-70
-
-50
/ VOG-10V 'O=10mA
-30
/
100
...
300
-20 1000
FREQUENCY (MHz)
Reverse Transm ission Coefficient Common Gate 100
005 VOG= tOV
'c- 1OmA
004
V
90
II
003
IL
002
001
70
80
/<5" 200
500
50 1000
095
'D-l0mA
'----
'"~ e" '"w 8
~
080
r-, -40
-20
VOG= 10V
10= lOrnA 076 200
600
fREQUENCY (MHz)
4-36
10
~ .§
V 300
600
1000 FREQUENCY (MHz)
1000
Output Admittance Common Source 10
VOG-tOV
VOS· l0V 'D-l0rnA
V
10
"5
06
c
.3
I
100.
Reverse Transfer Admittance Common Source
10= lOrnA
I 1
500
!/+9rg I I
f'
k-"""
/-0.
....-.:"
~
-1.
V<S22
200
\ I
1 001'00
c
I'
./
100
>-
~
~
/'
100
fREQUENCY (MHz)
Output Admittance Common Gate
-30
"
1
-Org
~
-50
~ 090
~ 086
1000
FREQUENCY (MHz)
/
E Z
600
fREQUENCY (MHz)
~
Reverse Reflection Coefficient Common Gate
r-.
I
f
VOG=10V
~ "em '"
~
-::2""
~
3••
w
ril
FREQUENCY (MHz)
IS221
i
V
I
/ 100
:=e
.§
!2
"'-1
I-"
l
~
.; IS'21
'b
10
Reverse Transfer Admittance Common Gate
;;
80
i
-b
4: 521
065
~
....,
--
-40
/
070
'O=10mA
w u
-50
075
vos·tOV
1
VOG'" tOV Ie-lOrnA
15211
.........
Forward Transfer Admittance Common Source
Forward Transfer Admittance Common Gate
'...
.....
.,
...
01 100
300
6DO
FREQUENCY lMHz)
Siliconix
1000
100
200
50.
FREQUENCY (MHz)
1000
n-channel JFET
H
designed for • • •
Siliconix
•
High Frequency Amplifiers
BENEFITS:
• •
Mixers Oscillators
•
High Power Gain
•
Low Input Capacitance
All DIMENSIONS IN III.CHES 1.41 L DIMENSIONS INMILLIWiTERSI
TYPE
PACKAGE
PRINCIPAL DEVICES
Single Dual Dual Single Dual
TO-92 TO-78 TO-71 Chip Chip
J300, J210-12 2N5911-12, U257 U443-U444 U440-41 J300, J210-2CHP 2N5912CHP,U257CHP U441CHP, U444CHP
PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance & Output Conductance vs GateSource Cutoff Voltage
Drain Current and Transconductance vs Gate-Source Cutoff Voltage 350
'2
9fs& lOS VOS'" lav vGS",av
Vv 9h/
// //
~
l\ros{onJ@lo=lmAvos=av 90s@VOS= laV, VGS= OV
,."z '0 "-i
~ 1 ~~
"I
c:~
5l;-;;
;j"
««
~~
Ira ]0: fl
no
lOSS
~~
7 3
g.
VGSloffl
v~sorv- • !
'nA I I I
p.~V
~
V 150
1\
p
~
~~
V
300
k
Gate Operating Current vs Drain-Gate Voltage
250
/
200
~ ~ 160
'00 90S
V
~
50
•
VaS(off)-GATE-SOURCE CUTOFF VOLTAGE (VOLTS)
g I!! z «
~
'00
10 @ JD-----t---ID~2mA
-2
-3
"?i "I Z 0 "~ 5
'0
-4
-5
lOSS
g. 52~
3'
!
1°
-1
1000
;:
1> .....
1VySI!,,11 v~so'tV 1'"1'
-0
w
-i
'00
/
~~
5
" "~ ~ c:
0
50
.-..
~
0, a
-6
4
8
12
16
20
24
VDG-DRAIN-GATE VOLTAGE (VOlTSI
VGS(offJ-GATE-SOURCE CUTOFF VOLTAGE (VOLTS I
Common Source Input Capacitance vs Gate-Source Voltage
Common Source Feedback Capacitance vs Gate-Source Voltage
Equivalent Input Noise Voltage vs Frequency 100
\
I~
VOS"O
.x. ......
f\:: vor
VOS=5
p--
"'05"10
.... l.X ......
,\
:;. OS
ov
~
>
~ ~ .......
vo~o,ov
~ I
~ ....... ::--- h' t--
-4
-'6
-12
-8
-4
"5
12
w
~
.s>-
I"
~ c
-'0
"~
~
'-::
"' >-
4
~
2
:il a:
li! -2
--3
-4
-5
VGS - GATE SOURCE VOLTAGE (VOLTSJ
I ~
1\ r--,
6
« -5
'00
'0
-16
+12~
_+125• C
=t:r 'i
I""- .......
-,
)'0
~
~
il
!IIII gts@f=lkHz VOS"'15V
11111
8
I
~ :il
~
-3
-4
-5
I
.£
I
L
Wi= 'O~A+--I 24mA~
// ~
4
~
~
\~
VGS - GATE-SOURCE VOL TA(3E (VOLTS)
Siliconix
100](
16:nA
6
~
~ -2
~
"
5
L 0
~
" V-
'OK
'K
f - FREQUENCY 1Hz!
Forward Transconductance vs Drain Current
~~~;01tHZ -<;5,1:- I--- f- .:>U~+25'~_ +12S"C
1 '0 ......
-,5
;;
-,
-12
Transconductance Characteristics
Transfer Characteristics
I
-8
Vas-GATE-SOURCE VOLTAGE (VOLTSJ
VGS-GATE-SOURCE VOLTAGE (VOLTSJ
~
1~ 0'
o
"' z" ~ " .9
'0
w
"
VOS=5V
Id' a
01
02
as
'0
10 - DRAIN CURRENT (mAl
4-37
-
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic
Output Characteristic
Output Characteristic
(VGS(off) = -a.8V)
(VGS(off) = -a.8V)
(VGS(off) = -S.OV)
1-1-~
05
Vas·
VG!'J.w' I
/11
V
I
0'2
I I
i
v~.'-oL I-t-
~ II:
I
8
I
'11/ i.-
008
;;
:!i
~GsL+
I 004
g
'I
tlL
....
I
Vas--03V
"-
o
05
•o
Output Characteristic
(VGS(off) =-1.0V)
(VGS(off) =-1.0V)
GS-
Vo." - ..IV
0160
I I I
I
--
fl
L 0'
/
-
-
10120
...~ B
I
VOS,,-o4V
z ;;
I
I
vGs·-~fJV
II. /'
~
o
05 1.0 Vas-DRAIN.SOURCE VOLTAGE (VOLTSI
Output Characteristic
(VGS(off) = -2.8V)
(VGS(off) = -2.8V)
I 081-~~~~~~~ I
:c
..illoS . " u
!! 2
~I
g,
i.-'"
0.•
.."
~'6
I
Vi"""
u
I
,..
V"
I
g ,
Ylgs=g,gs+.bl9S 30D
VOS=-2.0V
••
~
~~
--
VOS=-2.6V
o.,
1000
m
T--g,~,-
~ a:
2•
~
100
-bn
-~ 7"
I 0.0 1
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
Silicanix
lo"'10mA
!I
. ,.
BOD
Reverse Transfer Admittance vs Frequency
VG.'-"'sv
VG~=-1.~V
YtSS-UISS+Jb,ss
COMMON GATE
FREOUENCY (MHz)
=-3.5V)
VGJ=-1L
Z
~10
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
4-38
V
!Z
Yo ".z!.v I
~f-""""
0'100
./
Voo-,OV
2•
."". VGS=-Z.ov
COMMON SOURCE
,
20
voJ=o
1
GS=-'.&V
./
31---','7 r--
"-lav
,.
.
,,............,
2'
vos-'t -
.!.'I /
f/// 1/1/ / ' Ij:Y
(VGS(off)
,
vO;'·-,.4V 12
I---
b= ... 6f==",
6
Output Characteristic
I / /' 'I V
4 B ,2 16 20 VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
VOS"-1.0V =-12V
Output Characteristic
3
VGS=-3 BV
o
Vo
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
1,1 1/
vGs=-d 5V VGS=-30V
VOG=10V lo-10mA
VOS-DRAIN-SOURCE VOLTAGE (VOLTSI
4
VGS=-'sv VGS=-20V
Input Admittance vs Frequency
Vos,,-OGY
05
V~"~0'5~t I I I
VGb"_,'.v
o
2.
Vos"-OGY
Vo
VOS"!'I
JGS ~ _015V
V
I
E
,/.,.,-
(VGS(off) = -3.5V)
'0
:o ,. ~
V....
Va =·2OV 0.26
"z
u ,.
VOS· -04Y
I ......
04
vds..lov
Vas· -02Y
I
'.2 I-I-Hh"""If-::*"";:;"T:'':;:::-I
f-
I V
20
v,,~.ol
oS
"9
. ,..
Output Characteristic
.
--
VG~•.J.
26
VOS-ORAIN-SOURCE VOLTAGE (VOLTS)
:c , .• I--I--+--hfl-A,~
~ ~
ffi
VGS",-04V
•
Vas=-3 BY
05 VOS-ORAIN-SOURCE VOLTAGE IVOLTS)
a: a:
Vas"-o sv
•a
I I
i.-'"
j~
••
1.
I I I
0040
Iw.
I
g,
VQS=-30V!
i---"
(VGS(off) = -5.0V)
Vas" -03V
Vas"-0 7V
1//, V. V
2
3.
~o.U2V
.....
:!i
VOS"-05V
IVI V V
U
I I v~s·-r·'v;-
Output Characteristic
Vos" -0 1V
0080
/'
.:. ......
I V,Sj
"...-
JG)-oJvi
" ~
VGS·-20~-1-
J I
~ 3
Ie
I I I
VGS--0711
'/.
!Z
08=-05
Output Characteristic
lJ IL VGr-'j'V
4
oS
8 12 16 20 Vos-DRAIN-SOURCE VOLTAGE (VOLTS)
10
VDS-DRAIN.SOURCE VOLtAGE (VOLTSI
06
:c
VGS,,-o4V
Vas" -05V
o
Vos"
lGsU,v
......
Z
Vas--D3Y
'/'
-
I
Vv~s.~, °t+1I-
VGS~OI
I
-'n
...
. I .,~-
600 300 FREQUENCY (MHz)
1000
PERFORMANCE CURVES (Cont'd) (2S0C unless otherwise noted) Output Admittance vs Frequency
Forward Transfer Admittance vs Frequency
:g
10§~ VOG" lOV
10= lOrnA
bogs and boss
!
:::;\'l10~--!!II
:l c
Of,
~
~
90gSandgoss
r'~'fll ~l=
OO~O~O----~~~30~O~~~.O~O~~'UOOO
FREQUENCY (MHz)
FREaUENCY (MHz)
Siliconix
4-39
I
p-channel JFET
GATE IS BACKSIOE CONTACT S ANO DARE SVMETFlICAL
H
designed for ••• •
Analog Switches
•
Commutators
•
• •
Choppers Integrator Reset Switch
Low Insertion Loss in Switching Systems RON < 75 n 12N5114)
•
Short Sample and Hold Aperture Time Crss<7pF
•
High Off-Isolation 1010ff) < 500 pA PRINCIPAL DEVICES
PACKAGE TO-18 TO-92 Chip
TYPE Single Single Single
ALL DIMENSIONS IN INCHES
Siliconix BENEFITS:
2N5018-19. 2N5114-16. U304-6, VCR3P J174-7. J270-1. Pl086-87 2N5018CHP-19CHP.2N5114CHP-16CHP U304CHP-6CHP. Pl086CHP-87CHP J270CHP-271 CHP
(ALL DIMENS/ONS IN MltL/METERSI
PERFORMANCE CURVES (25°C unless otherwise noted) Output Characteristic (VGS(off) = +1_5VI
VG~-+Lv~ - r-
VGS=O
i
I I
1....
I
1 5
VGs=+04V
~
II: II:
:> (J
z
II: II:
I II, /
1
~
c
I(/J
!!
rJ
I
:>
V
4
Z
V-
c
I--"
~
......
I
/'
!!
vGi +J 8V
Iii.
o
1/
(J
~ VGS=+06V
,/
1£ ......
o
10V
05V
I
I II II 'III
!I V
I
srrvtt I
VVGS
V
~
"
V
i
15
~(J
",""
(J
!
~
10
II:
o I
k
i'
20
I
I,V
IO"'1,..A
3 8
On Resistance and Output Conductance vs Gate-Source Voltage 300
H
go, rOS(on)
r-
If I
o
1\ \
\
It
~./
VGS"''''' sV
goo/,
VGs:::+25V
20
10
@VOS=15VVGS=OV @IO= 7OO IlAVG=O
!:i
1
.....
lOSS
./ VGS(off)=VOS=-10V
VGS(offj-GATE-SOURCE CUTOFF VOLTAGE (VOLTS)
VGS=+20V
o
05V
./
/
20
vel=+1 0 v
t'~-
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
V
g:
E
~
/
I If
~~40
+09V
18
.....
I/, fl ".- -I- r-
:>
025V
~j:
II:W
,.
-
/
60
-- JG.J.±..
/'"
I#' o
VGS
~
:>11:
~
S ....z
=t 15V
!
Z
VGS"~
12
/Of,
II:
0_
G = +08V
8
80
Z
;;
VGS"+ 0 6'+l
r---t1:
;( 20
V~+20V
/
vGS-ov ,... l
~
25
I
I
uts&IOSS@VOS"OSV
Output Characteristic (VGS(off) = +3_0V}
Output Characteristic (VGS(off) = +3_0VI VGS-+05V
---
4
100 VGS=+OV
Ves-DRAIN-SOURCE VOLTAGE (VOLTS)
VOS-DRAIN-SOURCE VOLTAGE (VOLTS)
VGS=:O
'"
--
I
I- :""1GS·~ 1Gs·~ l- I1-1-- V~ VGs.,+04V I-r-~GS=+1.0
~
VGS=+10V
ov
Drain Current & Transconductance vs Gate-Source Cutoff Voltage
Output Characteristic (VGS(offl =+1.5V)
o
VDS-DRAIN-SOURCE VOLTAGE (VOLTS)
./
4
~ ~
I
rOS(on)
J 6
B
VGS-GATE-SOURCE CUTOFF VOLTAGE (VOLTSj
Output Characteristic (VGS(offl = +5_0VI 05
50
-it
J I I ~e/~ 4tt, ~.r-
-
r- 7'r-,:.,(j
'I
s
--
o ~ o
.... l-
VGS=+40V
(J
25
r
Z
~
~
c
I
!!
II
/'
7'
--
;'GS~" ~v
i--
r----tG~., ~v i;::;; VGS"'+20V
i;::;;
VGs=+26V
t=
05=+40V VGS"'+30V VGs=+35V
10
o
10
VOS-DRAIN-SOURCE VOLTAGE (VOLTSj
Siliconix
20 ~
~ 16
z
:!
~
12
"~
8
~ J I
I 05
Ves-DRAIN-SOURCE VOLTAGE (VOLTS)
4-40
......
II: ~
VGS= +05V
/
.... ~ a:
i--
H""1 I
;;
~ 0-.1
1
--- VGs=+tl
J jV..r!1 rV/ "GS"'*II!J V .....,-
h~ V
Common Source Reverse Feedback Capacitance vs Gate Source Voltage
Output Characteristic (VGS(off) = +5_0VI
20
1\
wos-o
\
I'-
VOS=5
K-
)IOS-10
><..
4
o
o
~
8z o
./
2
4
2 ~
" ...... -
/'
-1
o
V
V
12
16
VGS-GATE-SOURCE VOLTAGE (VOLTSj
PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (VGS(off) = +8.0V) '0
Output Characteristic (VGS(off) = +8.0V) '00
1 III VGS-+2V I
Vas a
Vos
VGS-=+lV
~!-
1/
VGS=+3V
-' II
1/1 :/ W! r/ 1/
v, V
~GS1'4vL
V
V
I 1/
II, l::i: V
[AV
I I
II::"'==:
"f
.§
Vas = -15V
w
;t -8 0
u
.§
2
>-
~
~
~
"c
°t"
-40
"c, ~ -20
•
2
§
""
2
"">il
r-...
~
" ""
"11
~
VGS - GATE SOURCE VOLTAGE {VOLTS)
§
~ 16
,.
I< I
;Ii
, , ,
u;'
2
o
20
VOS;.10
o
-4
-8
'2
'6
10-13 VOS"'-10V
lOSS = -9 a rnA
@
MAX
10- 14
~z
C; c >
AVG
:!! 0 z
1'1. MIN
10- 15
"
,:: ..i
,.
VGS - GATE-SOURce VOLTAGE (VOL lSI
~
~
I
2
~ n
""
6
,,, I 2
~ w
B
4
~.:>'
Equivalent Input Noise Voltage and Noise Current vs Frequency
9fs@f-lkHz
0
VOS"'S
VGS-GATE.SOURCE VOLTAGE (VOLTS)
Vos -15V
I'
VOS"O
B
'K
4
~ rx
~ I
Transconductance Characteristics
-'00
1l
~
Vas-DRAIN-SOURCE VOLTAGE (VOLTS)
Transfer Characteristics
-6
2
!: 24
VOS"'+60V
'0
VOS-DRAIN.SOURCE VOLTAGE (VOLTSI
iii~
w u
-~ I::;;
"'==: t::: I
'0
o
it Eo 32
I-
VOS"'+5 OV
VGS::;'V
o ~ l-
I Vos""+1 ov
Vos=+3 OV
II I I
V-
fol
'LL f-"" 'L ~ r- r- VDS~+4 ov i::;: V l - f-f-
VGS-'5V
I--'
!-
Common Source Input Capacitance vs Gate-Source Voltage
10- 16
f - FREQUENCY (Hz)
l1li
Siliconix
4-41
m
u en
H
p-channel JFET designed for •••
a.
• • • •
lip
10" l/JA
2
1055,91$
TYPE
PACKAGE
PRINCIPAL DEVICES
TO-92 Chip TO-72 TO-1S
2N5460 -65 All of the above AVailable thru the factory Contact local sales office
9
6
,
V
~
"1 V
0/
-12
./
/
/
'/
1
-2
o
0
IIOS
VGS~
~ ~
~
u
z -
~
VGS"'2511
VGs=30V
-12
-20
-16
Vp
V05=-15V
IIOS
~
i.;'
'j VGS"r v VGS!ofl "4SV
.... ....
VG "'3SV
.....
I'
1
1
vo§:,L
- 2
-
4
-6
-8
-TO
VOS - ORAIN TO SOURCE VOLTAGE (VI
Output Characteristics
Output Characteristics -2
r;~---,--~--~~--~~I00
ras
VG "'25V
1
-8
IIOS - DRAIN TOSOURCE VOL lAGE (VI
ON Resistance & Output Conductance vs Gate to Source Cutoff Voltage
'"
'I. 2jj
Y I I I
VGS.20Vt.1:f
, '1'1 ~
0
VG =3511
~~~~,-«V
I II If ,/'/
z - 6
20V
1.00"""
-,
0
-f
~
511
1 OV
..'/
lip - GATE TO SOURCE CUTOFF VOLTAGE (V)
g
VG~= 1511
I"'""
-,
I- 8 ~
",
-6
6
vos-
-
-8
V
Output Characteristics -10
v~s=ov
VGSlolt) =4511
-10
L
1105=-'511 IIOS= 0
Lowi n <15nV/$zat10kHz Low leakage < 10 pA at 30 V
Output Characteristics
lJS/
VDS~-15V
• •
Single
Drain Current & Transconductance vs Gate to Source Cutoff Voltage -1
BENEFITS;
Amplifiers Sample and hold Choppers Analog Switches
ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERSI
,
Silicanix
, VGS(olll'"
SV
VGS" OV
0
ID~-100/JA
80
-2 0
.
<" -400 r--r---H'-'I--..' ~
z
~-300r--+*.~~~-+-4__~+-r-~
/
6
F
2
/
8
vds., 2V
'"
vds .
'"
4V
Vas = 6V
/'
VGS
M
Bv
V~"'10V
4
-0
- 10
lias -
lip - GATE TO SOURCE CUTOFF VOLTAGE IV)
DRAIN TO SOURCE VOL.TAGE IVI
10000
16
Noise Voltage vs Frequency
20 IG(Or'lt@ 10
sI
1000
,Q
0
\~~
1
~ u
z
~
U
'5", f'..
~ ION...
,
~
u
~,
-10
-20
-30
-40
so
IIOG - DRAIN GATE VOLTAGE IV}
4-42
-60
-
liDS = SV
c,u C 5S _ _ _ r 0
0
~
\,5 V
10 VGS - GAlE TO SOURCE VOLTAGE (V)
Silicanix
~
"':;<
~
VOS"-5V
Vos
~
~
~'5V
Vos"
r>
•, ~
........ ::: ::.- -:..-:.r-=:;,;
j 1
~
-20
Vos - DRAIN TO SOURCE VOLTAGE (V)
Capacitance vs Gate to Source Voltage
Gate Operating Current vs Drain-Gate Voltage
- 12
12
2
0
~
~
~ 0
>
~, ,~
100
lK
10K
F - FREQUENCY IHt)
TOOK
high voltage protection Cliode designed for •••
D
0020· (00508)
A
j ,~. -------t-----'-","-,.
BENEFITS
• Limiting Current • Voltage Protection • Voltage Oecoupling
1
• Series element • Two terminals
• Simple to use • High breakdown voltage (JR24OV -240 volts) ALL DIMENSIONS IN II(CHES
• Low Cost
(ALL DIMENSIONS IN MILLIMETERS/
PRINCIPAL DEVICES
PACKAGE TO·92
TYPE
Single
JR135V. JR170V, JR200V J R220V, J R240V
PERFORMANCE CURVES (25°C unless otherwise specified) Dynamic Impedance Vs. Anode-Cathode Voltage at Temperature
Output Characteristic
.200
1
900
m
,..-
a: a:
U
600
;i
~
-
-.'"
300
.....
:Ii
/
i''c"
C
80
120
160
200
240
o
280
o
50
i:
--
400
z
.
~
iii
'"Ca:
200
UI
..
~
. I
c
;;
-- ......
.......... .......... 150
75
100
'\
155
iii ::;
-15
~
-35
\.
{!:-55 -75 230
,..=
200
250
I"\..
240
250
250
270
2BO
.25
'"
300
BV vs Temperature
280
'"'-
480
+
320
iii
260
~
l-
f- ~OS (MHI = .lIFI.lVF ZFl (II,
= .lVFI.lIF
I
0
0
ISO
290
BVAC-ANODE·CATHDDE VOLTAGE (VOLTS)
r--. r-.....
240
IF=.m?' ............
r-
220
I"SO
25
'\
300
.SO
25
I!!
~
.El .!!-
100
o
+45
640
JR~V
--
300
-H;5
::;
Family Curves
JJ
I-
"
\..
105
+85
ffi..
800
= - ~r
0
"-
100
Free Air Temperature Dissipation Derating Curve
!
25·C
:: \..
VAC-ANODE-CATHODE VOLTAGE (VOLTS)
VAC-ANODE-CATHODE VOLTAGE (VOLTS)
500
\
~ .25"':C
N
40
\. -55·C
--
~ u
0
o
~
51
C
o
~
U Z
Q
I
UI
UI
L
/'
UI
9
~
a
/
k-fo"""
/'-
I-
"
165
/ ./
Breakdown Voltage Vs. Temperature
I- --
I 4
TA-AMBIENTTEMPERATURE IOe)
10
6 VF(VI
-
200
.80 -55 -35
0
25
45
65
85
105 125
TEMP rCI
IF vs Temperature ./
600
..,./ VF
_ 400
'"
.El .!!-
/'
=20V ..,./ ........-::: ~ ,......
:::...-'/:: ~
~ -:;::::;200 ,..... o
o
25
50
75
100
125
TEMP ("CI
Siliconix
4-43
"',,
'
, ,
'.
,
I
'.'
'"
"""
Selector Guides _ .,'
,',
.'
Siliconix
,
,',
'
"
>
'
"
:"
'
:!
Tips on Selecting the Right FET for Your Application
1
o ::I en
-..~ CD
The "Product Specification," a short form version of technical data, will provide you direct reference to Siliconix part numbers and a condensed version of technical specifications
-.
.. _. .. ::I
ca
:r
IF YOU ARE NOT FAMILIAR WITH THE FET PARAMETERS YOU NEED: 1.
Turn to page 5-4, "How to Choose the Correct FET for Your Application." Using this guide, determine the important FET parameters.
2.
Next, turn to page 5·6, "JFET Geometry Selector Guide." Using this guide, choose the appropriate geometry.
3.
Once you have chosen a geometry, turn to "Geometry Characteristics," section 4 of the catalog. Here you make the choice of a suitable part number.
4.
Now that you have the part number, you will find complete electrical specifications of these products in the "Data Sheets," section 2 of the catalog.
CD
;a
ca:r
,. "II
~
""I
IF YOU ARE FAMILIAR WITH THE PARAMETERS YOU NEED: 1.
Turn to the "Product Specifications," pages 5·9 through 5·18 to determine the proper part number(s).
2.
Double-check your choices against the data sheets, and select the part most suited for your application.
~
C
""I
:.. -. "D_.
'V 'V
-
.. o ::I
l1li
Siliconix
5-1
Small-Signal FET Application Selection Preference Additional Information
"
't,-'"
~
...:
't~
Process Designation low Current Amplifier
j,~!b
rv" -.t"
NT
NPA NH NRl HZB NZF NiA NIP NCB MRA NNT NOP NNR NZFO NCB
P
S
Low Freq Amplifier < 100 Hz
S
High Freq Amplifrer> 100 MHz
P
S
p
P
HF> 400 MHz Prrme General Purpose Amplifier
P
P
Low Noise Amp (10 Hz anI
p
S
S
P
S
low Noise Amp> 50 MHz
S
P
P
p
S
P
P
P
p
p
P
P
P
P
P
P
P
P
S
S
MIcrovolt AmplIfier
P
S
P
P
P
Low Leakage Diode
P
S P
S
P
P
P
P
S
P
P
P
P
P
Drfll Srngle Ended Inp Stag
S
Hrgh Slew Rate Diff Amp
S
S
p
Oscillator
S
P
P
Voltage Controlled Resistor
S
P
P
P
P
P
Analogi Digital SWitch
S
Multiplexing
P
P
P
P
P
P
P
P
P
P
P
P
P
p
p
P P
P
S
P
P
P
S
S
P
Choppers
P
P
p
Reed Relay Replacement
P
P
S
P
p
P
p
p
S
p S
S
P
P
S
p
p
p
p
p
p
p
p
p
p
P
p
P
P
P
P
p
P P
P
Sub pA Dual Drff Pair
P
Sample Hold
P
p
S
S
S
S
Buffer Interface to CMOS Matched SWitch
S
Current limiter Current Source
P
P
P
P
P
P
P P
S
P
Low Leakage Dual Diode
Hybrid Chips
P
P
P
S
Active Filter
S
P
P
P
P
P
P
p
P
S
P
Electrometer Preamp
< 1 5V
(j
PS8 PSCD NCl NKl NKM NKO OMCB iRMA HNZ MDN NBA DMCA/~
P
P
S
P
.,
P
P
S
AGC Amplifier
P
~~~
~
P
Dual Dlff Parr
Smoke Detector Input
...~ ~q)~
aDS'
t ~~f t:;~tJ~~
P
P
P
P
High Frequency Mixer
.J # ~~
'$!l.,"ljr l ? ll;f, '/;llli/l~'?", S
~J
<0 <0 ~.t
,>e;~ ...
~ ~"
~ t'\I~"'''z 1'\1 !':i " rJl J' ~"'~t::l'?$§~"1-
Popular Product Type
' ~~.§9 ~Cb.....
,~
nrc
f ~ct' ~. ~ ~r
Battery Operated Amp
~f; ~t
J-. '"
~
f$.~dl'll
p
S
LV
P
p
P
S
p
S
p
P S
S
P
LV
High Voltage Protection Diode
p
P
P
P
P
p
P
P
S
p
Military Application As an option, Sillconlx offers all hermetically packaged product processed to MIL·STD·750. For Information, contact your local Sfltconlx Sales Office or Silicon IX, Incorporated direct.
LV = Lrmlted
5-2
Silicanix
P e:;. PfJme Choice S
= Secondary (alternative) Choice Value
P
Small-Signal FET Product Selector Guide Application
Detail Application Audio Buffer Oifferential High Input Impedance High Frequency
AMPLIFIER
FET Input Op Amp Low Oistortion
Low noise (en). 9ls/gos Low IG. high 9ls Good matching VGS. 91s. lOSS. IG Very low IG (e.g .• MOSFET)
Preamplilier
Operate near 10ZO. high 91s/10 ratio High 9ls/Ciss ratio. NF
Commutators Oigital Integrator Reset Sample and Hold
Fast switching time ros/IO(off) switching efficiency LowC rss Fast switching time
Current limiting Relerence Current Source Biasing
Low goss. low VGS(off). high BVGSS
VOLTAGE CONTROLLEO RESISTORS
Gain Control Amplitude Stability Attenuators
High VGS(off) for wide dynamic range and low distortion
VHF
RF parameters. NF. high 9fs/Ciss ratio. 10wCrss
UHF Oouble Balanced
Class A OSCILLATORS Class C
;9Is/gos ; l> VOS/l> VGS @Io;const
ROS(on) VOS(on) 10(off) Switching Times
ROS(on) vs. Capacitance
9ls 90S lOSS max
Very low ROS(on). High lOSS Low Crss
CONSTANT CURRENT SOURCE
MIXERS
Voltage amplilication lactor I'
Unimportant FET Parameters
Good matching VGS. 91s. lOSS. IG High VGS(off) compared to signal ampliWoe Low VGS(off) Lowen. in. low I" noise. 10wNF
Analog Gates Choppers
Major Tradeolls
High 9ls/Ciss ratio. NF. RF parameters
Low Supply Voltage Low Noise
Video
SWITCHES
Important FET Parameters Required
lOSS vs. BVGSS
Matching characteristics Good 9fs at operating frequency Low Ciss lor VHF operation
9fs vs. Capacitance
Siliconix
Prelerred Parts 2N4339·40 2N4867·69 J230·32 J202·4 J30S-10 U308·10 2N5911·12 2N4117A·19A U401·6 U421·6 2N6905·7 2N6908·11 511000·20 511100 55T201·4 55T4416 55T30B·l0
S0210·15DE 5D5000 2N4091·3 2N4391·3 PN4391·3 Jl0S-l0 Jl05·7 U290·1 2N5432·4 2N4856·61 2N5114·16
91s. ROS(on). 10(011). VOS(on) switching times. RF para me· ters. capacitance
CRR Series J50Hl J552 Any J·FET
9fs. BVGSS. lOSS
VCR Series Any J·FET
rOS(on) VOS(on) 10(off)
U350 U430·1 U440·1·3·4 2N5911·12 U308·10 J30B·10 50210·15DE 5i8901 2N4416 PN4416 U308·10 J30B·10
5-3
-
Small Signal FET Application/ Parameter Importance Guide
!/iiJ;iiijlj/tiJ S' ~p
KEY PARAMETERS
\;:,.
~
Q;js,
Low Current Amplifier Low Freq Amplilier < 100 Hz High Freq Amplilier > 100 MHz HF ;:: 400 MHz Prime General Purpose Amplilier Low Noise Amp (10 Hz en) Low Noise Amp> 50 MHz High Frequency Mixer Dual 0111 Pair AGC Amplilier Electrometer Preamp Microvolt Amplilier Low Leakege Diode Low Leakage Dual Diode Smoke Detector Input Battery Operated Amp < 1.5V Dill/Single Eneed Inp. Stag. High Slew Rate Diff Amp ----Active Iilter Oscillator Voltage Controled Resistor Hybrid Chips Analog/Digital Switch Multiplexing Choppers Reed Relay Replacement Sub pA Dual 0111 Pair Sample Hold Buffer I nterfaee to CMOS Matched Switch Current Limiter Current Source High Voltage Protection Diode
,
....(!j
Min.
Max.
0
,
,
0
0
, 0
Max.
~(!j.::!!
Max.
0
'"
~(!j
Min. Max.
D (0)
,
,
~
'"
....Q
Max.
.
/' I' I' I' 71* I'
Min.
,
0
D
'/D
,
0
,
~
!'.>
0,0 ~~Q~
Max.
?
, (')
,
, ,
?
,
Max.
?
0
0
,
0
0
,
*
(')
, 0
· ? * 0
, , ,
,
,
,
, 0
,
·, ·
..
'/' /' I' /* /' I' '/*
'I
,
,
,
0
,
'/
(') (')
,
,
,
,
,
Max.
-..If
Max.
?
, ?
G G G
,
?
? D
,
·
?
,
·
D D D D
? D D
D
? ?
D
.
?
· ,
D
,
,
,
. 0
, 0
0
r
'/
0
0/
0
'/ 0/
,
I'
, (0)
0
./
or 'r
" 0
'/'
., 0
"/ - Indicates "Min"
I' - Indicates "Max"
D - Desired "nominal" limit - rarely critical
(0) _
Indicates Parameter in Parenthesis
G - Guaranteed by Ciss- C rss - 9,s- and device design
Siliconix
? ?
, ,
. 0
D 0
'/ ?
,
- Important FET Parameter - Required
,
./
0
·,
c.i~
Same as application area
(')
,
0
~
? ?
(*)
D
0<;
b
,
G
D
?
q,~
.
D D G
0
,
Min. Max.
~
If
§:'
~
:!::,f. \;:,.
0
? - Important lor some applications
5-4
o:~
0
,
e' q,~
~
0
0
·· · , ·
I' I'
(')
· 0
'/*
·, · ,
~
Min. Max.
I'
IfR(!j
g; ~
@I
...Q
I' I'
0 0
,
....Q
,
,
,
w ~ ,~~
';;/:
D
, 0
~
.....Q
~(!j
~
,..(!j
~
10
(5i
LIMIT
~
~
,
0
Application
Detail Application
Audio
AMPLIFIER
Important FET Parameters Required
Low IG. hIgh 91s
Differential
Good matching VGS. gls' lOSS. IG
High Input Impedance
Very low IG leg .• MOSFET)
High Frequency
High 9fs/C,ss ratio, NF, RF parameters
FET Input Op Amp
Good matching VGS. gls. lOSS. IG High VGSloff) compared to SIgnal
~
on Voltage amplification
factor JJ. = gl,lgos
::r o o
ROSlon) VOSlon) 10(011)
Low VGSloff)
IS
Low Noise
Lowen.Tn. low l/f nOlse,low NF
::r
Preamplifier
Operate near 10ZO. hIgh glsll 0 ratIo
= l>VOS/l>VGS@ 10 = canst
Video
HIgh gls/C"s ratIo. NF
Analog Gates
Fast sWitching time
Choppers
'OS/IOlofl) switching effiCIency
Commutators
LowC rss
Digital
Fast switching time
CD
n
..
o
ROSlon) vs Capacitance
Integrator Reset
Very low ROSlon). High lOSS
Sample and Hold
LowC rss
...
Switching Times
i... ...
91s 90S lOSS max
~
Current Limiting
CONSTANT CURRENT SOURCE
:z::
Low Supply Voltage
amplitude
SWITCHES
Unimportant FET Paramete ..
Low nOISe len I. gis/gas
Buller
Low Distortion
Major Tradeoff.
Reference Current
Source
Lowgoss.law VGSlaff)' hIgh BVGSS
IDSS vs BVGSS
91s. ROSlon)' 1010ff). VOSlon) sWltchmg times, RF parameters capacitance
BiaSing
. ~ .
i' C
VOLTAGE CONTROLLED RESISTORS
J>
Gain Control
Amplitude StabIlity
High VGSloll) lor WIde dynamic range and low distortion
"a
gls· BVGSS. lOSS
-"a_.
"U
Attenuatars
...o_.
VHF MIXERS
UHF Double Balanced
::a
RF parameters, NF. high 9fs/Ciss ratio, lowC rss Matching characteristics
'DSlon)
IDI
VDSlon) IDlolf)
OSCILLATORS
Class A
Good'9fs at operating frequency
Class C
Low C1SS for VHF operation
Silicanix
91s vs Capaci tance
5-5
.= ~ ...2
Preferred Parts
Basic Circuit" vp•
voo
-
Rz RO
f---o
.,0-- ..to,
Iii II.
30
I "..•
Voo" 15 Vss = -15
MU
MU
2K 330 330 2K 330 330 4.7K
Cs
RZ
Rt
n
20
82
R, E f es '::-
Rs
IV)
NF
47 11 100 1 100 1 0 47 11 100 1 100 0 1 1 Source ~
~
~
~
'00 mA
Ro n
(VI
5 8 8
lK 820 820 27K 15K 15K 0
15 15 3
6 8 8 5
·0
5 25 5.5 11
AV
8·11 9 19 18·24 15 33 097
Follower
2N4339-40 2N4867·69 J230·32 J202·4 J308·10 U308-10 U401·6 U421·6
.".
JFET Voltage Amplifier Stage Application Nota: TA70·2
.r.« !J on
2N4091·3 2N4391·3 PN4091·3 PN4391·3 J108·10 J105·7 U290·1 2N5432·4 SD210DE·215DE
s ' y o : a,
.!!..
8
.c
C E Q2
-16V
Shunt·Resistor Analog Switch Application Note: AN73·5
Ioc
e
Ilf---=O
a
CRR Series J501·11 J552·7
40V
.co
1Mt~.
RS
u:
RS
2W
Any J·FET
h
JR135V·240V
SjlA101mA
'---1~_--<)
29
Equivalent Circuit of a JFET Current Limiter Application Note: 0171·1
~=
V,
01:
o,~
zcc
v,
V2
V2
0,
••,
.
.A.
VCR Series Any J-FET
VH
Distortion Free Voltage Controlled Attenuato. (VCRI Application Note: AN73·1
U430-1 U44O-1-3-4 2N5911-12 U308-10 J308-10 2N4416 U350 S08901
Singl.Salanced VHF Balanced Mixer Application Note: AN72-1
v
(*~T
2N4416 PN4416 U308·10 J308-10
'vo
UHF Transmission Line Oscillator Application Note: 0173·2 *for further details see Application Notes, Index 5
5·6
Siliconix
""'1'1
JFET Geometry Selector Guide
~
fo :I
!
~ en
-" CD CD
o
USEFUL JFET INFORMATION
'"'
Q =
cqs + Cgd
c_.
Input Capacitance
Q.
CD COSS
=
Cds + Cgs + Cbd
Output Capacitance
CRSS
=
Cqd
Reverse Feedback Capacitance
10Z
=
lOSS
9fso
=
K
2 (...Q&L) VGS(off)
Variation of I(zero tc) with Gate Source Cutoff Voltage
lOSS
----
Forward transconductance a. a function of lOSS and VGS(off) at zero gate-source voltage
VGS(off)
gf.
=
9f.o(l-
(K
VGS
---I
= 1.5 to 2.5; typically = 2 for N-channel junction
F ET)
Vanatlon of 9fs with gate bias
VGS(off)
gl.
=
VGS(off)
=
Variation of 9fs with dram current
91.0 VI 011 OSS 2 lOSS ---
Gate-Source cutoff voltage in term. 01 lOSS and 91.0
9lso
VOS
~
VGS(off)
(~)
11,
Drain voltage at which drain current saturates
lOSS
1
rOS
""
-
Reciprocal relationship between drain-source resistance and forward transconductance. AcVGS(off) i.e, in the triode region
curate when VOS
91s (V GS(0ff)12
rOS
""
10
=
K
= 1.5 to 2.5
<
Variation of drain resistance in the triode region
KlOSS [VGS(off) - VGS I
lossh-~)
2 Variation of drain current with gate-source voltage. The square law transfer characteristic.
VGS(off)
5-7
-
CD
'1J
JFET Geometry Selector Guide (Cont'd)
"!.
N-Channel JFETs
.-::t u .CD CD
-en
..
~
CD
E 0
CD
"..,... l-
II.
~
-'
~
-10
OJ
"~
0/'",
-5
~
0
>
It
e
-2
. u u a:
-1
:>
:> 0
-0.5
~
-0.2
"
v
~
~... ~ .. ~
~
~.~
I
i~r
1111
~ :
1.0
0.1 IpSS -
v
W)
m
-0.1 0.01
IlH
~
10
1000
100
SATU~ATION P~AIN CU~RENT
~
'OS(ool- STATIC DRAIN·SOURCE ON RESISTANCE (OHMSI
140
~
-10
~
-5.0
It
-2.0
'"
g
10K
(mA)
~
I'j-
:Zw ~~
100
gg
so
~~ Le
6.
8~
-1.0
u
a:~
120
-0.5
~~ lK
10
gil. - COMMON· SOURCE FORWARD TRANSCONDUCTANCE (.mhos)
4.
i~ g!
3.
1 kHz
a:w
00
10 kHz
~~
0--'
ilig
19Hz 100 Hz
20
=
68nV/JHi
t:::::J
i
10
I~!
~~;~zi~ii~i~ N
z z
5-8
~ § ~
-'w
~5 ::>z :ilS
I'j
i
c:::::J
enQVos·10V VGS-o
I
.1·.
IIIIIII
lK
goo. - COMMON-SOURCE OUTPUT CONPUCTANCE ",mhoa)
i LEGEND
100
40
2.
aVGSS @ IG = -, .A VDS - 0
I
20
Of. @VOS = 10V VGS=O
'5 10
40pF 1SOpF
.i w
C,...@VOS=1OV
Vos=O
m a:1'j
n U
~I
HqUpn~ Z
Ii z
Z
~
JFET Geometry Selector Guide (Cont'd)
"II
= o :I ..-<.. Ci) CD
P-Channel JFETs
CD
ii)
~
0 ~ w
"~ 0
.,J 1
::>
0.5
a:
PSCB
1=
"
>
0.1 -0.1 lOSS -
-10
-1.0
-100
0 w 0
a:
::> rOSton) @ '0 '" -10 p.Y
~
YGS = 0 VaS!oll) @ VOS ~ - 10 V 10:: -1 p.A
SATURATION DRAIN CURRENT (rnA)
0.1
100
10
~
0;-
W
""I
PSCB I glao @
10
0.1
~
0.1 9'80 -
"
>
PSAlPSB
Vos = -10 V VGS '" 0 I" 1 kHz VaS!oll) @ VOS ~ -1 OV
lf-
0;-
rOS(on) - STATIC DRAIN-SOURCE ON RESISTANCE (OHMS)
"
>
0.5
I-
10K
lK
1
g
0
"I
.
" G
0 I-
::>
PSAIPS B PSCB
1=
:z
~
~
a:
0.5
~
::>
:z 0;-
1
II
l::
~
::> 0 w 0
CD CD
0
0 I-
PSAlPSB
-
5
>
> ~
::>
0 w 0
CIt
10
"~
5
0
lL
0 I-
0 ~ w
10
"~
5
>
"I
~
~
0 ~ w
l::
0
ii)
ii) 10
= -1
1
Ci) C
-. a.
p.A
100
10
CD
COMMON·SOURCE OUTPUT CONDUCTANCE (/-Lmhos)
ii)
~
0 ~ w
""~
80
10
,,~
00 to?!! Ww
~
~ ~
::>
0 w 0
0.5
i=f--
:z ~
"
PSCB
g088 @ YOS = -10 V Vas'" 0 t = 1 kHz VaS!oll) @ VOS ~ -1 OV 10 = 1 p.A
0
>
:;~
PSAlPSB
a:
i0;-
~~
0.1 1 gOIl -
100
10
I
60
~"
if'
I
::>
"I
Vos=O
o~
>
0
lK
,,0 0> O:z >-;0 1-0
40
~~
10Hz
100Hz
60
1 kHz
"'w 0" :x: " ...zO
~I~
I
10kHz
= = =
en@Vos=-10V VGS= 0
40
w>
~w ,,~
~o
10
iil" ,,:;;
-
LEGEND
1--
",I-
0
l-
80
BVGSS@IG= lilA
w _
5
"z 0 ... w::>
20
20
~
f~C=~
iii~
0
0
PSAlPSB
PSCB
PSAlPSB
COMMON-SOURCE OUTPUT CONDUCTANCE (p.mhos)
~
40
0 z
VGS"O
;'!
...~ "~
w 0
~
>-" Ww "'0 wz 0"
30
4
00 ~a: :ow O~ o~
,0
1:1
2
,J~
0 0
I ~
-
6
"' ... ~~ z"
20
:0 :0
0
Cr1S@VOS=-10V VGS=O
w
ffiu::
"'"0
"0z
-
8 C.u@VOs=-10V
0
n PSCB
0
PSAlPSB
~
PSCB
Siliconix
PSAlPSB
5-9
'!'
N &FI-Channel Single FETs
o
~n
-ncn
"'II
l> -i Z C
-r ' m !'l>
" ;: ",
m
"
m il'
o
:J
)C'
.... l>
z 0
~
"'II
On
2N4117 2N4117A 2N4118 2N4118A 2N4119 2N4119A PN4117 PN4117A PN4118 PN4118A PN4119 PN4119A PN4120 FN4117 FN4117A FN4118 FN4118A FN4119 FN4119A FN4392 FN4393
N N
72
N N N N N N N N N N N N N N N N N N N
72 72 72
2N4220A 2N4221 A 2N4222 2N4338 2N4339 2N4340 2N4341 2N4B67 2N4B67A 2N4868
N N N N N N N N N N N N N N
72 72 72
2N4B6BA 2N4869 2N4B69A 511000· (2N6908i 511010(2N6909) 51102012N6910)' 511100· 12N6911) J230 J230·18 J231 J231·18 J232
72
72 92 92 92
92 92 92 92 72
72 72
72 72
72 18 18
;:r" l> .... m
xc;)
x~~
-.m
'",
-l> c;) m
-< ....
'<0:1:
;:'" l>l>
-"'II
Gate 001 0.001 001 0.001 001 0001 0.01 0001 0.01 0.001 001 0001
:....~o Chnl
-
-
.
0005 0.001 0005 0.001 0.005 0.001 01 01
0.1 0.1
72 72 72 72 72
01 0.1 01 0.1 0.1 0.1 01 0.25 0.25 025 0.25 025 0.25 0,025
N
72
0,025
N
72
0.025
-
18 18 18 lB
72
72
N
72
0025
N N N N N
92 92 92 92 92
025 025 025 025 025
r 0
-
-
-
-
-
-
-
-
:; Z
1.8 18 30 30 6.0 6.0 - 40 - 40 ·40 ·40 - 40 - 40 - 40 - 40 20 - 40 20 40 60 40 40
40 40 40 40 40 40
40
30 30 30 50 50 50 50 40 40
60 80 10 18 30 60 20 20 3.0 30 5.0 50 18
40 40 40
40 40 40 40 30
-Zl> "3 ccn OZ ~
Z
~~m <
•
;:l>C l>Q-I X-I '-l>
00: 00: 0.0" 0.0" 02 02 003 0,03 008 008 02 0.2 0.2 003 003 0.08 008 0.2 0.2 25 5.0 05 2.0 50 0.2 05 12
JO 04 04 10 10 25 25
Max.
Mm,
009 009 024
70 70
024 06 06 0.09 009 024 024 0.6 06 0.6 0.09 02 0.24 04 0.6
90 100 100 70 70 80 80 100 100 100 70 10 80 80 100 100
12
80
Max. 210 210 250 250 330 330 210 210 250 250 330 330 330 210
210 250 250 330 330
100 60
30 GO
1000 2000
15 06 15 36 90 12 12 30 30 75 75 2.0
2500 600 800 1300 2000 700 700 1000 1000 1300 1300 100
4000 5000 6000 1800 2400 3000 4000 2000 2000 3000 3000 4000 4000 3000
N
;:.
n
m
Gate fl
-
3 3 3 3 3 3
-
-
-
-
-
-
-
3
-
-
-
-
-
60 100
6
2.5 25 25 1'0 10 10 10 20 10 20 10 20
1M 1M 1M 1M 1M 1M 1M
3
3
-
6 6 7 1
7 7 25 25 25 25 25 25 5
10
-c;)
l> Z n m
o·!lo;: , m
-
-"<
Chnl Max
n.
-
NT
..
NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NCB NCB
.
-
3K 3K
3K 3K 3K 3K 3K 3K
3K
3K 14 14
-
NPA NPA NPA NPA NBA·A
30
3.5
400
3500
5
25
-
30
50
1200
4000
5
25
-
-
NBA-A
2.8
30
-
25
NBA·B
40 40 40 40 40
-
30 30 30 30 30
-
-
30 30 50 5.0 60
-
1000 1000 1500 1500 2500
2500 2500 3000 3000 4000
I
rr
mo
~::-::
» G) m
-
NBA-A
-
-
1
NPA NPA NPA NPA NPA
a
_. n
en
CO J
-m-n 0
.....
...
."
0 0.
... C
0
en
"0 (1)
NPA NPA
2.3
30 30 60 60 10
m
NPA NPA NPA
3.5
0.7 07 2.0 20 5.0
i'i
NRL NRL NRL NPA
-
25
0
m
<
... -1
-
-
3
&'m
-
..
iii
....
0
l>;:r xl>-i ,-Xl> '-c;) ~ m
Z
Min.
"mcn
~
~~~
....
-l> Z n m
0
•~~2 en
-n-
an'
........
;:rm l> .... l> .xl>'" c;) 0 -mo
en
....
V:-OJJ
3Cl> l>" .... -"c m" Zl>
r
0
::-:: Z
0
en
m
0 --.
--.
~
0
a..... _.
0
::J
en -
N & P-Channel Single FEls ~
"
-'I Z c 3: CD m
o
J sC'
Cjl ....0.
-"II
"II
Gate
Chnl
J232-18 J270-18
N P
92 92
0.25 0.2
-
2N3819 2N3823 2N4223 2N4224 2N4416 2N4416A 2N5484 2N5485 2N5486 2N5668 2N5669 2N5670 J210 J211 J212 J270 J271 J300 J304 J305 J308 J309 J310 MPF102 MPF108 MPF112 PN4416 U30B U309 U310 U311 U312
N N N N N N N N N N N N N N N P P N N N N N N N N N N N N N N N
92
2.0 0.5 0.25 0.5 0.1 0.1 1.0 1.0 10 2.0 2.0 2.0 0.1 01 0.1 0.2 02 0.5 0.1 0.1 1.0 1.0 1.0 2.0 1.0 100 1.0 015 0.15 0.15 015 0.1
Z ~
72 72 72 72 72 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 52 52 52
72 52
Min.
Min.
Max.
6.0 2.0
40 30
5.0 2.0
10 15
2500 6000
4000 15000
8.0 B.O B.O 8.0 6.0 6.0 3.0 4.0 60 40 60 8.0 30 4.5 6.0 2.0 45 6.0 6.0 3.0 65 4.0 65 7.5 8.0 10 6.0 60 40 6.0 6.0 60
25 30 30 30
2.0 4.0 3.0 2.0 5.0 50 10 40 B.O 1.0 4.0 80 2.0 7.0 15 20 60 6.0 5.0 1.0 12 12 24 2.0 1.5 1.0 5.0 12 12 24 20 10
2000 3500 3000 2000 4500 4500 3000 3500 4000 1500 2000 3000 4000 7000 7000 6000 BOOO 4500 4500 3000 BODO 10000 BOOO 2000 2000 1000 4500 10000 10000 10000 10000 6000
6500 6500 7000 7500
30 35 25 25 25 25 25 25 25 25 25 30 30 25 30 30 25 25 25 25 25 25 30 25 25 25 25 25
20 20 lB 20 15 15 5.0 10 20 5.0 10 20 15 20 40 15 50 30 15 8.0 60 30 60 20 24 25 15 60 30 60 60 30
;..~a
-
-
-
-
-
-
-
-
-
-
-
-n-
~?if('
-
-<-'I :::0:1: 3:1""" »-'lm X»UI
-'I» On ';0: -» Gl m
"
m 0'
s·~ »m - » 3:;0: »» x Gl ;..m
'"&:'021 n-'l -Zl> 1: oz
-nUl 3Cl> l>,,-'I -"c m" z»
I"" 0
~~~
!)!
-I::!
Z n m
0 Z
Max.
7500 7500 6000 7000 BOOO 6500 6500 7500 12000 12000 12000 15000 1BOOO 9000 7500
20000 20000 18000 7500 7500 7500 7500 20000 20000 lBOOO 20000 10000
3:»C »!2-'1 X-'l ;..» Z n m
-
~m
-
-
5.5
7.5 7.5 7.5 7.0 65
Ul
iii
Gate
-
-
-
lK lK
-
-
2.0 2.0 3.0 2.0 20 25 2.5 25
lK lK lK lK lK lK lK lK
-
-
-
-
-
-
2.5
1M
-
-
-
-
40 7.5 75 75 75 50
20
lK
-
-
-
-Gl K'm llo o· 3: ::1m ... -'1
-'I » Z n m
2.5 5.0
-
3
"
m
fl.
30
B.O 6 6 6 4 4 5 5 5 7 7 70
en
--z Z"o .."TI ~ iii ,,"~m ..ttl ~ < 3:- 0 »3:1"" .x»-'I x» -;..Gl
-
Chnl fl.. Max.
-
-
-
-
-
-
-
-
-
-"<
Q 0 m < m
n
-
• en _.
NPA PS-A/B
to
NRL NRL NRL NRL
-
NH NH NH NH NH NH NH NH NZF NZF NZF PS·A/B PS·A/B NZF NH NH NZB NZB NZB NH NH NH NH NZB NZB NZB NZB NZF
::::J Q
m "..... ::Il
"
l>
s:
"r "::Ilm
(I)
en "C CD 0-.
_.0
-Il
Q .... _.
0
::::J
en
-0 0
::::J .... ..
-
a.
C{I .....
N & P-Channel Single FETs
N
..,
» -I 2 c: s: III m
-.-
"
" 2N3824
m ir oj
5('
2N3970 2N3971 2N3972 2N4091 2N4092 2N4093 2N4391 2N4392, 2N4393* 2N4856 2N4856A 2N4857 2N4857A 2N4858 2N4858A 2N4859 2N4859A 2N4860 2N4860A 2N4861 2N4861A 2N5018 2N5019 2N5114 2N5115 2N5116 2N5432 2N5433 2N5434 2N5638 2N5639
" m }>)>
-.., -I»
~
On ',0: -» CI m
N N N N N N N N N N N N N N N N N N N N N N P P P P P N N N N N
72 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 lB 18 18 18 52 52 52 92 92
2 0
-<-I :Co:t S:.-" »-Im x»'"
s:,o: »» XCI .:..m
Gate 0.1 025 0.25 025 0.2 0.2 02 01 0.1 0.1 0.25 0.25 025 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 2.0 2.0 0.5 0.5 0.5 0.2 0.2 0.2 1.0 1.0
Chnl 0.1 025 0.25 0.25 0.2 0.2 0.2 0.1 0.1 0.1 0.25 025 0.25 025 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10.0 10.0 0.5 05 0.5 0.2 0.2 0.2 1.0 1.0
.:..~~ ... 0
8.0 10 5.0 30 10 7.0 5.0 10 5.0 3.0 10 10 6.0 6.0 40 4.0 10 10 6.0 6.0 4.0 4.0 10 5.0 10 6.0 4.0 10 9.0 40 12 8.0
-
'"iiro:u n -I -2» l:: 02
-n'" 3c:» »,,-1 -"c: m" 2» -I:! 0 2 Min.
50 25 5.0 30 15 8.0 50 25 5.0 50 50 20 20 8.0 8.0 50 50 20 20 8.0 8.0 10 5.0 30 15 5.0 150 100 30 50 25
~~cp
!~
2 n m
Max.
Min.
-
-
150 75 30
-
-
-
-
Max.
-
-
150 75 30
-
--
-
-
-
-
100 100 80 80
-
-
-
-
-
100 100 80 80
-
-
-
-
-
-
-
-
-
-
-
-
-,
-
90 60 25
-
-
-
-n~~~ ~»c: »!:!-I X-I :..» 2 n m 60 25 25 25 16 16 16 14 14 14 18 10 18 10 18 10 18 10 18 10 18 10 45 45 25 25 27 30 30 30 10 10
en
--2 2"0
'
'"
8i~m <
iii
S:' 0 »s:.x»-I
2 m
n
.:..~~ ~
-
-
-
-
-
-
-
n
n,Max.
-"-<
-
250 30 60 100 30 50 80 30 60 100 25 25 40 40 60 60 25 25 40 40 60 60 75 150 75 100 150 5.0 7.0 10 30 60
NRl NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB NCB PS-AIB PS-A/B PS-AIB PS-A/B PS-AIB NIP NIP NIP NCB NCB
--
-
-
-
-
-
-
-
-
-
-
-
-
-
Chnl
Gate
-
-
-CI i'm !l0 ci' s: " m .-1
~
N
om
3
"m
.."TI~fij
-
-
-en_.• --n0m 0
0 m <
n m
(Q
::J
....
en
~
"C
:J:
CD 0
m
en
-III
Q.O
0 0
=i (")
(")
:::t 0 "tI "tI
m
::0
en
_. _.
_.
~
0
::J
-0
en
0
..
::J
~
I
'FN4392 and FN4393 available
,
c.
~
N & P-Channel Single FETs -r"m !>l> 3:'" )ol> XCI :...m
."
l> :D ~
Z c: i!: III m :D
~ 0' o :::J
5('
2N5640 JI05 Jl05·18 JI06 JI06-18 JI07 JI07-18 Jl08 Jl08-18 JI09 Jl09-18 Jl10 JIIO·18 Jll1 J111-18 J112 J112-18 J113 J113-18 J174 J174-18 J175 J175-18 J176 J176-18 JI77 JI77-18 Pl086 P1OS6-18 Pl087 Pl087-18 PN4391 PN4391-18 PN4392 PN4392-18 PN4393 PN4393-18
-."
~l>
-<~
:C:e:t ==r-:D l>~m Xl>'"
."
00 '", -l> CI m
Gate
Chnl
rC
N N N N N N N N N N N N N N N N N N N P P P P P P P P P P P P N N N N N N
92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
1.0 3.0 3.0 30 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0' 3.0 1.0 1.0 1.0 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 20 20 1.0 1.0 1.0 10 1.0 10
1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 100 100 1.0 10 1.0 10 1.0 1.0
6.0 10.0 10 6.0 6.0 4.5 45 10 10 6.0 6.0 4.0 4.0 10 10 5.0 5.0 3.0 3.0 10 10 6.0 6.0 4.0 4.0 2.25 2.25 10 10 50 50 10 10 50 50 30 3.0
Z 0
~
:...~6
(,)
I
-
~l> .Xl>'" CI C -me
:E Z
30 25 25 25 25 25 25 25 25 25 25 25 25 35 35 35 35 35 35 30 30 30 30 30 30 30 30 30 30 30 30 40 40 40 40 40 40
ut02l
-l> Z 0 m
Z
Max.
Min.
Max. -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100 100 60 60 25 25 20 20
-
150 150 ,00 100 60 60
-
-
-
-
'
x~
-
-
:n~rn
3:l>C: l>!:!~
-
-
-0-
~~~
a!ll
e
5.0 500 500 200 200 100 100 80 80 40 40 10 10 20 20 5.0 5.0 20 2.0 20 20 7.0 7.0 2.0 2.0 1.5 1.5 10 10 50 50 50 50 25 25 50 50
zs~
-Zl> cz 3c:",
1:
~:!
Min.
en
'" O~
-0'" 3 c: l> l>:D~ -:DC: m:D zl>
-
-
-
-
-
-
:...l> Z 0 m 10
-
:D m ", iii
~~m <
~
N
l>
3:' 0 l>S:r-
Z
0 m
?<~~
-:...CI ~m
Gate
n
n.Max.
-
-
-
100 30 3.0 60 6.0 8.0 80 80 8.0 12 12 18 18 30 30 50 50 100 100 85 85 125 125
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
45 45 45 45 14 14 14 14 14 14
...
Chnl
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-CI !em lto o· 3: " m ~ -:D
250 250 300 300 75 75 150 150 30 30 60 60 100 100
<
NCB NVA NVA NVA NVA NVA NVA NIP NIP NIP NIP NIP NIP NCB NCB NCB NCB NCB NCB PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B NCB NCB NCB NCB NCB NCB
3
-en• 0
C m
<
nm
--
(Q
:::J
0
."
....m
en '0 ~
::j 0
::t m
en
1/,0
0
::t 0-g
-g
m
:Jl
en
(I)
0
-_.
~
0 0
...._.
0 :::J en "'""' 0 0
......
:::J
0-
~
C{I
.....
N & P-Channel Single FETs
"" -,...
"U
l> -i Z C
" ;;:
III
m
"
m 0' oJ
>C'
50210 50211 50212 50213 50214 50215 U200 U201 U202 U290 U291 U304 U305 U306 U1897 U1897-18 U1898 U1898·18 U1899 U1899·18
" m !'l> ;;:;< l>)> x Gl ,-m
-"U
Z Q ."
N N N N N N N N
N N N
p P p N N N N N N
-il> ';< -l> Gl
00
m
72 72
72 72 72 72
18 18 18 52 52 18 18 18 92 92 92 92 92 92
-<-i
:<0:1:
;;:,..."
l>-im xl>!i!
!..~o ,...
Gate
Chnl
100 100 100 100 100 100 1.0 10 1.0 1.0 10 05 05 05 04
100 100 100 100 100 100 1.0 1.0 1.0 1.0 1.0 0.5 05 05 02 02 02 02 02 02
OA 04 04 04 04
:8~
-om 3Cl>
a
--il> xl>;< . Gl a -mo :;. Z
~~2
30
30 10 10 20 20
30 30 30 30 30 30 30 30 40 40 40 40 40 40
z
10 10 10 10
10 10 3.0 15 30 500 200 30 15 50 30 30 15 15 8.0 80
~l>C
-l> Z 0 m
0
Min.
-o-
~~~
a~1
m" zl> -i-i
:0::0"
2.0 2.0 2.0 20 20 2.0 30 50 10 10 4.5 10 6.0 40 10 10 70 70 50 50
-Zl> "3 oz cm
l>!2-i X-i !..l> Z
Max.
Min.
Max~
-
-
-
-
-
..
-
-
25 75 150 -
-
-
..
..
.. -
-
-
-
90 60 25
-
-
-
-
-
.-
-
..
-
.
.. -
_. -
-
-
0
m
5.5 5.5 5.5 5.5 5.5 5.5 30 30 30 60 60 27 27 27 16 16 16 16 16 16
en
--z Z"o ."T1 ~ Ui
iii -i l>
m
'-~I!;
-
Chnl n, Max.
-"<
-
70 70 70 70 70 70 150 75 50 25 7.0 85 110 175 30 30 50 50 80 80
OMCB·B OMCB·A OMCB·B OMCB·A OMCB·B OMCB·A NCB NCB NCB NVA NVA PS·A/S PS-AiB PS·A/B NCB NCB NCB NCB NCB NCB
n -
-
-
-
-
-
-
-
.
-
..
-
.. ..
.. ..
..
..
..
.. -
-
..
..
"~-i m
Gate
-
-
o·~o;;:
0
-en_. Q
f~
z
l>;;:"" xl>-i Qm
3
"mm
;~m ;;:.N a<
•
am <
0m
0
(Q j
-
0 -n
~~
0 "U-I
"U 0 mZ :::JJm t/)t/)
~
m .....
en
"0 (I)
_ 0 .... _.0 0.
...... _.
Q
:J en
0 0
......
:J
-
a.
------------
N & P-Channel Single FEls
...l>
:Il -i Z c:
s::m
m :Il
m ir o
J )C'
2N3821 2N3822 2N4220 2N4221 2N4222 2N5457 2N5458 2N5459 J201 J201·18 J202 J202·18 J203 J203·18 J204 J204·18 J270 J271·18 MPF109 MPFlll PN4302 PN4302·18 PN4303 PN4303-18 PN4304 PN4304·18 PN5163
z 0
... ~
N N N N N N N N N N N N N N N N P P N N N N N N N N N
~~ ;;:;0:
-00 ... -il>
l>l> XCI .m
-
';0:
-l> CI m 72 72 72 72 72 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
Gate
Chnl
0.1 0.1 0.1 0.1 0.1 1.0 10 1.0 01 0.1 01 01 01 0.1 0.1 0.1 02 02
-
1.0 100 10 1.0 10 1.0 1.0 1.0 10
-
-
-
-
-
-
-
-
-
-
-O::-i ,:c:0J: ;;:r-:Il l>-im xl>~ :...~o r-
:;;
8.0 10 4.0 4.0 6.0 60 10.0 10 8.0
Z
I
50 50 30 30 30 25 25 25 40 40 40 40 40 40 25 25 30 30 25 20 30 30 30 30 30 30 25
0.5 20 0.5 2.0 5.0 1.0 20 40 02 02 09 0.9 40 4.0 1.2 1.2 6.0 60 05 0.5 0.5 05 4.0 40 05 05 10
~~~
~~
aZ
Min.
zS'iS
-0-
6(')1
m:ll zl> -i-i
.0000:ll ;;:r-m l>-il> xl>;O: . ClC -mo
C
40 6.0 40 6.0 8.0 6.0 70 8.0 15 15 40 4.0 10 10 20 2.0 45 45
~~~
-o::m
en
'";;rO:ll O-i -Zl> "oz 3c: m
-om 3C:l>
- r-
!
z 0 m Max.
Mm.
Max .
25 10 3.0 60 15 50 90 16 1.0 100 4.5 45 20 20 3.0 3.0 50 50 24 20 5.0 50 10 10 15 15 40.0
1500 3000 1000 2000 2500 1000 1500 2000 500 500 1000 1000 1500 1500
4500 6500 4000 5000 6000 5000 • 5500 6000
-
-
-
-
-
-
-
8000 8000
18000 18000
800 500 1000 1000 2000 2000 1000 1000 2000
6000
-
9000
;;:l>C: l>£1-i X-i :...l> Z 0 m 6 6 6 6 6 7 7 7 50 50 50 5.0 50 50 50 50
-
NO:: •~~m ;;:. 0 l>;;:rxl>-i
:...~I!i
om
Gate n
~
200 200
3.0 3.0 3.0
I
1M 1M 100M
-
-
-
-
-
-
3
:Il m m iii -i l> z 0 m
...,,~Cii
W~ g. ~
Chnl n.Max.
-
-
-
-
-
-
-
-
-
-
-
25
1M
-
-
-
6 60 6 60 6 6.0 20
2.0 2.0 20 2.0 30 20 50.0
1M 1M 1M 1M 1M 1M
-
-
-
70
::I m ... -i -:Il
-
-<
I
NRL NRL NRL NRL NRL NRL NRL NRL NPA NPA NPA NPA NPA NPA NPA NPA PS·A/B PS·A/B NRL NRL NPA NPA NPA NPA NPA NPA
-
0 m
0::
n m
-a
-en_.•
c.o
:l
-a-n m
.....
G)
en "0
m Z m
CD 0
» r
~
:0 "tI
C :0 "tI
0 en m
_._.
... -0 ..... 0
a_.
0
::::J
fn
0
:l
Co
~
(]I
----
I
C[I
......
N-Channel Dual FEls
Ol "0
~
"
l> :II -I 2
C
;: III m :II
2N5196 2N5197 2N5198 2N5199 2N5545 2N5546 2N5547
m 0' o
J )C'
2N6905 2N6906 2N6907 U401 U402 U403 U404 U405 U406 U421 U422 U423 U424 U425 U426
U427
;>; l> CI
'"
Z
::j
51
-
" N N N N N N N N N N N N N N N N N N N N N N N
U42B
N
2N5515 2N5516 2N5517 2N5518 2N5519 2N5520 2N5521 2N5522 2N5523 2N5524 2N6905 2N6906 2N6907 U401 U402
N N N N N N N N N N
N N N N N
9 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71 78 78 78 78 78 78 78 78 71 71 71 71 71 71 71 71 71 71
71 71 71 71 71
- .... !>l> "",
;:;>; l>l> XCI .m
-=-Gate
0025 0025 0.025 0.025 01 01 01 0.Q15 0.Q15 0.015 0025 0025 0025 0025 0025 0.025 0001 0001 0001 0003 0003 0003 0.005 0.005 025 0.25 0.25 0.25 025 025 0.25 0.25 0.25 025 0.Q15 O.ot5 0.Q15 0.025 0.025
~g~
-om 3Cl>
'"
l>:II-I -:II C ",:II 2l>
:...~S
xl>;>; . CI 0 -"'0
2
0
2
-<-I :'0:1: ;:.-:11 l>"'''' Xl> In
....
40 40 4.0 4.0 4.5 4.5 45 2.5 2.5 2.5 25 2.5 2.5 2.5 2.5 2.5 2_0 2.0 2_0 30 30 30 20 30 40 40 40 40 4.0 40 40 40 40 4.0 2.5 2.5 2.5 25 25
-
;: .... l> ... l>
:E
Mm,
50 50 50 50 50 50 50 35 35 35 50 50 50 50 50 50 40 40 40 40 40 40 40 40
07 07 0.7 0.7 05 05 05 0.5 0.5 0.5 05 05 05 05 05 05 006 006 006 006 006 006 006 006
40 40 40 40 40 40 40 40 40 40 35 35 35 50 50
05 05 05 05 05 05 05 05 0.5 0.5 0.5 0.5 0.5 05 05
-0"... ." l> 2...
g-o'
......0
:,;~~ l>_
~i! 2 0 m
Max. 70 70 70 7.0 8_0 8_0 80 10 10. 10 10 10 10 10 10 10 10 10 10 18 1S 18 18
L8 75 75 75 75 75 75 75 75 7.5 75 10 10 10 10 10
Mm.
1000 1000 1000 1000 1500 1500 1500 2000 2000 2000 2000 7000 2000 2000 2000 2000
300 300 300 300 300 300 250 250 1000 1000 1000 1000 1000 1000 1000
...
--2 2" 0
-2l> "3 ccn 02
MdX.
-
-
-
-
-
1500 1500 1500 1500 1500 1500
-
-
-
-
1000
-
1000 1000 2000 2000 2000 2000 200&
-
-
-
-
X'" :...l> 2 0 m
60 60 60 60 6.0 60 60 8.0 8.0 8.0
SO 80 :")0 of)
ao ::-;0 30 30 30 30 30 30 3.0 30
25 25 25 75 75 25 25 25 25 25 8.0 8.0 8.0 8_0 8.0
:n~Cii
Cl."
m In
!! '" 20 20 20 20 200 200 200 15 15 15 20 20 70 20 20 20 10
10 10 10
10 10
-
30 30 30 30 30 15 15 15 15 15 15 15 15 20 20
Static Match [mV, Max.l 50 50 10 15 50 10 15 5 15 25 50 10 10 15 70 40 10 15 7b
III 15 25 25 40 50 50 10 15 15 50 50 10 15 15 5 10 25
5.0 10
I'm g.~ ",. ...m -:II
lit ...
0 .... 0
:...~~
-CI
:To'"
:r
;:' 0 l>;: .... xl>'"
3
20c
-2-1 "3cc 0 ...
:II
!"~l~
en
.. 00
:I:
Temp Tracking ~Vf C 50 10 20 40 10 20 40 10 25 50 10 10 25 25 40 80 10 25 40 10 25 40 40 80 50 10 20 40 80 50 10 20 40 80 10 25 50
10 10
' l> ;:2 l>0 X'" :... 50 50 50 50 25 25 25
-
20 2.0 20 20 20 20 05 05 05 10 10 10 30 50 10 10 10 10 10 10 10 10 10 10
m
Nap Nap Nap Nap Nap Nap Nap NNR
20 20
NNA NNR
-en I
-.
(Q
::J
-m C
r
NN'" NNR NNR NNR NNA NNR NNR NNR NNT NNT NNT NNT NNT NNT NNT NNT
-
-
(;
-<
Nap NOP NOP NOP Nap NOP Nap NOP Nap Nap NNR NNR NNA
-
0
'"<
C
0
:E
r
m l>
"l>
C)
m
-n
-I
en
"tJ (I)
0-. .... -. 0 C
.... -. 0 ::J
(I)
r
0
~ Z
0
en
m
",.......
0 0
......
:J
a.
~
-----
--------
N-Channel Dual FETs ." ~
." ~
n
...'"
z c: li: III m
:II
m 0'
oj
X'
~
2
!!
-r
'" ~
}a~
m
li:'"
~~
Cl
... -",c:
-< ... -
:=:OJ: ,<0'" rm li:r:ll li: ~ ~ ~ ... m
::; x Cl x~'" C? ~ =-~S r
......i5
...
-
0.025 0.025 0.025 0.1 0.1 01 0.1 0.1 0.1 0.15 0.15 050 0.50 5 .5
2.5 2.5 2.5
50 50 50
3.0 3.0 3.0 50 5.0 50 40 6.0 6.0 60 6 6
40 40 40 25 25 25 25 25 25 25 25 25
0.5 05 05 50 50 50 70 7.0 50 12 24 6.0 60 60 60
N N N N N N N N N N N N N N N N N N N N N N N N N N
71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
1.0 1.0 91 01 0.1 01 01 01 0.1 0.25 025 0.25 01 0.1 01 1 1 1 01 01 0.1 01 0.1 0.2 02 02
3.0 30 45 4.5 45 45 45 45 4.5 45 45 4.5 4.5 45 4.5 30 30 30 45 45 45 45 45 35 35 35
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 40 40 40 50 50 50 50 50 40 40 40
10 1.0 0.5 05 05 05 05 0.5 0.5 0.5 05 05 0.5 05 0.5 5 5 5 05 05 05 0.5 0.5 0.5 05 0.5
10 10 50 50 5.0 50 5.0 5.0 50 80 80 8.0 50 5.0 5.0 50 50 50 5.0 5.0 5.0 50 5.0 60 6.0 60
N
71
01
30
-40
5
60
N N N
2N5564 2N5565 2N5566 2N5911 2N5912 U257 U430 U431 U440 U441 U443 U444
N N N N N N N N N N N N
2N3921 2N3922 2N3954 2N3954A 2N3955 2N3955A 2N3956 2N3957 2N3958 2N5045 2N5046 2N5047 2N5452 2N5453 2N5454 DN5564 DN5565 DN5566 U231 U232 U233 U234 U235 U410 U411 U412 DN5567
71
-...I
I
~~~
i:~C:
~!2'"
n
z
71 71 71 71 71 71 78 78 78 99 99 71 71 78 78
U404 U405 U406
Z
0
-n-
~~cp
Min.
Max. 10 10 10 30 30 30 40 40 40 30 60 30 30 30 30
2000 2000 2000 7500 7500 7500 5000 5000 5000 10000 10000 4500 4500 4500 4500 1500 1500 1000 1000 1000 1000 1000 1000 1000 1500 1500 1500 1000 1000 1000 7500 7500 7500 1000 1000 1000 1000 1000 1000 1000 1000
Min .
-
x'" z n m
'-~
m
M.ue.
-
-
-
-
9000 9000
-
-
-
12500 12500 12500
-
-
-
80 8.0 80 12 12 12 30 30 50 75 7.5 35 35 35 3.5 18 18 4.0 4.0 4.0 4.0 40 40 40 80 8.0 80 4.0 40 4.0 12 12 12 60 6.0 60 6.0 60
7.0
:n"::r.;; ~~m< '
N
li:'
Static Match (mV, Max.) 15 20 40
50 50 50 20 20 30 12 10
50 10 20 10 15 100
2.0 20 0.5 0.5 05 05 05 05 05 200 200 200 20 20 20 50 50 50 80 80 80 80 80 13 13 13
-
r
'
~
...
gm :.,
~n
Temp Tracking .Vt'C
_:II
xm
<
'-
NNR NNR NNR
-
20 20 20 45 45 45 100 100 150 150 150 200 200 200 200
10 25 10 50 25 15 50 75 100 67 133 200 50 10 25 10 25 50 :0 25 50 75 100 10 25 80
35 35 35 35 35 35 35 35 35 25 25 25 1.0 10 1.0 65 65 65 35 35 35 35 35 20 20 20
NNR NNR Nap Nap Nap Nap Nap Nap Nap NQP NQP NQP Nap Nap Nap b/CB·D NCB·D NCB·D Nap NQP NQP Nap NQP NQP Nap Nap
-
NCB·D
25 40 80 10 25 50 20 40
-
-
10 20 10 20
-
20
...
li:z
-
50 50 50 50 10 10 15 20 25 50 10 15 50 10 15 5 10 20 50 10 15 20 25 10 20 40
ff.l ::,~
6~-t ~
0
20 20 20
-
~~~
'"0
~li:r x~'" ~
'"m J:
'-~~
3
"'no ioc:
J:
0
om
en
...
z~o
oz
~;: Z
2~
x~'" • Cl 0
:;;
"
m:ll
-mo
--z
-z~
~",
Gate
."
!-8~
-nUl 3c:~
-
-
NCB NCB NCB NZF·D NZF·D NZF·D NZA·D NZA·D NZF·D NZF·D NZF·D NZF·D
0
m
<
n m
--en• Q
-.
lOW NOISE
to
:II
Q
"T1
l> :ii: "0 r "T1
m :II
:::J
--n
m .....
en -0 CD
_. .... -. 0
G)
m m
Z
:II
l> r
"0
c
:II "0
0
en m
0 Q
.... -.
0
:::J
en ---.
0
0
:::J .... .. a.
SWITCH
-
Product Specifications (Cont'd) Low Leakage Diodes Part Number
Package (TO· I
DPADI DPAD2 DPAD5 DPAD10 DPAD20 DPAD50 DPAD100
78 71 71 71 71 71 71
Dual Dual Dual Dual Dual Dual Dual
JPAD5 JPAD10 JPAD20
92 92 !32
JPAD50 JPAD100 JPAD200 JPAD500 PADI PAD2 PAD5 PAOlO PAD20 PAD50 PAD100
Breakdown
Reverse Current (pA, Max.)
Diode
Forward Voltage Drop Volts (Max.)
Voltage (Volts)
Mm.
Max.
1 2 5 10 20 50 100
45 45 45 35 35 35 35
120 120 120
Smgle Smgle Smgle
5 10 20
35 35 35
-
92 92 92 92
Single Smgle Single Single
20 50 100 500
35 35 35 35
-
18 18 18 18 18 18 18
Smgle SlOg Ie
1 2 5 10 20 50 100
45 45 45 35 35 35 35
120 120 120
SIOgle
Smgle Single Smgle Song Ie
-
-
-
-
-
Capacitance (pF, Max.)
1.5 1.5 1.5 15 1.5 1.5 1.5
08 0.8 0.8 2.0 2.0 2.0 2.0
1.5 1.5 1.5
2.0 2.0 20
15 15 15 1.5
20 2.0 20 2.0
1.5 15 1.5 15 15 1.5 1.5
0.8 08 0.8 2.0 20 2.0 2.0
Voltage Controlled Resistors Part Number
N orP
VCR2N VCR3P
N P N P N
\ J ...... nAfli
VCR5P VCR7N
Resistance (Channel n)
Threshold Voltage (Volts)
Breakdown
Package (TO, )
Voltage (Volts, Min.)
Min.
Max.
18 72 HI 72 72
15 15
3.5 3.5
15
~o ~.~
15 15
3.5 2.5
Geometry
Min.
Max.
70 7.0
20 70
60 200
,n
~nn
600
70 50
300 4000
900 8000
NCB PS'A/B
NP/\ PS·A/B NT
P-Channel MOSFETs Part
Number 3N163 3N164 MFE823
9- 18
Package (TO· )
72 72 18
Operating Modo
ENH ENH ENH
Threshold Voltage (Volts, Max.)
Resistance
5.0 5.0 6.0
250 300
Channel (n.Max.1
-
Leakage Channel On (mA)
Min.
Max.
5.0 3.0 30
30 30
Leakage Breakdown ChannolOff Voltage (nA,Max.1 (Volts, Max.1
-
Siliconix
-
-
20
40 30 25
Input
Capacitance (pF, Max.)
2.5 2.5 6.0
Reverse Capacitance
Geometry
(pF, Max.) 0.7 0.7 1.5
MRA MRA MRA
Product Specifications (Cont'd) Current Regulator Diodes Part Number CR022 CR024 CR027 CR030 CR033 CR039 CR043 CR047 CR056 CR062 CR068 CR075 CR082 CR091 CR100 CR110 CR120 CR130 CR140 CR150 CR160 CR180 CR200 CR220 CR240 CR2'70 CR300 CR330 CR360 CR390 CR430 CR470 CR530 CRR0240 CRR0360 CRR0560 CRR0800 CRR1250 CRR1950 CRR2900 CRR4300 J500 J501 J502 J503 J504 J505 J506 J507 J508 J509 J510 J511 J552 J553 J554 J555 J556 J557 J9100 JRl35V JR170V JR200V JR220V JR240V
Package ITO· ) 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
92
Forward Current
ImA) 022 024 027 030 033 039 043 047 056 062 068 075 082 091 100 1 10 120 130 140 150 160 180 200 220 240 270 300 330 360 3.90 430 470 5.30 .24 .36 .56 80 195 195 290 430 024 0.33 043 0.56 075 1.00 140 1.80 240 3.00 360 4.70 0.05 ( 18,075) 106 ,1.6) (1.4 ·2.6) 124·38) (36·5.3) 0.05 0.200 0.200 0.200 0.200 0.200
Forward Current Tolerance
1%) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 25 25 25 25 25 25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 50
..
.. .. .. ..
50
.. .. ..
-
Limiting
Voltage IVolts, Max.)
Peak Operating Voltage IVolts, Max.)
Dynamic
Forward
Impedance
Capacitance
IMn,Max.)
IpF, typ)
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
13 10 90 80 6.6 41 3.3 27 19 1 55 1 35 1 15 100 088 080 070 064 058 054 051 0475 042 0395 037 0.345 032 030 0.28 0265 0255 0245 0235 0.20 .9 41 1.15 08 .54 .37 28 05
.. .. .. ..
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 135 170 200 220 240
5.0 30 20 14 1.0 06 04 025 025 020 020 0.15 20 10 10 88 .6 ,48 20 2.0 2.0 2.0 2.0 2.0
100 100 100 100 100 105 105 1 10 120 1.30 1 15 120 125 129 1 35 140 145 1.50 1 55 160 165 1 75 185 195 200 2 1~ 225 235 250 260 275 290 3.10 1.0 105 130 135 160 195 235 300 120 130 150 1 70 190 210 250 2.80 310 350 390 420 15 75 75 .75 .75 15 1.5 09 0.9 0.9 0.9 0.9
Siliconix
Geometry
..
NKL NKL NKL NKL NKL NKL NKL NKL NKL NKL NKM NKM NKM NKM NKM NKM NKM NKM NKM NKM NKO NKO NKO NKO NKO NKO NKO I'4KO NKO NKO NKO NKO NKO NKL NKL NKL NKL NKM NKM NKO NKO
2 2 2 2 2 2 2 2 2 2 2 2 2
NCL NCL NCL NCL NCL NCL NCL NCL NCL NCL NCL NCL NKL
.. .. .. .. ..
NCL NCL NCL NCL NCL NCL VRMA VRMA VRMA VRMA VRMA
..
.. .. .. ,.
.. ,
-
.. ,.
..
-
-
-.. .. .. .. .. ..
-
2
.. .. ..
-
..
5-19
Package Data __
Siliconix
Package Data
H
At Siliconix' option, lead finish will be either Gold
Siliconix
Plate or Tin Plate. Electrical Characteristics are not affected.
." Q n
~
Q
U2
~ 0.178 ~
(452)
0.170
1
1r'270) 0500 MIN
-Q.21QJ 1 ~
CD
Q.jJlli. 0178
idJlfli
0.030
(452)
~
1
0.030
0.100 (254)
~
(531)
L
11-
MIN lmg
(432)
0230 0209
0.100 (254)
(531)
-iliiJ l
TB~I:!~
TI~I~!~
Q.1..N:.t=! 0.209
C
Q ~ Q
11-
LEAOS
I
LLEADS
Q.Ql!!. (0483) DIA
0019 (0483) OIA 0016 (0406)
0016 (0406)
45' BOTTOM VIEW
TO-18 (2 PIN)
0150
CL81J. (292)
Q.1llliJ 0175
1d5!.!il
(445) idJlfli
(452)
g~~g JI~;~~l
(JU;jj (432)
1
MIN
BOTTOM VIEW IALTERNATE) 0.030
T8~IO::~
,t
.L...-L-IT'::
o 230 0209
0100
&Ml
IJi..!ldl
(254)
(53!)
15 31)
LF-
1-
I
I.l.J.ZQl
l
..,-_---'''''''''
I
V
~
6 LEADS 0019 iA!l1l DIA 0.016 (406)
/'
0.036 (1770) (0914)
45'
109141
_ _ _ 45
0048
0.050 (127)
0230 0209
ALL DIMENSIONS IN INCHES. IALL DIMENSIONS IN MILLIMETERS)
45'
TO-18 (3 PIN)
0i15 0195 0178
----
BOTTOM VIEW
0
BOTTOM VIEW
BOTTOM VIEW
TO-52
TO-71
Siliconix
6-1
-
Package Data (Cont'd)
!!.lliJO 0170 I.§..JJ1 14321
Il..W.
0178 '~j 14521
. 500112101 MIN
T8
0165 0185
~
~
0305
11151
rld
0030 1162/ MAX
!!nl!
112101 0500 MIN
1
~
1
Jl
At Siliconix' option, lead finish will be either Gold
Plate or Tin Plate. Electrical Charac;teristics are not affected.
-0040 11021 MAX
!ill!!.
0209 15841
0.335
LMfI1
(531)
I~==:l....J
IF-.. .
--
7 LEADS
~~DIA
45'
-
BOTTOM VIEW
BOTTOM VIEW
TO-72
l
TO-78
r l 11~0~)
0.200 0.180 (4511
MIN
l===::d
0.045 0.055 11141 11401
5 !ill-
0305 I &..m (1151
~J§J'~l -I
rl:::
tp=(508=) 0185 (410) TYP
0165
(1210)
~
MIN
0.100(254)
0.040 11 02) MAX
I---
r--
!!.ill 0.335
Lb:d==r== • Insensitive To Light • Insuleted Case
~
t
18511
i-I
3 LEADS TO FIT INTOJI 0022 (05561 DlA HOLE
"---
0.125 .QJ§1 ALL DIMENSIONS IN INCHES 0.165 (4 191 (ALL DIMENSIONS IN MILLIMETERS I BOTTOM VIEW
0.040 11 02)--l INSULATOR MAX
t-
L8LE ADS 0019 0.016
~DIA
TO-92
BOTTOM VIEW
TO-99
H 14.5721
0160 14.0641
.9:!!n. (381)
l
MAX
--II SIDE VIEW
rI (~;~~)
g:~~g
H.m
MIN
tF(5=08)
l
MAX
L3LEADSTOFITINTO ~ DIA HOLE
(0556)
9375 195251 NOM
J
-+ 0100
~
I.-
J
i2540i MAX
0200~0010
(5 OBO ± 0 2541
DIA PIN CIRCLE
TO-92 LEAD FORM (-181
6-2
1
_
0017-00019 10432 04831 3 LEADS
0.125 13.18) ALL DIMENSIONS IN INCHES. 0.165 (4.19) BOTTOM VIEW (ALL DIMENSIONS IN MILLIMETERS)
Order number (-18) suffix
"fA
-+
0.185 (410)
• Insensitive To Light • Insulated Case
0.050 11.2701
II
=i===~
]~b=d=F==:::I
I80 k---+l I I
TO-92 Device to TO-5 Pin Circle
to standard part type
Order number (-05) suffix to standard part type
Siliconix
45'
Package Data (Cont'd)
." Q
At Siliconix' option, lead finish will be either Gold
n
Plate or Tin Plate. Electrical CharacterIStics are not affected.
~
a
Ul CD
TO-92 TAPING SPECIFICATIONS AND WINDING STYLES
.. C Q Q
Extraction force M10300gf
~
.,
-p
STYLES
'"
E.F.G,H.M (See below)
P
12.7±0.5
Po
12.7±0.2
P,
3.85±0.5
P2
6.35±0.5
P3
6.35 18 ~6~ 6±1
W Wo
.-----ffi-
00
-po-3 -
Ho F F,-F 2
16±0.5 5 +08
02
±0.3 4±0.2
Do
0.7±0.2
t ~h
d
R
0±1 0.50 ~g g~ dia. 0.8
W,
9±0.5
W2
Max. 0.5
a
45'-60'
W3
Min. 4.5
L
Max. 11
H
19.5±0.5
"c
0±0.5
All dimensions in millimeters.
OPTlONJ
OPTION 1
STYLEAISPREFERRED
STYLE E IS A PAEFERRED STYLE
ROUNOOUT DAAIN OFF FIRST
ROUNDED SIDE OF mANSISTOR AND ADHESIVE TAPE VISIBLE
STANDARD TAPE & REEL FLAT OUT GATE OFF FIRST
OPTION 2
RQUNDEDSIDE
ROUND OUT GATE OFF FIRST FLAT SIDE OF TRANSISTOR AND ADHESIVE TAPE VISIBLE
ROUNDED SIDE OF TRANSISTOA AND ADHESIVE TAPE VISIBLE
Note: Order information-TRX = option (Standard Si option = Option 1) If not deSignated option 1 will be chosen. Tape and ammopack available-contact factory.
Siliconix
6-3
Package Data (Cont'd)
At Siliconix' option, lead finish will be either Gold
Plate or Tin Plate. Electrical Characteristics are not affected.
1--- +008 I 04 -0 03
'7±O.03~08±003
~===t==:!:nl 'T
'T
I!::::;=:::;======;=:::;:
SOT-23
i.-04± 003
501-143
1
1
T
158 14 DOl
244 16 20J
~~J~ 050
ii21T
J.-
0'8(45) 0'4(35)
030(77) 025(.64) 06' (, 55) 04911241
t
.069 (175) 053('35)
SOIC-8 PIN
6-4
Siliconix
Package Data (Cont'd)
"
Q n
At Sdiconix' option, lead finish will be either Gold
Plate or Tin Plate. Electrical Characteristics are not affected.
~
Q
CO (1)
.. C
a Q
C 10
11
12
13
TOP VIEW
~~-----I
t..31.!
1.20J
16 LEAD DUAL IN LINE PACKAGE (PLASTIC)
1;~-:1
8
0220 fZ§.Z1
(559)
10
11
12
13
TOPVIEW
1-----0
14
15
16
~
~ 0060 71 ~~~
840 (21 34) MAX
WTJfJ7tI~:oo, P9 ~ j L J I l gill: 19i: t
!l...,023 .LMl 0014 (036)
0070 0030
_
0100,254) 8se
II _=,"",
-
I
0008 (20) _0320 IfLUl 0290 !7 37)
I.LZ§J (076)
16 LEAD DUAL IN LINE PACKAGE (SI DE BRAZE)
Siliconix
6-5
Package Data (Cont'd)
At Siliconix' option, lead finish will be either Gold
Plate or Tin Plate. Electrical CharacterIStics are not affected.
~ 14
13
033.
~
ii33i
(874)
_ _ _ _ _--I~
+---~
I
12
0150
~r--n ~ ~4~~ ~6r-~' __
I
0060 (1 27)----+1
__
__
0228
om
ii244
@..!!l
~
"i'
"r jill!
~l-
Ir
iJJ (
f
0007 (019)
000i i022i
14 LEAD SO (Y) (PLASTIC)
6-6
Siliconix
(482),I
0205 (521) - ,
)~
~~--l
0030 (077)
L
Application Notes _
Siliconix
An Introduction to FETs
INTRODUCTION The basic pnnciple of the field-effect transistor (FET) has been known since J .E. Lilenfeld's patent of 1925. The theoretical description of a FET made by Schockley in 1952 paved the way for development of a classic electronic device which provides the designer with the means by winch he can accomplish nearly every circuit functIOn. The field-effect transIstor earlier was known as a "unipolar" transistor, and the term refers to the fact that current IS transported by carriers of one polarity (majority). whereas in the conventional bipolar transistor earners of both polarities (majority and minority) are involved. This Application Note provides an insight into the nature of the FET, and touches briefly on its basic characteristics, terminology and parameters, and typical applications. The followmg list of FET applications indicates the versatility of the FET family: Amplifiers Small Signal Low Distortion High Gain Low Noise Selective D.C. High-Frequency
Switches Chopper-type Analog Gate Commutator
Current Limiters Voltage-Controlled Resistors Mixers Oscillators
In fact, FET teclmology today allows a greater packaging density in large-scale integrated CIrcuits (LSI) than would ever be possible with bipolar deVIces. (Although there is no industry-accepted definitIOn of LSI, apparently when the equivalent circUIt of an IC contains more than 1,000 active elements (500 gates) or is "very complex", the end product may be called LSI. With a typical LSI chip measurmg less than 200 x 200 mIls; tius is highdensity packaging indeed.) The f3!mly tree of FET devices (FIgure I) may be divided into two main branches, junction FETs (JFETs) and Insulated Gate FETs (or MOSFETs, metal-oxide-silicon field-effect transistors). Junction FETs are inherently depletion-mode devices, and are available in both P- and N-Channel configurations. MOSFETs are available in both enhancement or depletion modes, and exist as both N- and P-Channel devices. The two main FET groups depend on dIfferent phenomena for their operation, and will be discussed separately.
I
I
I
I
This very wide range of FET applications by no means implies that the device will replace the more widely-known bipolar transistor in every case. The simple fact is that FET characteristics - which are very different from those of bipolar devices - can often make possible the design of technically supenor (and sometimes cheaper) circuits. This comment applies not only to networks employing discrete devices and conventIOnal components such as resistors and capacitors, but also extends to both linear and digItal integrated circuits.
I
JUNCTION
I DEPLETION
I I P.CHA,NNEL I
Siliconix
I
FIELD EFFECT TRANSISTORS
I
I
I
INSULATED GATE
I
I
ENHANCE· MENT
I I I N.CH~NNEL I
I
IP
I
-
I
CH~NNEL I
I
I I
I N.CHANNELI
FET Family Tree Figure 1
7-1
Junction FETs In its most elementary version, this transistor consists of a piece of high-resistivity semiconductor material (usually silicon) which constitutes a channel for the majority carrier flow. The magnitude of this current is controlled by a voltage applied to a gate, which is a reverse-biased PN junction formed along the channel. Implicit in this description is the fundamental difference between FET and bipolar devices: when the FET junction is reverse-biased the gate current is practically zero, whereas the base current of the bipolar transistor is always some value greater than zero. The FET is a high input resistance device, while the input resistance of the bipolar transistor is comparatively low. If the channel is doped with a donor impurity, N-type material is formed and the channel curr&nt will consist of electrons. If the channel is doped with an acceptor impurity, P-type material will be formed and the channel current will consist of holes. N-Channel devices have greater conductivity than P-Channel types, since electrons have higher mobility than do holes; thus NChannel FETs tend to be more efficient conductors than their P-Channel counterparts.
Junction FETs are particularly suited to manufacture by modern planar epitaxial processes. Figure 2 shows this process in an idealized manner. First, N-type silicon is deposited
~
(A) P-type silicon substrate
~(B)
N-type silicon laver deposited epitaxiallv
~(C)
start isolation region
Impurity diffused in to
(0) More impurity diffused in to complete isolation
and form N-tvpe channel
(E) Final form taken bV FET: with N-type channel embedded in P-type substrate
Idealized Manufacture of an N-Channel Junction FET Figure 2
7-2
epitaxially (single-crystal condensation surface) onto monocrystalline P-type silicon, so that crystal integrity is maintained. Then a layer of silicon dioxide is grown on the surface of the N-type layer, and the surface is etched so that an acceptor-type impurity can be diffused through into the silicon. The resulting cross-section is shown in Figure 2C, ~d demonstrates how a P-type annulus has been formed in the layer on N-type silicon. Figure 20 shows how a further sequence of oxide growth, etching, and diffusion can produce a channel of N-type material within the substrate.
In addition to the channel material, a FET contains two ohmic (non-rectifying) contacts, the source and the drain. These are shown in Figure 2E. Since a symmetrical geometry is shown in the idealized FET chip, it is immaterial which contact is called the source and which is called the drain; the FET will conduct current equally well in either direction and the source and drain leads are usually interchangeable.
(For certain FliT applications, such as amplifiers, an asymmetrical geometry is preferred for lower capacitance and improved frequency response. In these cases, the source and drain leads should not be interchanged.)
Figure 2E also shows how the N-Channel is embedded in the P-type silicon substrate, so that the gate above the channel becomes part of this substrate. Figure 3 shows how the FET functions. If the gate is connected to the source, then the applied voltage (V OS) will appear between the gate and the drain. Since the PN junction is reverse-biased, little current will flow in the gate connection. The potential gradient established will form a depletion layer, where almost all the electrons present in the N-type channel will be swept away. The most depleted portion is in the high field between the gate and the drain, and the least-depleted area is between the gate and the source. Because the flow of current along the channelfrom the (positive) drain to the (negative) source is really a flow of free electrons from source to drai~ in the N-type silicon, the magnitude of this current will fall as more silicon becomes depleted of free electrons. There is a limit to the drain current (IO) which increased VOS can drive through the channel. This limiting current is known as lOSS (Drain-to-Source current with the gate Shorted to the source). Figure 3B shows the almost complete depletion of . the channel under these conditions.
Figure 3C shows the output characteristics of an N-Channel JFET with the gate short-circuited to the source. The initial rise in In is related to the buildup of the depleti0!llayer as VOS increases. The curve approaches the level of the limiting current lOSS when In begins to be pinched off, The physical meaning of this term leads to one definition of pinch-off voltage, Vp, which is the value of VOS at which the maximum loSS flows.
Siliconix
The mechanisms of Figure 3 and 4 react together to provide a family of output characteristics as shown in Figure SA. The area below the pinchoff voltage locus is known as the triode or "below pinchoff' region; the area above pinchoff is often referred to as the pentode or saturation region. FET behavior in these regions is comparable to that of a power grid vacuum tube, and for this reason FETs operating in the saturation region may be used as excellent amplifiers. Note that in the "below pinchoff' region both VGS and VOS control the channel current, while in the saturation region VOS has little effect and VGS essentially controls 10 ,
DEPLETION LAYER
(A) N-channel FET working below saturation (VGS = 0). (Depletion shown only In channel region).
Figure SB relates the curves of Figure SA to the actual circuit arrangement, and shows the number of meters which may be connected to display the conditions relevant to any combination of VOS and V GS' Note that the direction of the arrow at the gate gives the direction of current flow for the forward·bias condition of the j unction. In practice, however, it is always reverse-biased.
DEPLETION LAYER
(B) N·channel FET working in saturation region (VGS = 0) /-IVDSI lOSS
I I
/ C>
SATURATION REGION/
=
IVpl - IVGsl
ABOVE PINCH-OFF
~I---- VGS
=
0
I
!
VDS--
'"
(e) Idealized output characteristic for VGS = O.
Figure 3 VDS-_
In Figure 4, consider the case where VOS = 0, and where a negative voltage VGS is applied to the gate. Again, a deple· tion layer has built up. If a small value of VOS were now applied, this depletion layer would limit the resultant chan· nel current to a value lower than would be the case for V GS = O. In fact, at a value of IVGSI ;;, IV pi the channel current would be almost entirely cut off. This cutoff voltage is referred to as the gate cutoff voltage, and may be expressed by the symbol Vp or by V GS(off)' Vp has been widely used in the past, but V GS(off) is now more commonly accepted since it eliminates the ambiguity between gate cut·off and drain pinch-off. V GS(off) and Vp, strictly speaking, are equal in magnitude but opposite in polarity.
(A) Family of output characteristics for N-channel FET ID
(Bl Circuit arrangement for N-channel FET
Figure 5
N-channel FET Showing Depletion Due To Gate-Source Voltage (VDS = 0) Figure 4
The P·Channel FET works in precisely the same way as does the N-Channel FET. In manufacture, the planar process is essentially reversed, with the acceptor impurity diffused first onto N-type silicon, and the donor impurity diffused later to form a second N-type region and leave a P-type chan-
Siliconix
7-3
-
ne!. In the P-Channel FET, the channel current is due to hole movement, rather than to electron mobility. Consequently, all the applied polarities are reversed, along with their directions and the direction of current flow. Figure 6A shows the circuit arrangement for a P-Channel FET, and Figure 6B shows the output characteristics of the device. Note that the curves are shown in another quadrant than those of the NChannel FET, in order to stress the current directions and polarities involved.
o
Fir!-~~~~~~~~~
INSULATING LAYER
SUBSTRATE
(A) Idealized cross-section through an N-channel depletiontype MOSFET
In summary, a junction FET consists essentially of a channel of semiconductor material along which a current may flow whose magnitude is a function of two voltages, VDS and VGS. When V DS is greater than Vp, the channel current is controlled largely by V GS alone, because V GS is applied to a reverse-biased junction. The resulting gate current is extremely small.
(B) CirCUit arrangement for N-channel depletion MOSFET mA
'4V
'2V
VGS= 0
-2V
(A) Corcuit arrangement for P-channel FET
-4V 12
VGS-
16
VOL T5
Vos--
Vos-_
Vp
vGS(Off}=====:f::="'?~:I
tel
I
Family of output characteristics for the 2N3631 N-channel depletion MOSFET
Figure 7
i5
in a manner similar to the N-Channel junction FET when a voltage of the correct polarity is applied to the cha...~nel, as in Figure 7B.
~iL_.J,oss r---I
VGS=O-
ABOVE PINCH-OFF
¢ IQ
BELOW PINCH-OFF
1-IVosl • IVpl - IVGsl (B) Familv of output characterIStics for P-channel FET Figure 6
MOSFETs The metal-oxide-silicon FET (MOSFET) depends for its operation on the fact that it is not actually necessary to form a semiconductor junction on the channel of a FET in order to achieve gate control of the channel current. Instead, a metallic gate may be simply isolated from the channel by a thin layer of silicon dioxide, as shown in Figure 7 A. Although the bottom of the insulating layer is in contact with the Ptype silicon substrate, the physical processes which occur at this interface dictate that free electrons will accumulate at the interface, spontaneously forming an N-type channel. Thus a conducting path exists between the diffused N-type source and drain regions. Further, the MOSFET will behave
7-4
Output characteristics of an N-Channel MOSFET are shown in Figure 7C. Because there is no junction involved, V GS can be reversed without engendering a gate current; the gate may be made either positive or negative with respect to the source. Under these circumstances, still more free electrons will be attracted to the channel region, and I D will become greater than I DSS. This mode of operation is represented by the higher members of the family of ourput characteristics. Because the application of a negative gate voltage causes the channel to be depleted of free electrons - thus reducing ID the device just described is called adep/etion-mode MOSFET. The foregoing has established that the depletion-mode MOSFET is a "normally-ON" device: when VGS = 0, a conducting path exists between source and drain. In many circuits a "normally-OFF" device would be useful, a condition which leads to the concept of an enhancement-mode MOSFET. In the latter device, an increasing voltage applied to the gate will enhance channel wnduction, and depletion will never occur, ID being zero when VGS =o.
Siliconix
A P-Channel enhancement-mode MOSFET is shown in Figure 8_ Here, an acceptor impurity has been diffused into an N-type substrate to form P-type source and drain regions_ No conducting channel exists between the source and the drain, because no matter how the drain-source voltage is applied one of the PN junctions will always be reverse-biased. On the other hand, if a negative voltage is applied to the gate, a field will be set up in such a direction as to attract holes into the upper layer of the substrate and produce a P-type channeL A family of output characteristics for a typical MOSFET is shown in Figure 8C. The idealized cross-section illustrated in Figure 8A may be used to show how the characteristics of Figure 8C come about. Refer to Figure 9 for an extension of this phenomenon.
If a constant (negative) gate voltage, (V GS(K») is applied, then an essen tially-uniform P-Channel depletion layer will be induced, as in Figure 9A. If a negative drain voltage is
applied, then current, In, will flow through the drain. As IVnsl increases, In also increases. However, the voltage between the drain and the gate decreases, so that the thickness of the channel at the drain end is reduced as in Figure 9B. Therefore, the relationship of In versus VnS will eventually reach a limiting value when Vns = VGS, and the channel becomes pinched off. This condition is shown in Figure 9C. Different values.of VGS give rise to limiting values of In; so that the characteristic family of output curves which was shown in Figure 8 is realized. Characteristics of depletionmode MOSFETs also come about for the same reason, except that members of the output characteristics family also exist for VGS values of zero or reversed polarity. The P-Channel enhancement-mode MOSFET is currently the most popular member of the FET family in current use, and is in fact the basic element in many LSI integrated circuits.
LAYER 11 NG F=rLr::!!!!!!!!~~!i!!!!;,,1~ INSULA
(A)
SUBSTRATE (OR BODYI
B
CA) Idealized cross-section through a P-channel enhancement
MOSFET '0
(8)
(8) Circuit arrangement for P-channel enhancement MOSFET
Vos--
VGS=-l
v=========:,.
-2V _ _ _ _ _ _ _
-4V--------6V------
-
(C)
~
i5
-9V----(e) Family of output characteristics for a P-channel enhancement MOSFET Figure 8
Idealized approach of pinch-off, (A) VOS = 0, (8) lVoSI < IVGsl, (e) lVosl> IVGSI Figure 9
Silicanix
7-5
FET Characteristics
Major parameters include:
The FET enjoys certain inherent advantages over bipolar transistors because of the unique construction and method of operation of the field-effect device. These characteristics include:
• No thermal runaway and
negligible
intermodulation
• BV GSS - Gate-to-source breakdown voltage with the drain shorted to the source • gfs - Common-source forward transconductance
• High input impedance at low frequencies
• Cgs - Gate-source capacitance
• Very high dynamic range (> 100 dB)
• Cgd - Gate-drain capacitance
• Zero temperature coefficient Q point • Junction capacitance independent of device current The transfer function of a FET approximates to a squarelaw response, and the second and higher-order derivatives of gm are near zero; thus strong second and negligible higherorder harmonics are produced. Intermodulation products are extremely low. The input impedance of a FET is simply the impedance of a reverse-biased PN junction, which is on the order of 10 10 to 10 12 .Q. In practice, the input impedance is limited by the value of the shunt gate resistor used in a self-bias commonsource circuit configuration. At RF frequencies, the input impedance drop is proportional to the square of the frequency; for example, in a 2N4416 FET, the input impedance would be 22K.Q at 100 MHz. Also, the input susceptance increases linearly with frequency, since it is a simple parasitic capacitance. The FET has very high dynamic range, in excess of 100 dB. Thus it can amplify very small signals because it produces very little noise, or it can amplify very large signals because it has negligible intermodulation distortion products. It also has a zero temperature coefficient bias point (zero TC point) at which changes in temperature do not change the quiescent operating point. Junction FET capacitances are more constant over wide current variation than are the same parameters in a bipolar device. This inherent stability allows high-frequency (VHF through L-band) oscillators to be built which are far more stable than oscillators using low-frequency crystals and multiplier stages. FET Terminology and Parameters Any introduction to the nature, behavior, and applications of field-effect transistors requires that certain questions be answered on FET electrical quantities and parameters - in particular, the most important parameters, and the means by which they can be measured. The following discussion will defme specific FET parameters and their associated subscript notations, and present basic test circuits and results.
7-6
• VGS(off) - Gate-source cutoff voltage • IGSS - Gate-to-source current with the drain shorted to the source
• Lownoise
• Low distortion products
• I DSS - Drain current with the gate shorted to the source
Special attention should be given to the subscript "s" because it has two different meanings and three possible uses. In FET notations, an "s" for the first or second subscript identifies the source terminal as a node point for voltage reference or current flow. However, when using triple subscript notation, an "s" for the third subscript does not refer to the FET source terminal. It is an abbreviation for "shorted", and signifies that all terminals not designated by the first two subscripts must be tied together and shorted to the common terminal, which is always the second subscript. Therefore, the term IGSS refers to the gate-source current with the drain tied to the source. Because of the typical low input and output admittance of the FET, four-pole admittance equations are commonly used to describe electrical characteristics of the FET:
(1)
\Vhel1 Y II , Y 21 , Y 12 and Y22 al~ u~fillta.l a~ Lh~ inpuL, reverse transfer, forward transconductance, and output admittances respectively, Equation 1 reduces to
(2)
For a three-lead FET, 11 usually corresponds to the gatesource terminal and 22 corresponds to the drain-source terminal(i.e., the device is connected in the common-source mode). Thus
ii = Yis Vgs + Yrs vds
io =Yfs
(3)
Vgs + Yos vds
Here, the second subscript for the y parameters designates the source lead as the common or ground terminal.
Siliconix
14.--.--r-,--r--,--
IOSS- Drain Current at Zero Gate Voltage (ID at VGS = 0) By itself, I DSS merely refers to the drain current that will flow for any applied VDS with the gate shorted to the source. However, when a particular value for VDS is given, equal to or greater than Vp (see Figure 10), IDSS indicates the drain saturation current at zero gate voltage. Some FET data sheets label IDSS for VDS greater than Vp as ID(on).
lOSS
Ves - DRAIN SOURCE VOL rAGE (VOL lS)
I
I
FET 10 vs Vo Output Characteristics Figure 11
I
The knee of the curve is important to the circuit designer because he must know what minimum VDS is needed to reach the pinch·off region with VGS = O. When appropriate bias voltage is applied to the gate, it will pinch off the chan· nel so that no drain current can flow; VDS has no effect until breakdown occurs. The specific amount of V GS that produces pinch.off is known as the gate·source cu toff voltage,
I I
I---SATURATION REGION---I
I I I I Vp
Ves - DRAIN SOURCE VOLTAGE
VGS(off)·
BVOGS
VGS(off) Test Procedure FET Characteristic at V GS = 0 Figure 10
VGS( off) - Gate-Source Cutoff Voltage The resistance of a semiconductor channel is related to its physical dimensions by R = pL/ A, where
p = resistivity L = length of the channel A = W x T = cross·sectional area of channel In the usual FET structure, Land Ware fixed by device geometry, while channel thickness T is the distance between the depletion layers. The position of the depletion layer can be varied either by the gate·source bias voltage or by the drain·source voltage. When T is reduced to zero by any com· bination of VGS and VDS, the depletion layers from the opposite sides come in contact, and the a-c or incremental channel resistance, rDS' approaches infinity. As earlier noted, this condition is referred to as "pinch-off' or "cutoff' because the channel current has been reduced to a very thin sheet, and current will no longer be conducted. Further increases in VDS (up to the junction reverse·bias breakdown) will cause little change in I D. Accordingly, the pinch.off region is also referred to as the pentode or "constant·cur· ren t" region.
Although the magnitude of VGS(off) is equal to the pinch. off voltage, Vp, defined by the pinch·off knee in Figure 10, rapid curvature in the area makes it difficult to defme any precise point as Vp. Taking a second derivative ofVDS/I D would yield a peak corresponding to the inflection point at the knee, which approximates Vp. However, this IS not a Simple measurement for production quantities of deVIces. A better measure is to approach the cutoff point of the ID versus VGS characteristic. This is easier than trying to specify the location of the knee of the ID versus V DS output characteristic. A typical transfer characteristic I D versus VGS is shown in Figure 12. The curve can be closely approximated by VGS ) ~1 -VGS(off) ---
ID=IDSS 14
\
12 10
Siliconix
(4)
IDS~
SLOPE"'~=9fS ..WGS
VOS=·5V
\
-Vos ~VGS(off)
1\\
TA=-55C
, \ ~TA=25C 06
4
In Figure 10, pinch.off occurs with VGS = O. In Figure 11, VGS controls the magnitude of the saturated ID' with in· creases in VGS resulting in lower values of constant ID' and smaller values of VDS necessary to reach the "knee" of the curve. The current scale in Figure II has been normalized to a specific value of I DSS.
2
-
"'~
,,~
2~Tr151f1 04
DB
~ 12
~
16
20
VGS(off)
24
28
VGS - GATE-SOURCE VOLTAGE (VOLlS)
Typical 10 vs VGS Transfer Characteristic Figure 12
7-7
Equation 4 and Figure 12 indicate that at VGS = VGS(off)' ID = O. In a practical device, this cannot be true because of leakage currents. If I D is reduced to less than 1 percent of I DSS, V GS will be within 10 percent of the VGS(off) value indicated by Equation 4. If I D is reduced to 0.1 percent of I DSS ' the indicated VGS(off) error will be reduced to about 3 percent. For a true indication of VGS(off)' and a realistic picture of the parameters of Figure 12, care must be taken that leakage currents do not result in an error in the VGS(off) reading. Typically, at room temperature, I percent ofI DSS is still well above leakage currents but is low enough to give a fairly accurate value of VGS( off)'
IGSS - Gate-Source Cutoff Current The input gate of a P-Channel FET appears as a simple PN junction; thus the input doC input characteristic is analogous to a diode V-I curve, as is shown in Figure 14.
BVGSS
A typical circuit for measuring VGS(off) is shown in Figure 13. At V GS = 0, the value of I DSS can be measured. Then, byincreasingVGS until IDis 0.01 percent ofIDSS' the value of VGS(off) is obtained. From a production standpoint, it is more convenient to specify ID at some fixed value (such as I nA), rather than as a certain percentage of I DSS' Thus a pinchoff voltage specification may be given as indicated in Table I.
10
-10
30
20
40
VGS - GATE VOL TAGE (VOL TS)
-1
P-Channel FET Input Gate Characteristic Figure 14
In the normal operating mode, with VGS positive for a PChannel device, the gate is reverse-biased to a voltage between zero and VGS(off)' This results in a doc gate·source resistance which is typically more than 100M n. The gate current is both voltage- and temperature-sensitive. Figure 15 shows this relationship for IGSS versus temperature and VGS'
104 r-~-"---'-="'--~""-T""--' IGSS IS NORMALIZED TO VALUE AT
103I-T_A_.+25_·c_A+N_D_V-+GS_o_30-jV_+_t----1>""/71
Circuit for Measuring VGS(OFFI Figure 13
I Vj~
102 f---+-+--t---\--'-:>4c"£-¥---1
Table I Typical Pinch-Off Voltage SpeCification
I
I
Characteristic
VGSloffl
Min
I
Max
I
Units
1
4
10
~
,
~
I
Gate-source pinch-off voltage of
VOS =-5 V.IO =-lI'A
:
Volts
~~V_+----j Vos=o-
.-0V;~ I
I
l¥rrllill a
~
0
~
~
H
~
~1~
TA - AMBIENT TEMPERATURE (OC)
Another method which provides an indirect indication of the maximum value of VGS(off) is shown in Table II. The characteristic specified is ID(off)' whereas the parameter of interest is VGS =8 volts. The specification does say that the maximum VGS(off) is approximately 8 volts, but no provision is made for stating a minimum VGS(off)' as was done in Table I. Therefore, another test must be made if VGS(off) (min) is to be specified.
Table II Indication of Maximum Vp
Characteristic
IOloffl
Pmch·off drain current
7-8
Test Conditions
VOS
-12 V, V GS = 8 V =
Moo
Max
Unit
-10
I'A
IGSS V5 Temperature Figure 15
If the gate-source junction becomes forward-biased, (negative voltage in a P-Channel device) or if VGS exceeds the reverse-bias breakdown for the junction, the input resistance will then become very low. The FET is normally operated with a slight reverse bias applied to the gate-source; hence a good measure of the doc input characteristic is to check the gate current at a value of gate-channel voltage that is below the junction breakdown rating. In device evaluation, there are three common measurements of gate current: IGDO' I GSO , and the combined measurement I GSS ' These measurement circuits are shown in Figure 16.
SilicDnix
The question is, should I GDO and IGSO be measured separately, or will one measurement of IGSS suffice? One thing is certain: IGSO + I GDO > IGSS, because the drain and the source are not completely isolated. They are, in fact, electrically connected via channel resistance. For most FETs, if VG is greater than VGS(off)' the difference between (IGSO + I GDO ) and IGSS is small; therefore, the measure· ment of IGSS is a realistic means of controlling both I GDO andI GSO · In a circuit, VGD may be biased between zero and BV GDS, while VGS will be between zero and VGS(off): therefore, IG is not necessarily the same as IGSS. BV GSS - Gate-Source Breakdown Voltage FET input terminals have been previously described as having NP or PN junctions, depending on the channel material. As such, the junction breakdown voltage is a necessary parameter. A useful equivalent circUlt for a FET is the distributed con· stant network shown in Figure 17, for a P·Channel FET. If an N-Channel device is being evaluated, the diodes would be reversed. In most applications, the gate·drain voltage is greater than the gate·source voltage; thus the gate·drain breakdown ratmg is most important. However, it is also pos·
sible to consider the gate·source junction breakdown and the apparent drain-source breakdown (i.e., in Figure 17, when a high negative voltage is applied from drain to source, CRt will break down while CRn becomes forward·biased). Some device manufacturers use a BV GDO rating, which means they are only checking diode CRI. A better method is to use a BV GSS rating (gate·source breakdown with the drain shorted to the source), because it checks both CRI and CRn' in addition to exposing the weakest breakdown path along the entire gate·channel junction. The BV GSS test also allows the user to in terchange source and drain lead con· nections without worry about device breakdown ratings. Admittedly, a BV GSS test will reject some units which might pass a BV GDO test; the number rejected, however, will be insignificant compared to the advantage of providing symmetrical operatIOn.
Test Procedures for BVGSS Junctions may break down softly or sharply;junctions with soft knee breakdown are undesirable. Without examining each individual unit on a curve tracer, devices with a soft knee may be eliminated by selecting a low current level for breakdown measurement (see Figure 18).
GATE
0--...,..--'1+-.....- - 0 DRAIN
CR"
-----""'--0
SOURCE
A Useful FET Equivalent Circuit Figure 17
Three Common Measurement of Gate Current Figure 16
SOFT KNEE (FAILING)
-
SHARP BREAKDOWN
Examples of Soft Knee and Sharp Knee Breakdown Figure 18
Siliconix
7-9
gfs - Transconductance Transconductance, gfs' is a measure of the effect of gate voltage upon drain current:
tJo gfs =LWGS ' VOS =constant
Specifications for gfs are shown in Tables III and IV. Note that there is a difference in the test conditions specified for the N-Channe12N3823 and the P-ChanneI2N3329. The gate voltage for the 2N3823 is established as zero. This means that gfs is measured at ID = IDS S, as in Table III.
(5) Table III 12N38231 Test
Characteristic
The interrelation of gfs to the parameters lOSS and VGS(OFF) should be noted. Equations 4, 6 and 7 describe the value of 10 and gfs in a FET for any value of VGS between zero and VGS(OFF).
9f. Small-signal commonsource forward
transconductance
Characteristic
(7)
where gfso is the value of gfs at VGS = 0 and IDSS is the value of ID at VGS =O. With these equations, the value of gfs can be calculated with a fair degree of accuracy (20 per· cent) ifI DSS and VGS(off) are known. Figure 19 shows normalized curves for I D and gfs as functions of VGS in a P-Channel FET. These curves were obtained from actual measurements on typical diffused channel FETs, such as the 2N2606. The curves agree very weJl with Equations 4 and 6 un til V GS( off) is approached. For these curves, VGS(off) was assumed to be the value of VGS where ID/IDSS =0.001.
YI. Common-source forward transfer admittance
Max
Unit
3,500
6,500
.umho
Test Conditions
Mm
Max
Unit
20
"mho
V OS =-10V, I D =-1mA 1=1 kHz
The test conditions shown in Table IV specify a certain value for I D (-1 rnA for the 2N3329). This means that for each unit tested, VGS is adjusted until I D equals the specified value. The conditions specified in Table III simplify testing of the gfs parameter by eliminating the necessity of adjusting V GS' Figures 20 and 21 show typical test setups for the two methods.
L
'V lkc
9fsfl]fs
VOS= 15V, V GS = 0, 1=1 kHz
Min
Table IV (2N3329)
(6)
210SS gfso =- VGS(off)
Conditions
-f---
T
~
i !~~~!~'D~/lD~"SS~~I~I~~ = 10-1 -VOS=-5V f=lkc
FOR gl5 MEASUREMENTS
Test Circuit for 9fs with VGS = 0 Figure 20
11_- VDS
Normalized Curves for 10 and g15 as Functions of V GS Figure 19
The drain current of a JFET operating in the triode (below pinch-off) region can be accurately predicted by using Equation 8, where
~
)~
. VOS lo/tnode = lOSS V - - GS(off)
7-10
(8)
Siliconix
v
Test Circuit for 915 with 10 Specified Figure 21
Junction FET Capacitances Associated with the junction between the gate and the channel of a FET is a capacitance whose value and geometric distribution are functions of the applied voltages VGS and V DS - Because of the complexity of dealing with such a distributed capacitance, a simplification is made so that two lumped capacitances, CgS and Cgd , exist between the gate and the source and drain, respectively. (A much smaller capacitance, Cds' also exists between tne drain and the source, stemming mainly from the device package; this header capacitance is small enough so that it can be ignored for most purposes.) Data sheets quote Cgs and Cgd (or other capacitances from which they may be derived) for specified operating conditions. Occasionally, graphs are included which show the variations of Cgs and Cgd as the result of changing conditions of V DS, VGS and temperature. If these data are not presented, an estimate of inter·electrode capacitance values may be made by assuming that these values vary inversely with the square root of the bias voltage. The temperature variations will be very small, because they depend on the -2.2 mV;oC change injunction potential difference. Assuming that the FET is properly biased - that is, that the doc conditions are met by the external circuitry - It is possible to construct an incremental equivalent circuit from which the small-signal or a-c performance may be predicted. Such an equivalent circuit is shown in Figure 22.
',d
I
Go-----~--~~--~
I
D
C,d
>--
1
Vas
I
'~II
'"
CO'
>--
': o~
(g;;;-)
So-----_+------------------~----_+----~ NOTE
The incremental channel current is given by the transconductance, gfs' multiplied by the incremental gate voltage. For the small signal, vgs ' this is manifested in the equivalent circuit by the current generator gfsvgs. Notice that the conventional direction of flow of this current is such that id flows into the FET, in a "positive" direction. Many circuits can be designed around the equivalent circuit for the junction FET. The actual values of gfs adn rds can be measured as previously mentioned; there remains only the requirement to establish the methods of determining Cgs and Cgd. First, assume that the FET is in operation and that the drain is connected to the source via a large capacitor, i.e., the drain and source are short-circuited to a-c. Under these circumstances, a capacitance measurement between the gate and the source will give Cgss (or Ciss) = Cgs + Cgd
Second, assume that the gate and source are short-cirCUIted to a-c in a similar manner. A capacitance measurement between the drain and the source will now give Cdss (or Cos s)
~
Cgd
(10)
The alternative symbols C ISS and Coss simply refer to measurements made at the Illput (gate) and the output (drain) respectively. An alternative symbol for Cgel IS Crss , whIch refers to the "reverse" capacitance. In data sheets, It IS customalY to state (= Ciss) Cgss and Cdss (= Coss)· Crss IS often given III place of Coss because if Cds <{ Coss, which is usually the case, then C rss == Coss Equations (9) and (10) can be used III those instances where it is necessary to extract Cgs and Cgd, as in Cgs = Ciss - Cgd = Ciss - Crss
s
(9)
(11)
and
Cgss" c1ss = Cgs + Cgd
Coss" Cgd + Cds
~
Cgd
=
Cgd = Crss
Crss
Incremental Equivalent Circuit for the Junction FET Figure 22
The equivalent capacitance from the gate to the source, CgS ' is shunted by a very large input resistance, rgs ' with both of these parameters being characteristic of a reverse-biased junction. Similarly, the equivalent capacitance from the gate to the drain is shunted by the very large resistance rgd. (For most purposes, rgs and rgd may be neglected, and the gate impedance of the FET treated as pure capacitance). At the drain side of the equivalent circuit the small capacitance Cds - which stems from the header material- is shunted by the incremental channel resistance, rds. This resistance is capable of wide variations, depending on bias conditions. Since the equivalent circuit is fundamentally relevant to the pinch-off or saturated condition, rds will be on the order of megohms.
(12)
Remember that all capacitance measurements should be made at the same bias levels, since the capacitances are functions of applied voltages. To indicate the order of the capacitances to be found in a junction FET, consider the values given in the data sheet for the Silicolllx 1202 N-channel FET. They are given as Ciss (at VDS = 20 V and f = I MHz) = 5 pF max. and Crss (at VDS = 20 V and F = I MHz) = 2 pF max. Hence, at a drain-soUlce voltage of 20 V and a frequency of I MHz, Cgs = 5 - 2 = 3 pF maximum. Even though the FET is physically symmetrical, bias conditions have forced the capacitances to be unequal.
Silicanix
7-11
-
H
Siliconix
FET Biasing
INTRODUCTION Engineers often design FET amplifiers that are unnecessarily sensitive to device characteristics because they may not be familiar with proper biasing methods. One way to obtain consistent circuit performance in spite of wide device variations is to use a combination of constantvoltage and self biasing. The combined circuit configuration turns out to be the same as that generally used with bipolar transistors, but its operation and design are quite different. Three Basic Circuits
Vos iVOLTS)
Let's examine three basic common-source circuits that can be used to establish a FET's operating point (Q-point) and then see how two of them can be combined to provide greatly improved performance. The three basic biasing schemes are: • Constant-voltage bias, which is most useful for rf and video amplifiers employing small dc drain resistors.
Figure 1. A large dynamic range is provided by the operating point at VDsa = 15 V, loa = 0.39 mA and VGSa = -0.4 V. The output characteristics are for a typical 2N4339.
The constant-voltage bias circuit (Figure 2) is analyzed by superimposing a line for VGG = constant on the transfer characteristic of the FET.
• Constant-current bias, which is best suited to lowdrift dc amplifier applications such as source followers and source-coupled differential pairs.
rt
VOO
RG
-VGG
12
":"
CONSTANT
~~~ LOAD
.B
I
-16
-1.2
Figure 2. Constant-voltage bias is maintained by'the V GG supply as shown on this typical 2N4339 transfer curve. Input signal eg moves the load line horizontally.
Reprinted From ELECTRONIC DESIGN, May 24, 1970, June 7,1970.
7-12
OUTPUT
"
The Q-point established by the intersection of the load line and the VGS = -0.4 V output characteristic of Figure I provides a convenient starting point for the circuit comparison. The load line shows that a drain supply voltage, VOO ' of 30 V and a drain resistance, RO' of 39K n are being used. The quiescent drain-to-source voltage, VOSQ' is 15 V, allowing large signal excursions at the drain. Maximum input signal variations of ±0.2 V will produce output voltage swings of ±7.0 V - a voltage gain of 35.
vos= 15V
RO
• Self bias (also called source bias or automatic bias), which is a somewhat universal scheme, particularly valuable for ac amplifiers.
Siliconix
The transfer characteristic is a plot of I D vs VGS for constant VDS. Since the curve doesn't change much with changes in VDS , it is quite useful in establishing operating bias points. In fact, it is probably more useful than the output characteristics because its curvature clearly warns of the distortion to be expected with large input signals. Furthermore, when a bias load line is superimposed, allowable signal excursions become evident and input voltage, gate-source signal voltage, and output signal current calculations may be made graphically.
VOS .. 15V
12
DB
/_-_~r---~~--~04 DC LOAD LINE
-16
The heavy vertical line at VGS =-0.4 V establishes the Qpoint of Figure 1. No voltage is dropped across resistor RG because the gate current is essentially zero. RG serves mainly to isolate the input signal from the VGG supply. Excursions of the input signal, eg, combine in series with VGS so that they add algebraically to the fixed value of -0.4 V. The effect of signal variation is to instantaneously shift the bias line horizontally without changing its slope. The shifting bias line then develops the output signal current as shown in Figure 2. The constant-current bias approach (Figure 3) for establishing the Q·point of Figure 1 requires a 0.39-mA current source. For an ideal constant·current generator, input signal excursions merely shift the bias line horizontally and produce no resultant gate-source voltage excursion. This bias technique is therefore limited to source followers, sourcecoupled differential amplifiers, and to ac amplifiers where the source terminal is bypassed to ground at the signal frequency.
Ff
v OO
VOS=15V
RO
eg
Ro
-=-
OUTPUT
,:}
-=-
-: AC LOAD LINE
-12
Figure 4. Partial bypassing of the current source (Figure 3) lowers the circuit gain by tilting the ac load line from the vertical. The capacitor drop subtracts from ego
This will lower the gain of the amplifier because of signal degeneration at the source. The input signal, eg, is reduced by the drop across the capacitor:
(I) It is clear from Figure 4 that the input signal only shifts the operating point by an amount equal to VgS ' the effective input signal. As the signal frequency is decreased, the slope of the ac bias line decreases, causing the effective input signal to approach zero.
Self Bias Needs No Extra Supply The self-bias circuit (Figure 5) establishes the Q-point by applying the voltage dropped across the source resistor, RS, to the gate. Since no voltage is dropped across RS when I D = 0, the self-bias load line passes through the origin. Its slope is given by -I/RS. Therefore, the desired Q-point is established by setting -l/RS = IDQ/VGSQ.
12
~ o
DB
i5 3' 1:
+VO:UTPUT
vos -15 v
12
'g
RG
-=-
-1.
RS
-=-
08
'd --Lb---~'
Figure 3. Constant-current bias fixes the output voltage for any RD. Hence, input signals cannot affect the output unless the current source is bypassed.
If an ac ground is prOvided by a bypass capacitor across the current source, a vertical ac bias line will be established. Input signal variations will then translate the ac bias line horizontally, and signal development will proceed as with constant-voltage biasing (Figure 3). Should the bypass capacitor not provide a sufficiently low reactance at the signal frequency, the ac bias line will not be vertical. It will still intersect the transfer curve at the Qpoint but with a slope equal to -{l/Xc) = -wc (Figure 4).
-16
-12
-08
_
o
!
S~~~~I~N~C 04
-04
VGS IVOLTS)
Figure 5. The self·bias load line passes through the origin with a slope -1/RS. Bypassing RS will steepen the slope and increase the gain of the circuit.
Signal development is the same as in the case of the partially bypassed constant-current scheme except that the load line is a dc bias line. Signal degeneration is described by Equation 1 with Xc replaced by RS. The ac gain of the circuit can be increased by shunting RS with a bypass capacitor, as in the constant-current case. The ac load line then passes through the Q·point with a slope - (1/Zs) = -(we + I/RS).
Siliconix
7-13
-
The circuit is biased automatically at the desired Q-point, requires no extra power supply and provides a degree of current stabilization not possible with constant-voltage biasing. A fourth biasing method, combining the advantages of constant-current biasing and self biasing, is obtained by combining the constant-voltage circuit with the self-bias circuit (Figure 6). A principal advantage of this configuration is that an approximation may be made to constant-current bias without any additional power supply. The bias load line may be drawn through the selected Q-point and given any desired slope by properly choosing VG G' (The bias line intercepts the VGS axis at VGG .) The larger VGG is made, the larger RS will be and the better will be the approximation to constant-current biasing.
Biasing for Device Variations The value of the combination-bias technique becomes apparent when one considers the normal production spread of device characteristics. The problem is illustrated in Figure 7 VGS=O
12
-02V
08
-04V
04
_Dav
1 E
-D6V
-10V -12V
10
40
50
VOS(VOlTSl
+Voo
+VOD
3IJ
20
+VOD
1.2
08
eo VGS=D
04
-02V QA
c
b
-04V -D6V
10
20
30
40
50
Vos (VOLTS)
VOS=15V
Figure 7. The wide variations in device performance shown by this pair of output characteristics make clear the disadvantages of con· stant~voltage biasing.
12
-16
-12
-08
-04
VGS (VOLTS)
+04
+08
+12
+16 VGG
Figure 6. All three combination-bias circuits are equivalent. They add constant·voltage biasing to the self·bias circuit to establish a reasonably flat load line without sacrificing dynamic range.
All three circuits in Figure 6 are equivalent. Circuit 6(a) requires an extra power supply. The need for an additional supply is avoided in 6(b) by deriving VGG from the drain supply. R 1 and R2 are simply a voltage divider. To maintain the high input impedance of the FET, Rl and R2 must both be very large. Very large resistors cannot always be found in the exact ratio needed to derive the desired VGG in every circuit application. Circuit 6(c) overcomes this problem by placing a large RG between the center point of the divider and the gate. This allows Rl and R2 to be small, without lowering the input impedance. One point of caution worth remembering is that as VGG is increased, Vs increases, and VDS decreases. Therefore with low VDD , there may be a Significant decrease in the allow· able output voltage swing.
7-14
where two limiting sets of output characteristics, representing the actual min-max spread of the Siliconix 2N4339, are presented. Limiting characteristics like these are not normally available. Even if they were, however, they'd be of little help in establishing operating points suitable for all devices with output characteristics lying between the two extremes. The problem is much more easily approached by llsiIlg the sct of lirrJting transfer chaiactelistil,..s of FigUltl 8. (See next page.) Attempting to establish suitable constant-voltage bias conditions for a production spread of devices is practical only for circuits with very small values of dc drain resistance - for example, circuits with inductive loads. As the constantvoltage bias plot of Figure 8 reveals, constant gate bias causes a significant difference in operating IDQ for the extreme limit devices. At VGS =-0.4 V, the range ofIDQ is 0.13 to 0.69 rnA, and VDS Q for a given RD will vary greatly for most resistance-loaded circuits. For the example of Figure 1, with RD = 39K n and VDD =30 V, VDSO varies from near saturation (5 V) to 25 V.
An apparently excellent method of biasing is the constantcurrent method of Figure 3. Biasing in this manner fixes the operating drain current for all devices and sets VDS Q to VDD - IDQRL for any device in the production spread. VGS automatically finds a value to set the appropriate IDQ = constant for all devices. For the constant-current bias plot of Figure 8, with IDQ = 0.39 rnA, VGS would range from -0.11 to -0.67 V.
Siliconix
15
15 VOS
Vos= 15V
08
".,e
-12
-16
-DB
-12
VOS= 15V
-08
-04
VGS (VOLTS)
VGG=04V
VGS (VOLTS)
".,e
04
04
-16
15V
12
12
08
=
15
r-------------~~--_,_15
VOS=15V
12
08
".,e
04
-16
-12
-08
-16
-04
+12
+16
VGS (VOLTS)
VGS (VOLTS)
Figure B. The advantages of combination biasing, when one is working with a spread of device characteristics, are made obvious by plotting the load lines for the various types of biasing on a pair of limiting transfer curves.
Output characteristics are not needed as long as I DQ is chosen to be below the minimum I DSS . With RD = 39K n and VDD = 30 V, VDS Q is 14.8 V for all devices. The disadvantages of the constant-current method are that it allows no signal to be developed unless the current source is bypassed and, as we shall see, it lacks the flexibility to provide constant gain despite variations in the forward transconductance, gfs' of the devices. The self-bias scheme is a reasonable choice for single-ended de amplifiers and for ac amplifiers. In unbypassed or dc circuits, some compromise must be made between the gain loss due to current feedback degeneration and the advantage of current stabilization achieved with high RS. An appropriate choice of I DQ limits can be made by using the pair of limiting transfer curves. For example, for RS = lK n, the load line shown on the self-bias curve of Figure 8 is established. The maximum I Dis 0.52 rnA, and the minimum I D is 0.24 rnA. The operating range of VDS Q may be calculated for any value of VDD and RD. Clearly, for RD = 39K n, the maximum-limit device (device B) would operate with VDS Q = 9.8 V and the minimum-limit device (device A) would operate with VDSQ = 20.6 V. This results in fairly satisfactory operation for all devices. However, such a variation in IDQ imposes severe limitations on the circui t de sign.
A better approach is illustrated by the combination-bias curve of Figure 8 with VGG = 1.2 V. The range ofIDQ for
this bias condition is 0.25 rnA to 032 rnA. A similar minimum difference in I DQ could be achieved with RS = 6K n and VGG = 0, (a self-bias condition) but the operating points would be pushed toward the toe of the transfer characteristics and allowable signal input would be reduced. The upper load line allows Vgs = ± 1.8 V (limited by I DSSA)' while the lower line allows a Vgs of only ±0.7 V (limited by VCS( off)A)· (The subscript letters A and B refer to the minimum and maximum devices, respectively.) The combination circuit allows almost ideal operation over the full production spread of devices. Even with RD = 62K n, the VDSQ would range only between 10 and IS V.
For this circuit, RD should be chosen to allow the largest output signal swing for I DQ midway between the two extremes of 0.25 and 0.32 rnA; namely 0.285 rnA. Setting the voltage drop across RD at one-half of (VDD 2VGS (off)typ) or 14 V, yields RD = (14 V/0.285 rnA) = 49Kn.
It is helpful, in any design, to know the effect of tempera-
ture variations on the transfer curves and transconductance characteristics. Ideally, minimum and maximum transfer characteristics would be plotted at three temperatures: above, below, and at room temperature. Then the design would take all types of variation into account.
Siliconix
7-15
-
Minimize the Gain Variations
Leaving RS unbypassed helps reduce gain variations from device to device by providing degenerative current feedback. However, this method for minimizing gain variations is only effective when a substantial amount of gain is sacrificed. A better approach is to use the combination-bias technique with the bias ppint selected from the transfer and transconductance curves (Figure 9).
,---------:v::-o-s.::-:,::".:7 v".5
Step 5.
Travel vertically up to the maximum limit transfer curve to find IDQB at VGSQB' This is IDQB "" 0.36 rnA.
Step 6.
Construct an RS bias line through points QA and QB on the transfer curves. The slope of the line is l/RS' and the intercept with the VGS axis is the required VGG .
As Figure 9 demonstrates, it may be somewhat inconvenient to perform Step 6 graphically. An algebraic solution can then be employed instead. The source resistance is given by
(2) and the bias voltage is VGG =RS IDQB + VGSQB
(3)
Care should be taken to maintain the proper algebraic signs in Equations 2 and 3. (For n-channel FETs, VGS is negative and I D is positive. For p-channel units, the signs are reversed.)
If the transconductance cUrves of Figure 9 are not available, gfs can be determined by simply measuring the slope of the transfer curve at the desired operating point. Just place a straight-edge tangent to the curve at the Q-point and note the points at which it intercepts the ID and VGS axes. The slope and gfs are given by: slope = gfs = ID(intercept)/- VGS(intercept)
Figure 9. Gain variations are minimized when the load line is de-
signed to intersect the pair of limiting transfer curves (top) at points of equal gf. (bottom).
As Figure 9 shows, it is possible to find an RS and a VGG that will set IDQA and IDQB to values so that gfsQ will be the same for both devices. The gfsQ of ~!! int('rmediat(' devices will be approximately equal to the limiting values. Thus, a constant, or nearly constant, stage gain is obtained even with a bypass capacitor. The design procedure is as follows:
Step 1.
Select a desired I DQA below I DSSA- A good value, allowing for temperature variations, is 60% ofl DSSA- This will allow for decreasing IDSS due to temperature variation and for reasonable signal excursions in load current.
Step 2.
Enter the transfer curves at I DQA "" 0.6 IDSSA (0.3 rnA) to find VGSQA' This VGSQA "" 0.2 V for the 2N4339.
Step 3.
Drop vertically at VGSQA to the minimum limit transconductance curve to find gfsQAThe value as read from the plot is approximately 1000 ILmho.
Step 4.
Travel across the gfs plot to the maximum curve to fmd VGSQB at the same value of gfs' This is VGSQB "" -0.7 V.
7-16
(4)
In designing a constant-gain circuit, simply set the straightedge tangent to the transfer curve of device A at point QA and slide it, without changing its slope, until it is tangent to the curve of device B. The tangency point is QB' Designing Without Output Curves Although the transfer characteristic has been seen to be extremely valuable in designing a bias ciicuH, 1t cannot be used to graphically establish VDSQ ' However, if a set of output curves is not available, VDS Q can be determined or selected from the transfer curve by using the following procedure:
Step 1.
Establish RS and limiting values of I DQ , VGSQ and gfsQ from the transfer curve.
Step 2.
Establish VDD as available, but in no case greater than BVGSS nor less than several times VGS(off)' There are special cases where VDD will be below this limit, but in no case should instantaneous Vdg be allowed to fall below 2 x VGS(off) if minimum distortion is to be achieved.
Step 3.
Set VDS Q approximately midway between VDD and 2 x VGS(off); lower iflarge output signals will not be handled.
Step 4.
Select RD to give the appropriate VDSQ ' The formula is:
RD = [(VDD - VDSQ)/0.5 IDQA + IDQBl -RS
Silicanix
(5)
In the example of Figure 8, this procedure would have yielded VOSQ;(30-3)/2; 13.5 V and RO; (30 - 13.5)/0.5 (0.52 + 0.24) rnA - IK n ; 42.SK n.
Step 5.
By considering 10 circuits, which represent virutally every source-follower configuration, the designer can obtain consistent circuit performance despite wide device variations. There are two basic connections for source followers: with and without gate feedback. Each connection comes in several variations (Figure 10). Circuits 10(a) through 10Ce) have no gate feedback; their input impedances, therefore, are equal to RG. Circuits 10{f) through 10(k) employ feedback to their gates to increase the input impedance above RG.
Check to ensure that with this R O' device B is not in a saturated condition - VOQB ; VOO - IOBQ Ro > 2VGS(0ff) + RS IOBQ· Decrease RO if this condition is not met.
An alternate method, that selects Ro to provide a specified voltage gain, follows Steps I and 2 above and then proceeds as follows: Step 3. Step 4.
Determine required stage gain, Av' and set RO ; Av/gfsQ· Calculate VOSQ to ensure that the criteria of Step 2 are not violated:
VDSQ ; VDD - (RD + RS) IDQ
Step 5.
Before getting into the details of bias·circuit design, note several general observations that can be made about the circuits of Figure 10: • Circuits a, d and f can accept only positive and small negative signals, because these circuits have their source resistors connected to ground. The other circuits can handle large positive and negative signals limited only by the available supply voltages and device breakdown voltage.
(6)
• Circuits c, d, e, h, j, and k employ current sources to improve drain-current (In) stability and increase gain.
If necessary, change I OQ ' VOD' Av and/or Rn to obtain an optimum compromise . ••
• Circuits d, e and k employ FETs as current sources. In circuit d, Q2 must have a lower cut-off voltage, VGS(off)' and a lower zero gate·voltage drain current, InSS' than Ql. • Circuits e, g, h and k employ a source resistor, RS' which may be selected to set the quiescent output voltage equal to zero.
FET SOURCE-FOLLOWER CIRCUITS Too little knowledge of biasing methods for FET amplifiers sometimes keeps engineers from making maximum use of FETs in circuit designs. The common-drain amplifier, or source follower, is a particularly valuable configuration; its high input impedance and low output impedance make it very useful for impedance transformations between FETs and bipolar transistors. +VOD
+VOD
AS
+VOD
-Vss
-:.-
b
+VOD
+VOD
+VOD
AG
AS
-Vss
a
• Circuits e and k use matched FETs. RS is selected to set In near the specified low-drift operating current. The input·output offset is zero.
d
c
+VOD
+VOD
+VOD
+VOD
e
-
AS1 AS
AG
AG
AS
°2 AS2
-Vss
-Vss
h
k
Figure 10. Virtually every practical source-follower configuration is represented in this collection of ten circuits. The configurations in the top row do not employ gate feedback; the corresponding ones in the bottom raw do.
Silicanix
7-17
Biasing Without Feedback is Simple The no-feedback circuits of Figure 10 (circuits IO(a) through IO(e) use simple biasing techniques (see the earlier article). Circuit IO(a) is a self-bias configuration; the voltage drop across RS biases the gate (which draws essentially zero current) through resistor RG' Since no gate-to-source voltage, VGS ' can be developed when In = 0, the self-bias load line passes through tpe origin (Figure II). For the 2N4339 FET, whose limiting transfer characteristics are used throughout this article, the quiescent drain current is seen to lie between about 0.25 and 0.55 rnA when a IK n source resistor is used. The quiescent output voltage lies between +0.25 and +0.55 V.
Circuit IO(d) is similar to IO(c) except that the VGS =0 output characteristic of FET Q2 is used as a current source. As seen in Figure 13,02 does not supply constant current when its VnS gets very small. This technique should therefore be used only to bias FETs whose VGS(off) is Significantly higher than the equivalent VGS(off) of the current-source FET diode. r----------~15 VOS=15V
12
08
04
.--------::V-08-="""'5"'V,,'5 12
-16
-12
-08
-04
VGS !VOLTS)
08
Figure 13. FET 02 doesn't behave like an ideal current source when its VOS gets very small (Figure IOd). Therefore, 01 should have a significantly larger VGS(off) than 02 does.
04
-1.6
-12
-04
-D8
VGS (VOLTS)
Figure 11. Self biasing (Figure IDa) uses the voltage dropped across the source resistor, RS to bias the gate. The load line passes through the origin and has a slope of -1/RS.
A pair of matched FETs is-used in the circuit of Figure IO(e), one as a source follower and the other as a current source. The operating drain current (InQ) is set by RS2, as indicated by the load line of Figure 14. The drain current may be anywhere from 0.20 to 0.42 rnA, as shown by the limiting transfer characteristic intercepts; however, VGS I = VGS2 because the FETs are matched. r-------~-~rI5
VDS=15V
12
Circuit 100b) is another example of source-resistor biasing with a -VSS supply added. The advantage over circuit lO(a) is that the signal voltage can swing negative to approximately-VSS ' Two bias lines are shown in Figure 12, one for VSS = -15 V and the other VSS = -1.6 V. For the first case, the quiescent output voltage lies between +0.18 and +0.74 V. For the second, it lies between +0.3 and +0.82 V.
08
04
VGS (VOLTS)
,----------r '5
Figure 14. This load line is set by RS2 and 02 which acts as a current source (Figure IDe). If its components are properly matched, the circuit will have zero or near-zero offset.
Ves" 15V
12
08
Since 1m = In2 and VGSI = VGS2, choosing RSI = RS2 will ensure that the voltage from point A to B equals the voltage point from point C to D (Figure IO(e». This source follower, therefore, exhibits zero or near-zero offset. If the FETs are temperature-matched at the operating In, the source follower will exhibit zero or near-zero temperature drift.
C
~ 04
Rs=60K
Rs"
-1.
-12
-08
-04
10K
+04
VSS=-15V
VSS=-16V
+08
+12
+16
Biasing With Feedback Increases Zm
VGSIVOLTSI
Figure 12. Adding a VSS supply to the self-bias circuit (F igure 1Db) allows it to handle large negative signals. The load line's intercept with the VGs·axis is at VGS = -VSS. Bias lines are shown for VSS = -15 V and VSS = -1.6 V.
The bias load line for circuit IO(c) is just a horizontal line (I n = constant). The quiescent output voltage is between +0.15 and 0.7 V for In =0.3 rnA.
7-18
Each of the feedback-type source followers (Figure 10(f) through 100k) ) is biased by a method similar to that used with the nonfeedback circuit above it. However, in each case, RG is returned to a point in the source circuit that provides almost unity feedback to the lower end of R G. If RS is chosen so that RG is returned to zero dc volts (except in circuit 10(f), then the input/output offset is zero. RI is usually much larger than RS'
Siliconix
Circuit 10(1) is useful principally for ac·coupled circuits. RS is usually much less than Rita provide near· unity feedback. The bias load line is set by RS (Figure IS). The output load line, however is determined by the sum of RS + R l' The feedback voltage VFB , measured at the junction of RS and R 1, is determined by the intercept of the RS + R 1 load line with the VGS axis. The quiescent output voltage is VFB - VGS' r--------------------,-15 12
oa
<5
3" 1! RS + Rl "10K
04
AS + R, '" 10K
·16
-12
-04
·OB
<04
.oa
"2
"6
circuit l(h) differs from that of Figure 10(g) (Figure 16) in that the load line is perfectly flat. In Figure 16 the load line is almost, but not quite, flat; it has a slope of -I/SOk. Circuit 1O(j) is similar to 10(h) except that the output is taken from the top of RS to reduce the output impedaI)ce. RS must be trimmed if the circuit is to work at all properly. In Figure 17, the constant·current load line represents a 0.3·mA current source, and the effect of a IK n source resistor is shown. The offset voltage is seen to lie between 0.2 and 0.75 V. The intercept of the RS load line and the VGS axis sets the voltage at the junction of RS and the cur· rent source (VFB ). For RS = IK n, VFB will be between -0.1 V and +0.45 V. Since VFB appears at the gate, it must be zero if the dc input impedance of the circuit is to be preserved. r-------------~~~_,_15
VOS"'15V
VGS (VOL TS)
Figure 15. The bias load line is set by RS but the output load line is determined by RS + Rl when gate feedback is employed (Figure lot). The feedback Vfb is determined by the intercept of the RS + Rl load line and the VGS axis.
12
In the circuit of Figure 10(g), RS can be trimmed to provide zero offset. As the curves show (Figure 16), RS will be between 670 ohms and 2.SK n. RS is much less than R 1. The source load line intercepts the VGS axis at VSS = -VGG=-IS V.
04
oa
<5
3" 1!
r-------------~V70-S-o~15~V~15
-1.6
-12
-08
-04
15-'03 rnA
+04
+08
'12
"6
VGS (VOLTS)
Figure 17. If Rs is not trimmed so that the load line passes through the origin, a voltage will appear at the gate causing a reduction in dc input impedance. The incremental input impedance will not
be affected.
This can be done by trimming RS, as shown dashed in Fig· ure 17. The biasing then becomes the same as for cir· cuit 100h).
·16
·12
-DB
-04
'04
VGS (VOLTS~
.oa
'"
"6
Figure 16. RS can be trimmed to provide zero offset at some point between 670 ohms and 2.5K (Figure 10g). The source load line
n
intercepts the VGS axis at VSS = VGG = -15 V. Note that this load line is not perfectly flat. It has a slope of -1/50K. because the current source is not perfect; it has a finite impedance.
Circuit 10(h) is almost the same as 100g); the difference is that resistor RI is replaced by a current source. Since an ideal current source has infinite impedance, the bias curve of
Biasing for circuit 10(k) is identical to that for circuit 1O(e) (Figure 14) except that feedback is added to raise the input impedance .••
REFERENCES (I)
(2)
Siliconix
Sherwin, J.S., "How, Why and Where to Use FETs," Electronic Design,. May 17, 1966, p. 94. Sherwin, J.S., "Knowing the Cause Helps to Cure Distortion in FET Amplifiers," Electronics, Dec. 12,1966, pp. 99·105.
7-19
ta
APPLICATIONS
H
Siliconix
Amplifier Charts
.c
......-.u
For convenience this chart offers the designer circuit values for a variety of commonly used J-FET amplifiers .
G)
a.
E
Voo
C
fR~-
Ro ~eo
I
1.1'-
"
---"1 R,
RS ~
-::'
*cs
__ ..JI
-::'
Amplifier Design Chart (CS for 3 dB Point at 50 Hz)
voo IVI
AS
1m
AI IMS11
A2 IMS11
Cs
100
AO
eo Max
I"FI
(mAl
1m
IVI
AV
VOO IVI
AS Ikni
A, R2 IMHI IMni
VOO'15 VSS'-15 VOO = 15
VSS' -15
560 27K
100 33
10
3K 75K
11
100
lK lK
85
096
Follower
85
096
15
Follower
20
47
11
330
100 100
2K
47
11
VOD'" 15
4 7K
15
820
15
30
10
1M
45
510
1M
17
620
22
35
097
10
82
1M
120
36
06
22
50
02
35
18-24
20
82
1M
120
120
15
30
82
1M
120
180
15K
55
33
510
1M
11
097
VDD - -<.15 VSS' -15
Source Follower
15
2N4118
So .. rcc
Follower
75 10
35
097
2N4119
12K
15
220
22K
35
lK
12
100
39K
lK
12
100
56K
20
56
30
56
38 35
40-55
25
13
098
15
13
098
70 5"F"
35
at5V
70
150 240
10 3
330
17 17-23
20
68
300
27
18
30
68
300
68
45
VDO "" +15
510
VSS" -15 "ACAmpltfier
7-20
Source Follower
12
420
25
Source Follower
AV
57 15
360
15K
20
75K
eo Max IpKVI
120 270
27K
J113
47K
45
100
220
Vee· 15 VSS'-15
45
1M
8-11
19
10
30
RO Ikni
100
330 VSS' -15
lK 820
330
1M
10
VOO '" +15 VSS' -15
330 30
10
097
J112
2K
10 20
25
Source
Source
75K
100 I"AI
2N4117
J111
30
Cs
Siliconix
Source Follower
40
10
097
APPLICATIONS (Cont'd)
:I=-
H
Siliconix
3
--....---
"U
.,CD
n
:::r a :L 1ft
---I
R,
RS
~ Cs
,
~--...I
Amplifier Design Chart Voo
RS
Rl
R2
Cs
(V)
1m
1m
1m
lpF) ImA) IKn)
100
RO
.0
Max
Ipk V)
AV
Voo
RS
Rl
R2
Cs
IV)
1m
1m
1m
IpFI ImAI IKm
2N433B 1500
t--2--
1M
30
15 5100
1M
36K
1M
1500
1M
5100
1M
2M
t--2-30
t--2--
30
36K
1M
1500
1M
5100
1M
36K
1M
Voo = +15 lOOK VSS=-15
1M
45
o 25 30
25 5M
30
o
I-E-8 2M
36 25 9·12 0.25 f-":;43:;;67+-..;1;.;5:-+-..;1;;;6:.;.2~4 20 20-30 0.12 f--;88;;;22+--:3;:;.0;-+-,1c:;0..:.1.:;0.~5 1.5 24·37 0.15 27 1.0 13·18.5 82 40 21.5·27 0.25 f-::i:8",2+--;2;:-:.5;.-+-..:3",2-;-4::;-t9 100 3.0 43·64 150 4.5 14.5-16 0.12 t---:1;;5",0+--:2;:;.5;-+--:3",8-;-,5::;-!4 200 1.5 40-50 0.15 82 5.0 37·52
270
0.12
10
680 15
30
28·31
015
120
7.0
54·76
0
9.0
098
~ 042 1--;2:;;0+---;3;:;.0;-+--+,7.;:,7.~5
1M
9100
1M
6.8M
35
27K
1M
3M
25
~~
40 15
~:~
30
27K
1M
47 6.5 15·17 042 47 4.0 38·47 I--::SC:-l+-:4"'.S:--+--'4'"'0'"'.5C:-1 40 0 o 43 8.0 4.5 13M I - - 0 32 1--:4"'3+-:5"'.0:--+-""'4;-:0"'.4c:-1 3 35 68 4.5 53.60 68 40 49·52 75M 25 0.2 I-l-0:"'0+-:7'"'.0:--+--:6'"'6-:.7c:-1 0
1800
1M
t--- 042 1--=7""5+--=5-;.0:--+--:5"'8.-:7"""'0
1M
9100
1M
o
40 45
o
9100
1M
22M
r--25 ~
27K Voo = +15 VSS=-15
75K
1M 1M
12M
25
o
75
75
70 73.77 70 7.0 0.32 1-~6~8+--::6-:.5:--+--::5:::9.'::67-1 4 120 70 80.85 100 12 33 0.2 r.l-;;0~0+--;;5,.;0:--t;-;~6:=:5-~6~8 180 80 100·115
o
10
VOO-+15 VSS=-15
.0 Max Ipk VI
AV
1200
1M
3900
1M
680
1M
1200
1M
3900
1M
20K
1M
680
1M
1200
1M
3900
1M
20K
2M
22K
1M
15
I-i~~.~rt-i~'i.~~+--;~1:i.~i;·~irl
65
6.8
2.0
9.10.5
r---265
12
60
9.5·10
39
7.0
7.5·8
r--!L-
I-~~~H---;~;'j:~~-t--;~~t:~!~~
40
04
r--L 60
~.~
~~:~~
11
39
20
39.42
075
o
12
0.96
o
~~
1
2N4341
15
23·25
100 68
022
45
~~:~~
9 0.32 1--;1",8+-:2",.0:--+--:1;-:7-:.1c:-1 30 25 26·28 22 1.0 16·18 0 2 1--::4~3+-;2;:;.0;-+--;2;;;8-:.3~0
~
1800
r--2-
1M
1--:2"'7"'0+--;5"'0:-+-7"'6"'.1"'0:::-1 5
2N4339 1800
RO
2N4340
~300 0.15 f-l;;2",0+-+.14:-+--;:-:.:;2::<-J8
o
100
30
45
0.98 VOO=+15 VSS=-15
Siliconix
1000
1M
70
1200
1.2M 7.5M
-SO
2000
1M
3.5
r.~~:~H~~rig~+-:3;::.!i-~~
r--!L70
2.7
~:~
~.~
80
3.5
9.1 3.9
15 40
41 11·13 7.5·8
50
0.7
18
30
16·21
~.~
6i~
22M
80
27 35
6.8
70
13
5.6M
50
0.7
30
9.0
28·35
o
1.9
o
135
094
1000
1M
1200
l.lM
2000
1M
15K
1M
33M
1000
1M
~
+0
1200
1M
2000
1M
15K
1M
10K
1M
15M
:g
g
7-21
-
H
Silicanix
Composite Op Amp for High Performance
For op amp applications requmng the best possible performance, consider a composite op amp that takes advantage of differing process technologies. A JFET dual can be combined with a Signetics NE5534 bipolar op amp for outstanding performance. Input bias current can be reduced, yet slew rate can be very high (20V / J.l.sec to 40V /Jlsec) and the circuit is unity·gain stable. Output swing is a minimum of ±12V into a 600 ohm load when operating from ±15V power supplies. This high output
capability combined with a JFET input stage makes this an excellent amplifier for high·speed integrators, SAMPLE/ HOLD circuits, peak detectors, and log amplifiers. The input portion of the circuit is shown in Figure I. The NPN input stage of the NE5534 Ie op amp is biased into cut-off by connecting both inverting and non-inverting inputs to the negative rail. A JFET preamplifier input stage
High Performance Op Amp Using The Siliconix 2N5912
v+(O--------~I~---------------e-~i~~~~~~~~~_:17========N=E5=5=3=4='=====,
t
R
2.SV
Ce
RD D
0.1BmA
+-
r---~
=:= I
Re
___________-,~------------~~----~----~--~~--~-----J~-, ,
+-,~
-INo-.....+-...,
+IN o------------J~----------'
RD-1.37K
v-cr----------~----~------~
7-22
Re
B
Silicanix
is then connected into the PNP second stage of the NE5534 and the currents that formerly flowed through the NE5534 NPN input pair are now diverted into the JFET input pair. Drain resistors RD effectively parallel the collector resistors RC from within the IC op amps and the JFET drain currents will then be the sum of the currents through RD and Rc. The voltage across the parallel combination of RD and RC is nominally 2.5V due to the internal biasing of the NE5534. Going directly into the second stage of the IC op amp ratherthan into the NE5534 NPN input stage has two distinct advantages: 1. Frequency response is better in that the phase shift of
the bipolar input stage is avoided. A high-current JFET input stage, such as the 2N5912 when operated in the ImA to SmA drain current range, has excellent frequency response in comparison to an NPN stage operating in the 150MA to 200MA range. 2. The operating level at the JFET drains is only 2.5V below the positive supply rail, therefore the commonmode input range for the JFET input stage can be relatively high. The combination of low input bias current with high frequency response is useful for SAMPLE( HOLD circuits, high-speed integrators, photo-multiplier tube amplifiers, and high-speed data conversion circuits. Although more expensive than a single monolithic op amp, the combination of a JFET preamp with a bipolar IC second stage can provide substantially better performance than any monolithic alternatives. A Siliconix 2N5912 JFET dual was chosen for the input stage in this example because of its high operating current range, high gain, and excellent frequency response. The saturation drain current IDSS has a specified range of7mA to 40mA, but is typically lOrnA to 24mA. Gate source cutoff voltage VGS(off) is in the range of -I V to -5V with a typical value of approximately -2V to -4V. The 2N5912 characterization curves indicate that any drain current from ImA to 8mA will provide good performance, and 2mA was chosen for this application. The current diverted from the bipolar input stage to the JFET input stage is nominally 180MA on each side; therefore a drain current on each side of 1.82mA is needed from the drain resistors RD to make up a total drain current of 2.0mA. The drain resistor R D therefore needs to be approximately 2.5V(1.82mA, or 1370 ohms on each side. Gain of the JFET input stage can now be calculated. From the 2N5912 characterization curves, forward transconductance gfs will be in the range of 2.6mmhos to 5mmhos for units having IDSS of lOrnA to 24mA and when operated at a drain current of 2mA. The differential gain can be approximated by the product gfs RD. Using a center value of 4.3mmhos and 1230 ohms, (RD and RC in parallel), then the gain will be approximately 6.5, or I6dB. Total
amplifier gain was found to closely approximate the gain curve for a 5534 being operated alone. The cascode configuration using two input pairs as shown has several advantages. Most importantly, the input gate current is dramatically reduced due to the lower drain-togate voltage on the input pair. In the cascode configuration, the gate-to-source voltage on the upper pair will be the drain-to-source voltage of the input pair even with the common-mode input variations. All of the common-mode swing is taken up by variations in VDS of the upper pair. Gate leakage of the input pair is primarily dependent on drain-to-gate voltage VDG, which will be a constant -2V GS in this cascode configuration. Drain-to-gate voltage on the input pair will be low, typically in the 3V to 6V range, which is well below the "IG breakpoint". From the characterization curves on the 2N5912, gate current leakage will be under 2pA for drain-to-gate voltages under 6V. The cascode configuration is very effective in reducing input bias current for JFET input stages. Another advantage of the cascode configuration is a reduction of input capacitance. The input pair drains are "bootstrapped"to the common source point and both must follow the gate Voltage. The effective capacitance from gate-to-drain and from gate-to-source is reduced. In addition, output conductance is reduced by the cascode configuration which also helps CM R. Adding the second JFET pair significantly improves both input bias current and common-mode rejection without degrading other parameters. The constant current source consisting of Q3 and Q4 primarily improves common-mode rejection and rejection of power supply variation. It also establishes the nominal operating voltage at the input (pins I and 8) of the 5534 op amp. The current will be a constant VBE( RE independent of fluctuations in power supply voltage or input voltage level. This current source has very high impedance, therefore common-mode inputs are heavily attenuated. Common-mode-rejection-ratio (CMRR) is very high due to the use of a constant current source, but can be further improved by matching of drain resistance. The parallel combination of RD and RC is the effective drain resistance for this design. The transconductance ratio between the two sides of the input pair also directly affects CMRR. The drain resistors should be well-matched to minimize the CMRR adjustment range since it also affects offset and drift. Each I % mismatch in drain resistance will cause approximately IIMV (OC of input offset voltage drift. CMRR can be readily trimmed to over 100dB. CMRR vs. frequency is excellent due to the use of the 2N5912, a wide-bandwidth FET, in a casco de configuration. A high performance op amp should also have good output characteristics, low noise, and high slew rate. The NE5534 op amp is rated for ±14V mimimum output swing into a 600 ohm load when operating from ±15V power supplies. Output resistance is typically 0.3 ohms. The Siliconix
Siliconix
7-23
--
2N5912 characterization curves show a typical equivalent input noise voltage of only IOnV/y'fIzat 10Hz. There is also a component of noise from the second stage, but its effect is divided by the input stage gain and its contribution is small. Input current noise of this composite op amp is very low due to the typical operating level of I pA input bias current. For slew rate, this circuit is capable of 50V / f.lsec when going negative. Positive slew rate is 50V / f.lsec without use of a compensation capacitor, but drops to 25V/ f.lsec with a 20pF compensation capacitor. Compensation capacitance will generally be needed only when driving capacitive loads. Even the lower value of slew rate,
7-24
25V / f.lsec, corresponds to a full-power (±IOV) frequency of 400KHz.
While the vast majority of op amp applications can be satisfied through use of conventional I C op amps, there are applications in high-performance instrumentation systems that require superior performance. This composite op amp, which makes use of precision dual JFET input pairs and a high performance IC op amp, provides a unique combination of low input bias current, high CMR, low noise, excellent frequency response, and high output swing.
Siliconix
H Siliconix
Applications for the Si1000 Series JFET Amplifier Doyle L. Slack
INTRODUCTION The Sillconlx SI 1000 sene; " much more than a JFET, It IS a complete monolithic amplifier CirCUit featuring a low nOIse, low leakage J FET and two parallel diode; from the gate of the device to the substrate. An optional Internal source resistor may be connected between source and substrate to proVide a complete source follower amplifier In one ;mall package. This applicatIOn note will discuss the operation of the SI 1000 senes and Its uses and advantages. Also, several example applications CirCUits are meluded to show the SIIOOO senes' versatility as an Impedance matchmg circuit and/ or small signal amplifier.
DEVICE OPERATION AND SPECIFICATIONS The SIIOOO series NBA geometry comes m two versIOns' the SIIOOO family and the SIIIOO The Si 1000 family (Si 1000, SIIOIO, S(1020) mcorporates the features of two of our more popular J FET products, producing a unique combination of low nOIse and low leakage Two parallel dIOdes are connected between the JFET gate and the substrate (which is tied to the fourth lead of the package) These dIOdes clip transient spikes and overvoltages,
TO~~2 ___ 0,
"<>-r
I
I
I
I
r------------,I r---, I
I
5
L____ j
o
COMMON
TO~U!2---:, I I I
I
S
I I L ____ ...J
~, o
COMMO~
Si1100 Series
I
C
I
I
:L __ ~:
I I
II I
:
Si1000 Series
"<>-r-
protecting the output of the CirCUit from sudden voltage fluctuation,. The SI 1100 has the same features as the SI 1000 but also Ineludes an internal resistor from source to substrate This resistor completes the source follower circuit and sets the output Impedance of the amplifier. Figure I shows the two CirCUits and their connectIOns to the leads of a TO-72 can. It also gives the pad layout and dimensions of the SI 1000 and SI 1100 die for use m hybnd circuit applications. The mternal source resistor m the SIlIOO supplies a complete source follower amplifier circuit with a typical Rs range 000 to 60 Kohms. However, If a source resistor outside of this range IS deSIred or a different type of amplifier that still provides input overvoltage protectIOn is needed, the Si 1000 senes without the source resistor should be used, since it allows more design fleXibility. Table I shows some of the more Important typical values for the Si 1000 series and SI 1100 deVICe, and Table 2 gives the differences between the parts m each of the two families. A transfer charactenstlc graph IS Ineluded in Figure 2to give an Idea of the operating range of the SIIOOO senes.
COMMON
I
I
I
'.MILS
-
i---~ 0
I I
:
G
I I
L ___ J
:
L __________
J_
I•
•
,. "'ILS
I
Figure 1. Schematic diagrams, lead connections, and die layout for the Si1000 series and Si1100 circuits.
Siliconix
7-25
Table 1. Typical values for discussed parameters of the Si1000 family and the Si1100.
snooo PARAMETER
Family
SillOO
Oiode Leakage JFET Leakage
<2pA
same same
Noise
10 nV/JHz
same
Rs
N/A
45 Kohms
Test Conditions V04=+/-100mV VOS=OV, VOO=IOV V04 =OV VOS =IOV, VOS=OV F=IO Hz V 04=IOV F=IO kHz
Table 2. Operating parameters of each of the parts in the Si1000 family. PARAMETER Vp
SilOOO -.3v/-1.8V
Sii010 -.6V/-2.3V
SilO20 -.9V/-3.5V
loSS gfs
50uA/2mA 100/3000 umho
200uA/3.5mA 400/3500 umho
600uA/5mA 1200/4000 umho
PARAMETER v0< operating) IO(operating)
-~
SillOO .3V-2.7V 6uA-60uA
/"'-'~
250
J
RS = 10Kn
for R s =45 Kohms
I
200 <{
3-
.P
150
100
O~~~==CO o
-0.5
-1.0
-1.5
-3.5
Figure 2. Graph of the transfer characteristics of the Si1000 family. Note that the shaded area is the area of operation for the internal RS Si11 00 with the typical 45K line in the center.
7-26
Siliconix
ADVANTAGES AND APPLICATIONS often ImpossIble for dIscrete amplifIers It also reduces the
Several advantages of the SIiOOO senes such as low nmse, low leakage, and small sIze have already been mentioned. These and
possiblhty of nmse insertIOn from nearby sources became
other advantages over discrete amplifIers including improvements
the case of the part is normally grounded to provIde an
in both circUIt operation and ease of implementatIOn make the
effectIve RF shIeld. Also, the SIiOOO series' small die size
SilOOO series very attractive:
makes It very attractive for use in hybid circUIts such as hearing aIds where minImIzing space is the greatest desIgn
I. A low noise and low leakage combinatIOn is effectIve in
factor.
provIding an extremely high input Impedance and low
4 Low current!1ow voltage capabihty makes the Si 1000
loading. These characteristIcs allow connectIOn to the
senes amplifIer Ideal for battery operation. This IS important for low cost field operation and for portable equipment.
outputs of high impedance transducers wIth mimmal signal
The most universal application of the Si 1000 family IS in
loss and signal noise injection. 2. The diodes provide overvoltage protection for later
impedance matching for hIgh Impedance sources (such as trans-
stages. If voltage sensitive circuits follow the Si 1000 series
ducers) to low impedance loads (such as transmISSIOn hnes).
part, the maximum output swing of the Si 1000 source
Figure 3 demonstrates how simply the Si 1000 or Si 1100 can solve
follower amplifIer will be less than a dIOde forward voltage
the impedance problem. The Input impedance of the JFETs are
drop above or below ground potential If the fourth lead of
typically in the range of 500 Glgaohms (109 ) whIle the output
the device is grounded.
Impedance of the amphfier IS set by the source resistor. In FIgure
3. MonolithIc design reduces space requirements to a
4, the SillOO is shown In a more specific application-as a
minimum, allowing circUIt placement in locations that are
preamphfier for an electret mIcrophone.
Vs
Vs
TRANSDUCER
TRANSDUCER
r---,
If' I I "'-' I I I
I I I I I
Lr-J
r---,
I I I I I
RS
L __
If' I I "'-' I I I
I I I I I
Lr-J
I I I I I ______ L
Figure 3. Si1000 and Si1100 devices connected as impedance transformers.
Vs
ELECTRET MICROPHONE
I I I I IL _____ _
>-...--I{--o
-
TO
8 ohm LOAD
2.7n
Il00nF
Figure 4. Schematic diagram of an audio amplifier utilizing the Si1100 as a microphone preamplifier.
Siliconix
7-27
But what If an even lower load impedance such as 50 ohmns from a transmISSIOn line is to be used? FIgure 5 shows how the output impedance of the source follower CIrCUIt can be lowered
even more wIth the help of a bIpolar transistor. The reflected resistance through the base of the bipolar is paralleled with the effective output resistance of the Si 1000 cIrcuit to produce an output resistance of less than 60 ohms and a voltage gam of better than .95 V IV. This allows both the source and load to be optImally matched with virtually no sIgnal loss.
+5VTO+10V
12K
I I I
2.7K
____ .1
Figure 5. Schematic diagram of the bipolar assisted low output impedance source follower amplifier.
The bipolar assisted source follower gives great flexibIlIty by allowing interface between any ultra hIgh Impedance source and a 50 ohm load with virtually no signal loss or noise insertion. Some examples of ultra high impedance transducers are electret microphones, input preamplifIers for hearing aids, accelerometers for military and industrial sensing, infrared sensors, and ion chambers such as those used for industnal radiatIOn exposure monitors. Another example of how the SIlIOO family could be used is given in Figure 6. Here, the Si 1100 series circuit input IS connected to a capacitive field sensor (as simple as a pIece of double sided circuit board). Any induced voltage change on the plates is fed to the input ofthe peak detector section of the op-amp cIrcuit. The Schmitt trigger monitors the voltage across the capacItor and changes its output state when the capacItor voltage crossed the 2.5 Volt tngger pomt. The output from the Schmitt trigger sWItches between 0 and 5 Volts and is microprocessor compatible for sensor applications such as computer-controlled mtruder alarms.
30K
+5V
I I I I IL _____ _
>"""--.;0 TTL
OUT
30K
10K
I
Figure 6. Schematic diagram of the Si1100 proximity sensor.
7-28
62K
Siliconix
Another transducer mterface problem occur; when hIgh Imped-
common source amplIfIer mode where low power or battery
ance mea~urement network\) are connected to operational
operatlOn.s Important F.gure 8 gIves a CIrcUlt that wIll operate In
amplIfIer; for dIfferentIal mea,urement ThIS ean be ,olved by the
the 10 to 20 mIcroamp range at a 12 Volt supply voltage. The
c.rcuit m F.gure 7 Here a paJr ofSIIOOO ,ene, parl> ha, been u,ed
dIode protection .s still available m thIS confIguratIOn. but the
to mOnItor a high Impedance bndge for an mstrumentallon
CIrcUlt voltage gam wIll be between 10 and 20, with extremely low
amplif.er. Thi, cIrcuit allow, precIsIOn mea,urement at low mput
power consumptIOn (approx.mately 250uW). Thb.s very deSIrable for remote or battery operation where mmlmum maintenance I.!o.
s.gnal level; and easy 7eromg of the amplifIer output
.mportant
However. don't thmk that the SIIOOO fam.ly has to be used Just a, a ,ource follower. Another me of the SIIOOO ver;lOn IS
In
the
+12V
390K
100nF
o-II---*--i--+---+I
lOOK IloollF
Figure 7. Schematic diagram of the low signal SilDDD high impedance instrumentation amplifier.
+6V +6V
r------
I
S.1100
lOOK
1M
+12V
+6V
-12V
-
100K
I I I I I
1M
L _____ _
Figure 8. Schematic diagram of the SilDDD series low power common source amplifier.
Siliconix
7-29
CONCLUSION With Its low noise and low leakage combmatlOn, the SilOOO
be converted to any sUItable amplifIer desIgn and still provIde
senes amplifIer IS an ideal circUIt for Impedance matchmg. The SIIIOO senes CIrcUIts are dedIcated for use as source follower
dIOde protectIon. There are many good reasons to include these
amplIfIers. Although the SIIOOO senes has also been desIgned for source follower applIcatIOns, it is flexIble enough that It may easIly
7-30
devIces In your desIgns, such as small SIZe, outstandmg performance, and reasonable cost. These advantages make the SIIOOO senes preferable for numerous small sIgnal applicatIOns.
.H
Siliconix
FETs for Video Amplifiers
INTRODUCTION The field·effect transistor lends itself well to video amplifier applications. Gain bandwidth products in excess of 250 MHz may be easily achieved using simple one or two transistor circuits. DC input resistances in the tens of megohms range may also be easily achieved while input capacitances may be significantly reduced to less than I pF by well known circuit techniques. Video amplifiers have applications in communi· cations and pulse amplifying circuits and normally operate up to lOa MHz.
For this analysis the gate source leakage resistance has been ignored due to its high value. Redrawing the input equivalent circuit as a simple parallel RC combination results in
Behavior of FET Input Resistance
Figure 2
A prime FET parameter, input impedance, has a large effect in determining the frequency response of a FET video am· plifier. It is not a simple RC network but one in which the real and imaginary parts are a function of frequency. The voltage generator source resistance Rg and the FET input impedance Zin form a frequency sensitive attenua· tion network. The larger the Rg, the worse will be the fre· quency response, and vice versa. Examining this in greater detail, consider the input equivalent circuit of a FET con· nected in the common source configuration, where
where GI = Re IYin I = w 2 [TICI (l + w 2T22) + T2C2 (l + w 2 TI2)] 1- (w 2TIT2)2 + w 2 (T1 2 + T22)
(1)
and BI =Im 1Yinl
Rgs and Rgd = bulk series gate resistance Cgs and Cgd = bulk series gate capacitance Goss = output conductance
..~
(2)
where
C,d
A,d
G
= w[CI (I + w 2T22) + C2 (I + w 2TI2)]
D
A"
C"
~ Figure 1
$
T) =CgdRgd 90s$
T2 = CgsRgs
(3)
The input resistance varies inversely with the square of the frequency (see Figures 3 and 4) while the input reactance is inversely proportional to the frequency (see Figure 3).
Siliconix
7-31
-
In common-source circuits, ltG, will typically fall to < 2K ohms at 100 MHz while C, remains substantially constant at 'east up to 1000 MHz. Figures 3 and 4 below exhibit these relationships_
+15V
-rRo 5600
100~WI
Figure 5
/'
/'
The 3-dB frequency w3 is given by:
-j'Sljg'li+;blssl
o ~O~O'-£_----'--:J=OO,---J---'--:6:::00:-'-'-'::'OOO
(7)
FREQUENCY {MHz}
Figure 3
-+15V
(8)
7 x 10- 12 X 560 W3 = 255
X
106
(9)
l000n
j-~oo o-,-.-~. --h •• 100KO
y
¥1%2N5911/121
910
(10)
The low frequency voltage gain for this configuration is given by: A _ gfsRD Y - 1 + gfsRS
O'---L-LLW~~-'-~L-U~ , 10 100 FREQUENCV (MHz)
(BI
(AI
f3 =39MHz
Ay
Figure 4
(11)
= 4.9
(12)
To maintain low input capacitance, and thus a high input impedance over a wide frequency range, feedback may be applied to most circuits. Such techniques are explored in "FET and Bipolar Cascade" section (page 5). The effect of Rg on the frequency response is shown in Figures 6, 9, 11, 13 where various amplifier configurations are investigated_
where
Circuits tc Con~dcr
Measured Performance
Five video amplifier circuits are considered_ They are:
Figure 6 shows the frequency response of the circuit. The low-frequency gain was measured at 4.5 and the 3-dB bandwidth at 44 MHz giving a gain bandwidth product of 197 MHz_ This compares with a calculated gain bandwidth of 191 MHz.
Common-Source Configuration Shunt-Peaked Common-Source Configuration Source Follower Cascode Amplifier FET and Bipolar Cascade
gfs = 15 mrnho when ID = 12 mA, the quiescent current RD=560n
(13)
RS=47 n
(14)
14
....,."T1111II1IIII11"'CTTrmr-rTmI""--jTU"'Urmrn
Common-Source Circuit 1
1I1 ...... 12 H-t+tttt 11I111Itt-'Iod-tttiiP'oHttHtll-ttffi1ltl
The circuit of Figure 5 features high input impedance and high voltage gain_ The drain resistor is set at 560 ohms to maintain good bandwidth which, with 50-ohm generator impedance, is determined primarily by the drain load components. These are:
10
R n =560n (4) CT =Cgd +Cn+Cs (5) Cgd = 2.0 pF, CD the YTVM probe, 2.0 pF, and Cs is circuit stray capacitance of 3 pF. CT = 2 + 2+ 3 = 7 pF (6)
7-32
Siliconix
1I ~!IU1
r-
11~~l5!!.1
10
100
FREQUENCV (MHz)
Figure 6
1000
Effect of Increasing Generator Impedance If the generator resistance Rg is increased to 1K ohm, the input time constant of the FET is increased. The bandwidth of the amplifier is now determined primarily by the input time constant which consists of generator impedance (Rg = lK ohm) shunted by Cin (see Figure 7).
The response of an input signal of frequency fo will then be boosted to an extent depending on the loaded Q of the tuned circuit; the loaded Q in turn is dependent on the unloaded Q of inductor L, Rg and the FET input resistance. Next consider shunt peaking in the drain circuit. In Figure 8 the inductor L is set to such a value that a low Q tuned circuit is formed; the resonating capacitance C is the parallel combination of Cgd plus stray and load capacitances. For a flat response, the LC circuit is tuned to the 3-dB frequency of the resistance loaded circuit of Figure 5. (See Appendix.) +1SV
Figure 7
where
= (5.9 x 3.5) + (0.6 x 10) + 3.
Cin = 30 pF
(15) (16)
Figure 8
The required value of Lis:
where
T' R 2C
Cgd = 3.5 pF
(I 7)
Cgs = 10 pF
(18)
The corresponding 3-d8 frequency is given by: (19) 109 30 x 10- 12 x 10 3 f3
(20)
30
=5.3 MHz
=
and for the circuit in Figure 8.
(24) (25)
= 0.78J.LH
where
1
w3=--CinRg
L
(21)
which agrees closely with the measured bandwidth as shown in Figure 6.
RD= 560.11
(26)
C
= Cgd + CStray + CVTVM PROBE
(27)
C
= 1.2 + 1.3 + 2.5 = 5 pF
(28)
Due to the low circuit Q (about 5), the value of L is not critical. The 3-dB bandwidth shown in Figure 9 now extends to 67 MHz giving a gain bandwidth product of:
Shunt-Peaked Common-Source Circuit The frequency response of the resistance-loaded commonsource circuit may be significantly extended by shunt peaking at the gate and/or drain. Consider first the gate circuit. Here an inductor may be connected in shunt with the gate and set to such a value that it forms a tuned circuit with the FET input capacitance. The frequency of resonance is determined by: fo=-----
(29)
67 x 4.2 = 281 MHz
-
(22)
21r-JLC;;; where FREOUENCY (MHz)
(23)
Siliconix
Figure 9
7-33
When RS is bypassed by a 0.1 capacitor, the low frequency voltage gain is given simply by:
which is near the measured value of 0.94. Measured perfor. mance is shown in Figure 11. The output resistance of this source follower is given by:
(30)
AV=gfsRD = 15 x 10- 3 x 560
(31)
=8.4 (18.5 dB)
(32)
The gain bandwidth product tends to remain constant whether RS is bypassed or not and this effect is shown in Figure 9.
I 1 Ro = gfs = 5 x 10-3
{34)
= 200 n
and in this circuit, Ro was measured at 165 ohms. The source follower is a useful versatile circuit which may be used as an impedance converter, level shifter, buffer stage, or as an input circuit to an op amp or feedback amplifier. 1
Source-Follower Circuit 2
1111 I
A 1300 is used in the FET source·follower circuit, Figure 10, because of its low input capacitance and high gfs which remains high at the frequency range of interest. A source follower exhibits a high input impedance and low output impedance. The real part of the output impedance is the reciprocal of gfs which is independent of frequency up to about 600MHz. The input capacitance isC gd + C gs (1 - Ay) which, in this case, is approximately 1.5 pF maximum. The input capacitance is also independent of frequency and independent of load when the load is larger than the output resistance Ro.
-1
IR~= lK
:!!
g Z.
-2
w
~
-3
,g
-4
3 dB FREQUENCY
Ag= lKU 3 dB FREQUENCY
-6 01
Rg =50U
10
100
1000
FREQUENCY (MHd
Figure 11
Cascode Circuit
+12V
The cascode circuit has applications as a buffer amplifier for use with high stability oscillators or in low level power amplifiers2 mainly due to its low reverse transfer characteristics. The advantages and considerations of this configuration, Figure 12, are similar to those listed for the common· source circuit. An extra advantage exists in the cascode circuit, namely the low input capacitance:
I
=:OOT -12V
CD
11111
--= IV,HJ
25PF
-:!::-
Figure 10
The frequency response is dependent mainly on the gener· ator internal impedance. For example, when Rg is increased to lK ohm the bandv:idth fall:; to 80 ~,lHz. In this partkulai circuit, the low·frequency voltage gain is 0.94.
Cin = Cgs + (1 - AV) Cdg
(35)
Cin = Ciss + Cgd
(36)
+15V 1KG
The input resistance is proportional to 1/[2 as explained in the section, "Behavior of Input Resistance," and at some high frequency will go negative, particularly if the source resistor is large. For example, with the circuit in Figure 10, the input resistance is high at 10 MHz but in the negative resistance region at 100 MHz. However, when RS is 1000 ohms, the input resistance is real at this frequency. The voltage gain of a source follower is given by: Figure 12
(33)
Thus Ay is almost independent of RS when RS is large. Using typical values for the 1300 (or 'h 2N5912) in Figure 10, the drain current is 3 rnA, gfs is 5 mmho and RS 4700 ohms, AV=0.96
7-34
where AV is the voltage gain from Q, gate to Q, drain which is essentially unity. Ciss for the U257 dual FET is 5 pF and Cdg is I pF, therefore Cin = 5 + 1 = 6 pF, excluding strays of 4 pF Thus Miller effect is minimized and a good gain bandwidth product is achieved.
Siliconix
Figure 13 shows cascode frequency response. The voltage gain at low frequency is 15 dB (x 5.6) and the bandwidth is 24.5 MHz with a generator impedance of 50 ohms. Gain bandwidth product is 137 MHz.
The frequency response of this circuit is controlled by the output time constant if ft of the transistor is much greater than the amplifier bandwidth. In the circuit shown the a-c load is 2.5 pF.
28 r-TTTTnmr-rTTlrrmr-rrrmm 24
This produces an a-c voltage at the emitter whose amplitude is almost equal to that at the base. Thus at the FET, Vg ~ Vs ~ vd and all three signals are in phase. In this way Miller effect capacitance is largely eliminated.
b-HtttfIH--t-ttlH+ttt-t-ttttlttl
CONCLUSION The input resistance of a FET is inversely proportional to the frequency squared, while the input capacitance remains constant to at least 1000 MHz. 100 FREQUENCY (MHz)
Figure 13
FET and Bipolar Cascade The FET and bipolar transistor combination of Figure 14 makes a good video amplifier because the FET input provides the voltage gain thus obtaining a superior gain bandwidth product. The feedback capacitor a-c couples the emitter to the drain. The a-c voltage at the gate is nearly equal to that at the source. This source voltage is doc coupled to the base.
Several video amplifier configurations are considered. The common-source circuit is considered first: in the example, the low frequency gain is 4.5 and the 30-dB bandwidth 44 MHz (gain bandwidth 197 MHz). By shunt peaking in the drain circuit, gain bandwidth is increased to 260 MHz. The simple source-follower circuit gives a gain near unity with GBW almost 300 MHz and an output resistance of I/gfs' The cascode circuit features a low input capacitance and GBW of 137 MHz. The circuit featuring the best gain bandwidth is the FET and bipolar combination. A gain of II dB and bandwidth of 90 MHz is achieved.
12 0
L.Ut .......
l.'d'
BOONTON
91CVTVM
6
62Kn
2200
27Kn
001
0
10
100
FREQUENCY!MHz)
-12V
Figure 14
Figure 15
Ell
Silicanix
7-35
APPENDIX Selection of Video Amplifier Designs with Perfonnance Summary Note. All output voltages measured with Boonton 91C VTVM. Common Source Stage +15V
RO
Device
Rg
n
RS RS RD Gain dB Bypassed n n
cin
BW
GBW
pF
MHz
MHz
44 40 5.0 3.5
197 300
2N4393 50 50
x
47560 47560
lK lK
x
47560 47560
4.5 7.5 4.5 7.5
911K -91 lK 911K 91 lK
3.8 11.6 6.3 16.0 3.8 11.6 6.3 16.0
11.0 14.5 11.0 14.5
27.5 30.0 9.5 6.5
103 189 36 41
1201.5K 1201.5K 1201.5K 1201.5K
3.9 11.8 6.2 15.8 3.9 11.8 6.2 15.8
11.5 13 11.5 13
25 19 8 7
98 118 31 44
J300
50
Y,
50 2N5912 lK
x
lK
x
2N4416 50 50 lK lK
x x
13.0 17.5 13.0 17.5
22 26
Common-Source Circuit
Cascode
+lSV +15V
10Kn
lKn
":"
-15V
Rg
n
50 50 lK lK
7-36
RS Gain dB Bypassed
x x
2.7 5.6 2.7 5.6
8.5 15 8.5 15
Cin
BW
GBW
pF
MHz
MHz
n
9 11.5 9 11.5
27 27 9.5 9.0
73 151 73 51
50 lK 50 lK
Rg
Siliconix
L ~
0 0
8 15
Gain
dB
3.5 3.5 3.5 3.5
11 11 11 11
Cin
BW
GBW
pF
MHz
MHz
2 2 2 2
20 11 37 17
70 38.5 130 60
Shunt-Peaked Common-Source Stage 2N4393
J300 (V,2N5911/12)
+15V
+15V
":"
Rg
n
RS Bypassed
Gain
dB
4.2 7.5 4.2 7.5
12.5 17.5 12.5 17.5
BW
GBW
MHz
MHz
66 54 6.0 3.5
277 405 25 26
Rg
50 50
x
lK lK
x
RS
n
Bypassed
50 50
x
Gain
dB
3.9 6.3
11.8 16.0
BW
GBW
MHz
MHz
67 67
262 421
2N4416 +15V
":"
L
n
RS
J.tH
Bypassed
50 50 50
4 4
Rg
x x
5
Gain
dB
3.9 6.2 6.2
11.8 15.8 15.8
BW
GBW
MHz
MHz
45 40 45
175 248 279
Common-Drain Common-Emitter Stage
I
lROn ":"
Rg
n
RE Bypassed Gain (O.IIlFl
dB
Cin
BW
GBW
pF
MHz
MHz
2.0 2.0 2.0 2.0
39 21 13 11
117 525 39 275
Rg
50 50
x
lK lK
x
3 25 3 25
9.5 28 9.5 28
Siliconix
n
50
lK
25 F •
Gain dB
Cin pF
BW
GBW
MHz
MHz
15 15
1.0 1.0
32 15
5.6 5.6
179 84
7-37
Source-Follower Circuit +15V
+15V
Dual FET Rg
n
Gain
50 1K
0.92 0.92
C in Stray pF Total pF
Ro
BW
GBW
n
MHz
MHz
350 55
326 50
2.2
2.7
165
2.2
2.7
165
where R t = Rgs R2=Rgd =jw
CI = Cgs
(1)
C2 = Cgd
(2)
,n T
CI
C2
T
(Input to Output! mV
Gain
BW
GBW
MHz
MHz
U257 50 2N5912 1K
100
0.98
70
69
100
0.98
15
14.7
U232 50
10
0.98
85
83
1K
10
0.98
13
12.7
Note. Ro - output resistance of the source follower.
Derivation of Input Admittance Terms
Offset (Max)
Rg
n
The response below shows the "normal" 3·dB frequency without peaking - fl' It is now required to raise the response at f 1 by 3 dB to achieve a maximally flat response. Therefore, under these conditions the total impedance seen by the drain at f 1 must equal the impedance seen by the drain at fo ' Also at f 1, Xc = RV Substituting for Xc in Equation 5:
o>--_-----'f (3) - W 2CI C2
(Rt + Rz) + s(CI + C2)
fO FREQUENCY
(4)
(1- w2RIR2CIC2) + s(CIRI + C2R2)
RL2+w 2L2 RL2 =(
,1-~L
Derlvnticn of Shunt Peaki.ig forniula The equivalent circuit of the drain load is shown in the Figure below. The total impedance seen by the drain is given by:
+1 (7)
RL 2= 2wLRL
(8)
RL =2wL
(9)
RL 41T fl
(10)
L
~RL
(6) )
RL2- 2wLRL + w 2L2 + RL 2 = RL 2 + w 2 L2
(5)
n
L 2
and ro -"
fl
21TRLC
RL2C ,:.L=-2--
(11)
REFERENCES 1. Sherwin, I.S., "Liberate Your FET Amplifier," Electronic Design, May 1970. 2. Siliconix Application Tip, "FET Cascode Circuits Reduce Feedback Capacitance," August 1970.
7-38
Silicanix
H
Siliconix
Audio-Frequency Noise Characteristics of Junction FETs Bruce Watson
INTRODUCTION The purpose of this application note is to identify and characterize audio frequency noise in junction field-effect transistors_ Emphasis is placed on basic device characteristics rather than on end applications, since it is important for the circuit designer to know the salient noise behavior of the FET, and how those characteristics may be specified by production-oriented test parameters_
~ctor,
a source resistor RG, with a thermal noise voltage eT, is added to the circuit.
A noise factor (F) may be defined as F=
Total available output noise power Noise power at output due to thermal noise of RG or
Defming FET Noise Figure For analysis, it is convenient to represent noise in a FET by assuming that an ideal noise-free device has two external noise sources, eN and I N- These noise sources are chosen to have the same output as would an actual noisy FET. An equivalent circuit is shown in Figure I.
F=
Noise power output due to RG + noise power output due to FET Noise power output due to RG or
F =1 + Noise power output due to FET Noise power output due to RG or Gain X noise power of FET referred to input F=l+ Gain X noise power due to RG
NOISE-FREE FET
r- l
'N
RG
~ 'T
11
L~ J
I
or RL
'N
Noise power of FET referred to input F=I+ Noise power due to RG
The thermal noise voltage across RG is(l)
(1) Representing Noise in an Ideal FET Figure 1
where k = 1.380 x 10-23 JoulestK (Boltzmann's Constant), T = temperature in oK, and B = bandwidth in Hz_ Therefore noise power due to RG is
A noise factor (F) is a Figure of Merit of a device with respect to the resistance of a generator. To calculate a noise
Siliconix
(2)
7-39
1&1
The noise power of the FET referred to the inpu t is
(3)
where RN ~ 0.67/gfs' the equivalent resistance for noise. The eN, except in the llf n region, closely approximates the equivalent thermal noise voltage of the channel resistance. In the so·called
Ilfn region, eN is expressed as
When expressions for the noise power of both the FET and RG are substituted, the noise factor becomes eN 2 +TN 2RG2 _ F-I + 4kTRGB
(8)
(4)
where n varies between I and 2 and is device· and lot·oriented.
A noise figure (NF) expressed in dB indicates the presence of added noise power from the FET or another active device. The noise figure is always given with reference to a standard, specifically the generator resistance RG:
The characteristic bulge in eN in the Ilf n region has been observed to some extent in all junction FETs submitted to test. The breakpoint or corner frequency shown as f I in Figure 2 is lot- and device design-oriented, and varies from about 100 Hz to I kHz.
(5)
NF = 10 log 10 [F] The noise figure of the FET is
(6) When junction FET noise is expressed in terms of the noise figure (NF), an inherent disadvantage arises in that the noise figure value is dependent upon the value of the generator resistance, RG' Therefore, the eN, TN method remains as the best way to quantitatively express the noise characteristics of the FET itself. Describing Junction FET Noise Characteristics
As indicated in Equations (7) and (8), eN is inversely pro· portional to the square root of the transconductance of the FET (eN 0: l/ViiJ. eN can be lowered by a factor of llYN if N devices with matched electrical characteristics are connected parallel. For example, when
N = 2
(9)
let (10) and let
Junction FET eN and TN characteristics are frequencydependent within the audio noise spectrum, and take a form as shown in Figure 2.
(1 I)
Thus,
1--.
OR FLICKER EXCESS NOISE REGION
II
0
~
JOHNSON OR NYQUIST THERMAL NOISERECION
GENERATOR RECOMBINA OR SHOT NOISE
"ON
REGION
From Equation (7)
,
UllJJ BREAK
eNI
POINTS
'N
SLOPES
Ii
0
,
'0
(12)
,
E",n t-
f'llill JJ lDO
'K
'N
= v'4kT(0.67/gfsl)B
(13)
, and
'2
(14)
II
10K
f - FREQUENCY {Hz)
Thus, Characteristics of Junction FET Noise Figure 2
(IS)
eN, the equivalent short circuit input noise voltage (with the exception of the llf n region), is defined as(2)
(7)
7-40
A second way to achieve low eN is to use a device with a large gate area. Empirically, eN is inversely proportional to the square of the gate area (eN 0: I/AG 2), independent of gfs' This large gate area philosophy has been followed in the
Siliconix
design of the Siliconix 2N4867 A FET, and noise performance of the device is discussed later in this Application Note_ A major advantage of this type of design is that eN is significantly lowered andlN also remains at a low value_
1--:;,-;;--------1 I 15Ku
I I
15K II
The equivalent open-circuit input noise current, TN' with the exception of the shot noise region shown in Figure 2, is due to thermally-generated reverse current in the gate channel junction_ It is defined as
I I
I
10K 11
(16) where q = 1.602 x 10-19 coulomb (the magnitude of the electron charge), IG is the measured DC operating gate current in amperes, and B is bandwidth in Hz. The expression is accurate only when the measured gate current is the result of bulk device conductance. It is possible for the measured gate current to be due to conductance stemming from contamination across the leads of the semiconductor package. At higher frequencies, as in the shot noise region shown in Figure 2, TN can be approximated as being equal to the Nyquist then' 11 noise current generated by a resistor: (3)
-=-I-=-
I I
L __ -~ _
SH~~~;:~~~~~~~~SRE
I
~S~O:::E~~SJ
Test Circuit to Measure Popcorn Noise Figure 3
The graph in Figure 4 shows "moderate" burst noise observed in a group of junction FET differential amplifiers which were measured in the test circuit.
(17) x
_13D~I~
where Rp is the real part of the gate-to-source input impedance. The breakpoint or corner frequency f2 in Figure 2 is lot- and device design-oriented and can vary from 5 kHz to 50 kHz. Another form of noise found in junction FETs is known as "popcorn" or burst noise; the term popcorn noise was originated in the hearing aid industry because of noise or level shifts which are present in input stages, and which resemble the sound of corn popping. Popcorn noise is a form of random burst input noise current which remains at the same amplitude, and which is confmed to frequencies of 10Hz or lower. The suitability of a FET device is dependent on the amplitude of the burst, its duration, and its repetition rate. The origins of popcorn noise are not completely identified, but are believed to be caused by intermittent contact in aluminum-silicon interfaces and by contamination in the oxidation processes. A test circuit to measure popcorn noise in differential junction FET amplifiers is shown in Figure 3. In practice, popcorn noise is evaluated on an engineering basis, and not on a production-line basis. No correlation between llf n noise at 10Hz and popcorn noise has yet been found in junction FETs_ However, if the amplitude of the burst is large and occurs frequently, then I/f n noise voltage (eN) is masked and difficult to evaluate at 10Hz.
I
1.
YLOTTlR TJE
D4,V ' NOlsIEBURST
I--
REFE~REO +0 INPJT
!
f-#1
NOIS~ BURT-
-
STABLE DC Ul.VGs'llTi DRIFTONLY-
#2
#3
TA - 25°C
:]""'N
--
,..
NOISE BURSTS
"
~NOISEI
BURSTS
and l/fl
eN
-
-
Popcorn Noise in Differential Amplifiers Figure 4
Operating Point Considerations Unlike bipolar transistors, where eN and TN characteristics vary directly with change in collector current (IC), similar characteristics in junction FETs will vary only slightly as drain current (I D) is varied. This is true so long as the FET is biased so that the drain-source voltage is greater than the pinch-off voltage (VDS > Vp or VGS(off»The eN in junction FETs will be lowest when the devices are operated at VGS = 0 (I D = I DSS), where transconductance (gfs) is at its highest value. This will be true only if device dissipation is maintained very low in relation to the total dissipation capability of the FET.
Silicanix
7-41
__
The curves in Figure 5 illustrate changes in eN as the operating drain current (I D) is varied. Note that the lowest eN did not occur at VGS = 0, because of high power dissipation and a resultant rise in junction temperature at the operating point. ~
-'0
2N3B22 (NRL GEOMETRY)
~ =TA'" 25"C
~HIGHI.ITYPE
1 -10 >-
iii ~ ~
i3 ~
lK
-01 10 "BREAKPOIN~
~
I
g-OOl
E= -001
=-
~
L O"'lmA
'0
.....-r
too
10
15
100p.A_
20
25
3D
VOG - DRAIN-GATE VOLTAGE (VOL lSI
Gate Operating Current vs
Drain~Gate
Voltage
Figure 7 ,~~~~~~~~~WW
10
100
lK
-100
10K
1- FREQUENCY (Hz)
Ci' .s
eN Changes vs 10 Variations
-10
~ -'0
Figure 5
(NZ~~~g~~~RYI ~
~TA-25·C
HIGH gm/C lis TYPE 'rnA
IG@IO
E1G@lo=smA
~ ~
ilw
The optimum (lowest) iN in depletion-mode junction FETs should occur at VGS = 0 QD = I DSS). In practice, very little change will be seen in iN when the operating point is changed, provided that the drain-gate voltage is maintained below the gate current (IG) breakpoint and power dissipation is kept at a low level. The curves in Figure 6 illustrate TN characteristics as a function of drain-gate voltage at points below, on, and above the IG breakpoint voltage.
~
-01 IG "BREAKPOINr'
• -.0 !;
,
-00
,
'ass
'0
'5
20
25
VOG - DRAIN·GATE VOLTAGE {VOL TSI
Gate Currents vs Drain-Gate Voltage
Figure 8
Characteristics of eN andTN at Low Temperature Three equations presented earlier ( (7), (16) and (17) ) show that eN andiN are temperature dependent. eN andiN are proportional to .,ff, and both will be reduced if the temperature is lowered. In Equation (16), TN is proportional to .jI(}; IG will halve for each temperature drop of 10 to UOC. eN is also proportional to v'RN, where RN ~ 0.67 igfs. Thus when gfs IS mcreased, which is typical of junction FETs operating at low temperature, eN will also lower.
w!..u.......-..JI.WJL-.L.J.I.llWJL.....I...L..U.UW 10- 16 lOOK 'OK '00 '0
'K
f - FREQUENCY (Hz)
In Figure 9, gfs has been plotted vs temperature for a silicon junction FET, and the low temperature limitation caused by a dropoff in gfs is clearly shown.
iN Characteristics as Function of Drain-Gate Voltage Figure 6
In circuit design, particular attention must be paid to draingate voltage (VDG) to minimize gate current (IG) under operating conditions. The critical drain-gate voltage (IG breakpoint voltage) can be anywhere from 8 to 40 V, depending on device design. (4) Gate operating current (IG) should not be considered equal to gate reverse current (IGSS) in linear amplifier applications. IGSS is only an indication of reverse-biased junction leakage under non-operating conditions. The Curves in Figures 7 and 8 show how IG breakpoint is related to basic device design. Device designs with a high gfs/Ciss ratio have low breakpoint voltages, typically at VDG = 10 V, whereas high /.I. devices (1.1. =fds . gfg). have much higher IG breakpoints, typically VDG =20- 30V.
7-42
SilicDnix
1E
8000
-' w u
z
;!
g e z e
.~
500. 4000
2N4416
lo-3mA
r
/
1'-
SLOPE05VC~ r-
"
~
l-
e
~
~
2000
~
~
•
i
100
200
T - TEMPERATURE (OK)
gfs vs Temperature Figure 9
300
In connection with the plot of gfs vs temperature, note that the relationship can vary from approximately 0.2% to I % per degree C. The gfs slope depends upon the basic de· sign of the FET, and upon the proximity of the drain current operating point to I DZ , the zero temperature coefficient point. The major application for junction FETs at low temperature is in charge-sensitive amplifiers. (5) For best performance in this type of application, a high gfs/Ciss ratio is required. Recommended Siliconix FET types for such applications are the 2N4416 (NH geometry) and the U311 (NZA geometry). Test Measurements By definition, eN and iN are referred to the input of the device under test. To measure eN, the test circuit shown in Figure 10 will prove useful.
An alternate method of performing the above test is to use a Quan-Tech Transistor Noise Analyzer consisting of a Model 2173 Control Unit and a Model 2181 Filter. The analyzer has provision for measuring eN and determining NF with various values of RG in FET and bipolar devices with selectable test conditions. The measuring system has a constant gain of 10,000. The analyzer records output noise at selected frequencies between 10Hz and 100 kHz in the device under test, with the scale shown as the actual output divided by 10,000. This is then the output noise referred to the input. The equivalent bandwidth for testing is I Hz. There are certain instances where the test circuit or the Transistor Noise Analyzer are not adequate to measure eN at certain frequencies oyer certain bandwidths in the I/f n region. The rms noise over a bandwidth from flow to f high , where there is a I/f n characteristic over the entire range, can be computed as
+VOD
eN = [eN knownj.[f . In known
0
1MH
J
csc lOOn
1
V,N
I
(~)jl/2n flow
(18)
Figure 11 represents this equation graphically. For example, eN known = 70 x 10'9 v/.,jHi at 10 Hz. How much noise is in the band from 4.5 to 5.5 Hz? The noise has a Ilfl characteristic over the entire range. Thus
OUT
0)
MOUNT 0 U T AND INPUT CIRCUITRY IN SHIELDED ENCLOSURE
or
Test Circuit to Measure eN Figure 10
(20)
.!he following procedure should be used to make the eN test:
4.975 Hz is the mean center frequency where f mean = (flow' fhigh)1/2.
1. Set tunable fIlter to required flow and fhigh . Adjust oscillator to mean center frequency (fmean = [flow' fhighll/2). 2. Set Vosc to 100 mV with Switch I in positioneD I 102 ComputeVinl = 10' x - = 10'5V= IOIlV. 10 6 . Vout! 3. Measure Voutl ' Compute overall gam as Ay = - V ; = ml
-
'NKNOWN
4. Set Switch I to position@and measure Vout2 ' Compute Vin2 , the equivalent short-circuit input
I 'known
noise voltage (eN), using Ay from Step 3. Vin 2 Vout2 -
~ = eN y
. . m volts over bandWIdth flow to fhigh .
Siliconix
Computing rms Noise Over a Bandwidth Figure 11
7-43
TN measurements are difficult to implement at best. At frequencies below f2 in Figure 2,TN is assumed to have a constant level or "white" noise characteristic which may be correlated to gate current, I G. From Equation (16) IG is established as the measured bulk gate current. Because measured gate current (IG) is the result of all conductan~s at the gate, the resultant gate current and the computed iN due to bulk material can be assumed to be this value or less. The total equivalent input noise of the FET can be approximated by(6) (21) where eT 2 is the thermal noise of the generator resistance RG and eni 2 is the total noise referred to the input. This approximation assumes that the equivalent noise voltage and the current generators vary independently. Equation (21) implies that TN 2 can be calculated ifeN 2, eT 2 and total noise e ni2 are known. The difficulty here is that in MOS or junction FETs, the RG must be very large to detect the anticipated small value of TN' However, when RG is very large eT 2 is much greater than TN 2 . RG 2_ For example, over a 1 Hz bandwidth at 25"C, ifRG is equal to 100 Mn, then eT 2 = 4kTRG = 4 x 1.38 x 10-23 x 2.95 x 102 x 108 = 1.63 x 10-12
V/YHz.
(22)
or (27) When a 10 pF mica capacitor was used in the evaluation circuit (up to a frequency of 100 Hz) a correlation offrom 80 to 90% was obtained when compared to TN 2 computed from measured gate current readings. At frequencies above 100 Hz direct computation ofTN via the capacitor method becomes unwieldy because of the rapid decrease in capacitor reactance at these frequencies. In calculating TN at higher frequencies, an alternate method is to measure (Rp) the real part of the gate-source impedance of the FET. (7) When ~ is measured at various frequencies, the equivalent short-circuit input noise current ON) can be computed as a function of frequency (See Equation (17) ). A convenient instrument to measure Rp is the Hewlett-Packard Type 250A Rx meter or equivalent. The Type 250A Rx meter can measure Rp accurately up to 200K ohms. As is shown in Figure 12, this establishes the low frequency limit of 20 MHz for TN computed via direct measurement of Rp for the Siliconix FET Typ:..2N4117 A. For frequencies between 100 Hz and 20 MHz, iN must be extrapolated, as is shown in Figures 12 and 13. For FET types with lower Rp (such as the Siliconix 2N4393)TN c~ be computed down to 2 MHz, and hence extrapolated iN between 100 Hz and 100 kHz is more accurate. 10-12
Cij 1000K
AnticipatedTN is
~ ~
ew
TN "" 10-15 Amperes/v'HZ
(23)
e
z
"in
10-13 ~
lOOK
I."
~ w
~
and
~
TN 2 = 10-30 Amperes/YHz.
(24)
Z
10- 14 ~
'.K
..
1
Thus
~
~
"
"'~
.,
lK
,.
,
10-15
lK
f - FREQUENCY (MHz)
(25)
Low Frequency Limit for Calculated iN
Figure 12
Therefore, TN 2 . RG 2 is much less than eT2 , which renders this method of finding TN impractical for most common MOS FETs or junction FETs. An improved method of measuring TN 2 is to substitute a low-loss mica capacitor for resistor RG. The mica capacitor by defmition does not have equivalent thermal noise voltage, and thus Equation (21) becomes ..LllUUL.Ll..IlillU
1.-1.
1000K
(26) (where
7-44
Xc =capacitive reactance) Siliconix
,,, 1 Z
(J
f - FREQUENCY 1Hz)
Extrapolated iN
YS
Frequency
Figure 13
The following are representative eN, iN curves for Siliconix J-FET products. Of particular importance is the geometry which by its design governs the basic noise characteristics of product types derived from it.
NCB
NIP
lK
lK
10- 13
2N5434
INI GEOMETRY)
Ii -" OS
15
2'
,
z
0
10- 14
100
~
c
15
.
0
10
,
,if 1 10
10K
0
~
~
~
10- 15
,
z
0
J1)-14 ~
100
~
~
>
g
OS
0
~
0 0
m
2'
Ii-"
z l>
>
l"
is
EI
,if
w
0
~
10- 15
10
"
,
~
z
10- 16 lOOK
l>
1 10
f - FREQUENCY (Hz)
100
lK
10K
10- 16 lOOK
f - FREQUENCY (Hz)
NPA
NRL 10- 13
lK
~
lK
2'
,
z
0
OS
10- 14
w
"~
~
0
0
> 0
10- 15
is
,
Z
,if
I. S
10- 13
2N3821 (NRl GEOMETRY)
VOS=10V 'OSS=106mA
~ OS
,,',
TA=2S·C
z
0
10- 14 ~
100
0
15 ~
~
0
> 10- 15
10
0
;; ;-
is
£1
,if
I. l>
l"
z
,
£1
10- 16 tOOK
10K
f- FREQUENCY (Hz)
10-16 lOOK
f - FREQUENCY (Hz)
PSA
NT 10- 13
~
,,', Z 0
~w
iii0
"~
~
..
0
>
Z
w
0
is
10- 15 ~
,if
~
z
,
lK
,,',
~:;;
Z
10- 14
-" w
"~
~
0
Z
> w
10- 15
0
is
,
z
~
;;
~
,if 1
10K
~
0
10
100
lK
10K
lOOK
f - FREQUENCY (Hz)
f - FREQUENCY 1Hz)
FET Noise Characteristics by Geometry Figure 14
Siliconix
7-45
CONCLUSION Contemporary junction FETs have noise voltages (eN) equal to those found in low-noise bipolar transistors_ Each type of device has a different operating mechanism: the FET is voltage-actuated, while the bipolar transistor is currentactuated. Hence, FETs have an inherently lower noise current (iN) and are preferred over bipolar devices in most audio-frequency applications where low-noise performance is a design requirement. When bias points are properly selected, as described in this Application Note, the excellent low-noise characteristics of high gfs junction FETs can be realized. The curves shown in Figure 14 are representative ofeN and TN performance of Siliconix junction FETs. Of particular importance in these curves is the process geometry by which the basic design of the FET governs the noise characteristics of product types derived from it. Readers are invited to refer to the Siliconix FET catalog for full geometry performance data, and for specific part numbers stemming from the generic process geometries. In the measurement section of this Application Note, it was shown that direct eN measurements can readily be made. TN can be guaranteed at frequencies below 100 Hz by measuring the DC operating gate current (IG). When IG is
7-46
known, iN can be extrapolated from frequencies below 100 Hz to predict noise performance at frequencies to 100kHz.
REFERENCES (1)
Nyquist, H., "Thermal Agitation of Electric Charge in Conductors," Phys. Review 32 (1928), plIO.
(2)
Van der Ziel, A., "Thermal Noise in Field-Effect Transistors," Proceedings of the IRE, Vol. 50, August 1962, pp 1808-1812.
(3)
Fitchen, F.C. and Motchenbacher, C.D., LOW NOISE ELECTRONIC DESIGN, 1st Edition, John Wiley & Sons, New York, 1973, pp 103-107.
(4)
MacDonald, Charles L., "Behavior of FET Gate Current," Siliconix incorporated Application Note, April,1969.
(5)
Radeka, V., "Field-Effect Transistors in ChargeSensitive Amplifiers," National Academy of Sciences, National Research Council Publication 1184.
(6)
Op. cit., LOW NOISE ELECTRONIC pp 3Q.31.
DESIGN,
(7)
Op. cit., LOW NOISE ELECTRONIC pp 103-107.
DESIGN,
Siliconix
H
Siliconix
Differential JFET Amplifier Ted List
The discrete JFET differential amplifier has many perfonnance advantages over its integrated circuit equivalent. In particular, the noise levels and input leakage currents can be significantly lower. Given adequate device characterization data, designing a discrete amplifier IS a simple two-step procedure. For example, the U40l,s a monolithic dual JFET used in low-noise JFET-input amplifiers, low-to-medium frequency amplifiers, precision instrumentation amplifiers and comparators. The device has an excellent offset voltage rating (5mV) and nonnally does not need thennal and offset adjustments in the circuit because the two JFETs are closely matched. The characteristics are guaranteed at 15V and 200,...A, Table I, and the equivalent input noise is specified at 20nV/!Hz maximum at 10Hz. Two steps are required to design a circuit with good gain and noise characteristics. Step I: Using the circuit shown in Figure I, assume ± 15V supplies are available (±V,). The source voltage Vs is set equal to zero so that 15V appears across the current-limiting diode, CRt. Since the JFETs are characterized and production tested at 200,...A, choose a current-limiting diode with a forward-current rating close to
400,...A (200,...A quiescent current in each JFET). The CR043 , for instance, is rated at 430,...A and operates well with a 15V drop across it. The remaining 15V is divided between the JFETs and the drain resistors. The 7.5V across the JFETs is more than sufficient for operation tn the saturation region. Step 2: Calculate the value of the drain resistors from their voltage drop (7.5V) and current (215,...A): RL ,
= RL2 =
7'%.215
= 34.884kfi
The nearest standard 5% value to 34.88kfi is 36kfi; 33kfi could also be used. In summary. +V, = +15V -V, = -15V Q, and Q 2 = 'h U401 R L , = RL2 = 36kfi (3kfi optional) CR, CR043
=
The amplifier characteristics are shown in Table 2.
Table I - U401 Partial List of Parameters Parameters VGS(off) IG
g,.
g08
CRSS
en VGS,-VGS2 a(vGS,-VGS2~aT
Vos Vos Vos Vos Vos Vos Vos Vos
ConditIon
Limits
= l5Vl o = lnA = l5Vl o = 200,...A = l5Vl o = 200,...A
- 0.5 to - 2.5V -15pA 2t07mmhos 20,...mhos 3pF
= l5Vl o = 200,...A
= l5Vl o = 200,...A = l5VVGS = OV
= 10Vl os =200,...A =10Vln = 200,...A
Siliconix
--
20nV/IHZ 5mV
1O,...V/oC
7-47
Table 2 - Amplifier CharactenslIcs ~33 ~31kn
<15pA ~5mV ~13mW
Vt +
~
.~ RLt
eot
-
.....
e02
...
.....
~ ~CR1 • V1 -
Figure 1
7-48
RL2
H Siliconix
Wideband UHF Amplifier with High-Performance FETs Ed Oxner
INTRODUCTION A new freedom in UHF amplifier design is possible with high-performance "Super FETs" such as the Siliconix U3l0 Junction FET. Typical advantages include a closely-matched 75 ohm input for extremely low return loss in cable systems, and high spurious response rejection with the 3rd order 1M intercept measured at +29 dBf 1)
The amplifier circuit in Figure 1 is designed for 225 MHz center frequency, 1 dB bandwidth of 50 MHz, low input VSWR in a 75-ohm system, and 24 dB gain. Three stages of U310 FETs are used, in a straight forward design. Typical parameters are taken from the U310 data sheet:
Additionally, the high common-gate forward transconductance of the U3l 0 (20,000 /1mho maximum) makes it possible to design an amplifier with wide bandwidth and good gain, since the figure of merit (gm/C) of the FET is 2.35 x 109 typical - higher than any other known UHF Junction .FET.
Cl,C4,C7.Cg=68pF C2.CS = 500 pf C3,CG• Cs 01, Q,
act
= 1000 pF = S.hconlx U310
Forward Transconductance Input Admittance at 225 MHz Output Admittance at 225 MHz
L1,L3,LS L2. L4 • L6 RFC1. RFC2
= 120 nHy
R1. R2
=5HI
l4mmhos 13 mmhos 4mmhos 0.27 mmhos 2.6 mmhos
--
Vo = +20 V
=222nHy '" 2 2 nHy
Figure 1
Siliconix
7-49
Input match is simplified because the FET input (real) impedance is nearly 77 ohms. A coupling capacitor is used in the amplifier, rather than a tuned circuit, and thus the values may be determined:
I Cs = wXs
where:
'" 68 pF
RsRp
Xp
Three cascaded synchronous single-tuned stages are used to achieve the desired gain, and thus stage bandwidth and Q are determined:(2)
Bandwidth of 3 Stages(3) = )2 1/3 -I Bandwidth of I Stage
75 x 77
= Xs =1T.85 = 488 n
and Cp= 1.47 pF
( E; ) Ls
I =-2=120 nHy
=1.122 (I dB)
giving
w CT
Figure 2 shows that the measured input VSWR in the 75ohm system indicated an available bandwidth considerably greater than that required for the amplifier design criteria.
B/W (I dB)
=98 MHz
Q = 1.15
200 MHz 400 MHz
Blanchard Chart (Inverted Circle Impedance Chart)
Figure 2
7-50
Silicanix
The computed voltage gain per stage is approximately gfs Rt / n or 2.22 (7 dB). Measured gain for all three stages is 24 dB. The U310 FET in the final stage operates at lOSS, and thus accounts for the higher measured gain. The gain/ bandwidth response of the amplifier is shown in Figure 3.
With a FET output impedance of 3700 ohms shunted by approximately 2.5 pF (with 0.5 pF allowed for stray capacitance), the total parallel resistance necessary to obtain the desired bandwidth is: Q= wCRt
The 3rd order spurious intercept point is plotted graphically in Figure 4.(4) The importance of a high intercept point becomes apparent in a crowded high-level area of the spectrum where signal purity is of utmost priority.
R = 1.15 =330n t 1.415 x 109 x 2.5 x 10- 12 The tank circuit impedance appearing in shunt with the FET, is therefore calculated to be about 365 ohms. From this, the inductance is:
REFERENCES
R 365 L = - = - - =222nHy wQ w1.15 with a turns ratio of 2.3: 1 to match to 75 ohms. Since each stage is designed for 75 ohm input and output, three cascaded stages complete the amplifier design.
225 MHz
200 MHz
(1)
"Don't Guess the Spurious Level," ELECTRONIC DESIGN, February 1, 1967, pp. 70-73.
(2)
REFERENCE DATA FOR RADIO ENGINEERS, 4th ed., p. 242, ITT Corp., New York, N.Y.
(3)
Valley and Wallman, VACUUM TUBE AMPLIFIERS,MIT Rad. Lab. Series, Vol. 18, pp. 172-173.
(4)
Op. cit., "Don't Guess the Spurious Level."
250 MHz +40 B/W (1 dB) - 50 MHz
INTERCEVOINT
fo= 225 MHz
+20
~
...
1dVV I / II V Ii G-24dB
COMPRESSION
24 dB
~
23 dB
-20
-40
III
-60
/
Jrd ORDER
INTERMODULATION '[RODUCT [
-60
-40
-20
+20
POWER IN IdBm)
Figure 4
Figure 3
-Silicanix
7-51
H
Silicanix
High-Performance FETs In Low-Noise VHF Oscillators Ed Oxner Most communications receivers are limited in their dynamic range because of saturation in the early stages of RF amplifiers or mixers. However, some receiver designs are available which overcome this limitation by using parametric amplifiers and converters to achieve spectacular increases in dynamic range. There still remain certain limitations in dynamic range which cannot be remedied by parametric devices. In these cases, the problem lies in the heterodyning of noise sidebands which appear on the receiver local oscillator, entering the passband through strong interfering signals. Common Types of Noise Although noise is often difficult to characterize because of its random or nondeterministic nature, it is possible to differentiate various forms of noise through an understanding of the Gaussian distribution of noise about an RF carrier. Briefly stated, the three major forms of noise are (I) low-frequency noise (I/f); (2) thermal noise (4kTRB); and "shot" noise (in). Further, these types of noise can be identified from their relationship to the main RF carrier. For example, low-frequency noise predominates very close to the carrier, and falls to insignificant levels when it is displaced more than 250 Hz from the carrier. Low-frequency noise is associated with surface contamination and other irregularities, such as gate current leakage. Thermal noise plays the predominant role in the region from the I/f decay point to approximately 20 kHz from the carrier, and is commonly associated with equivalent resistance where the rms value of noise voltage of the Thevenin generator becomes the classic (4kTBR)~. Noise appearing beyond the 20 kHz is known as Shot noise, and is directly attributable to noise current. Because of the typically uniform distribution of shot noise it is also referred to as "white noise." Origins of Osclllator AM Noise
_Althoug..h an oscillator tends to produce a wave that is nearly sinusoioal, there are other fluctuations pn"spnt_ When the energy in the frequency domain close to the carrier is observed on a spectrum analyzer, noise appears as a modulation phenomenon. This observation would be greatly enhanced if the noise contribution was coherent and consisted of discrete sideband frequencies. Without a doubt, the major component of AM noise is the contribution oflow-frequency noise (Iff). Both thermal and shot noise are relatively insignificant segments of AM noise when compared to I/f. A graph of AM noise vs frequency removed is shown in Figure I.
-'OOr----r--~----~---r--------~--_r----~--~--~----~--_r------__, Ie· 760 MHz ; , I
;v/ -110
-'20
-r ~~?~iN;:iQ~~~~:RMON'CS : I I I ! i I I I
81W-10Hz
Of
.
: NORMALIZED NOISE
-130
-140
-15~'':'-DH-::-'--:50::'D~H-:-'--:-':-'kHl..,---'---..J.-'':Z~k'::H,.J....J-'"''''-''''''"'""'"3:-'k"':H'---'---:-'4:-:k":H'-'-.....-'-'.....--:_5~k":'H'=--......--'"u FREQUENCY (kHZ)
AM Noise vs Frequency Removed from the Carrier
Figure 1
7-52
Silicanix
Design of a VHF Oscillator The important design considerations for best oscillator performance include using a FET with high forward transconductance, maintaining the gate at ground potential, and keeping a high unloaded tank Q. The high transconductance is necessary to reduce the effective noise resistance. The grounded gate reduces the noise voltage contributions to those of the gate leakage current and the series gate resistance. The high tank circuit Q serves as an effective filter for the sideband noise energy. The oscillator design is somewhat extraordinary for a circuit employing a FET. The FET chosen was the Siliconix U31O, which has a forward transconductance value higher than 18 mmho at zero bias (VGS = 0). The oscillator basically consists of two coaxial resonators, one for the FET source and the other for the drain. Oscillation is established by capacity coupling between the two resonators; output coupling is derived from the magnetic coupling which exists at the open ends of the resonators. Optimum resonator Q is achieved by designing the coaxial resonators for a characteristic impedance of 75 ohms. The oscillator circuit is shown in Figure 2, and construction details are shown in Figure 3 . CJ -
1 pF (SEE TEXT)
.---f---f<») ~~~PUT
C, 100pF
~ J:R::",
*1'000
0
+Vo
'
Oscillator Circuit
Oscillator Construction Details
Figure 2
Figure 3
The technique to establish the proper resonator length for the desired frequency is somewhat tricky, and requires a first-order approximation of the anticipated capacitive fringing which derives from both the FET and the feedback network. A short circuited coaxial transmission line is theoretically resonant at a quarter-wave length of the resonating frequency, except for the effects of fringe field capacitance. At resonance
(I) If the fringe capacitance is known,
Xc
can be calculated as
Xc
=
1 wC
(2)
From this, the resonator length can be determined as
Xc
= tan III
(3)
In making these calculations, a Smith chart is invaluable, as is shown in the following illustration: Frequency of oscillation = 760 MHz FET bigs (from data sheet) = 16 mmbo Cgs = 3.4 pF Capacitance from bigs Allow for stray capacitance and Cs = 1.5 pF the feedback network 4.9'pF Thus
Xc
= j 0.57 (normalized to 75 n)
Locate 0.57 on the Smith chart. The wavelength toward the load = 0.081 X. Since a wavelength at 760 MHz is 39.5 cm., then the resonator cavity length is simply
39.5 x 0.081 = 3.20 cm (1.26 inches)
Silicanix
(4)
7-53
-
In the completed FET coaxial oscillator circuit, the output coupling loop consists of a single turn made fast to the cavity by the BNC flange and the FET itself. Although the feedback network appears somewhat crude, it can be replaced by a small trimmer capacitor for similar operation. Conclusions Measured performance of the oscillator is shown in Table IA; AM noise measurements in a 10 Hz bandwidth are shown in TableIB.
TABLEIB AM Noise Measurement Frequency Displaced From Carrier
TABLEIA Oscillator Measured Performance @ 25'C VD])(V) ID~mA)
Pout (dBm) Frequency (MHz)
+10 IS +6.6 725
+15 16.2 +15.2 742.7
+20 18.2 +18.3 754.7
+25 21 +20 762.9
50Hz 500Hz I kHz 5kHz
dBc -130 -139 -143.5 -146
The Reike diagram shown in Figure 4 makes possible the accurate prediction of expected power output and operating frequency with the oscillator feeding directly into a mismatched load. Expansion of the Rllike diagram to show frequency vs transmission line length (in degrees) will allow prediction of the long-line effect on oscillator stability.
Reike Diagram
Figure 4
7-54
Siliconix
H
Siliconix
FETs in Balanced Mixers Ed Oxner
INTRODUCTION Initial evaluatiOn of the active FET mixer Will imply a disadvantage because of local oscillator dnve requirements; bipolar devices m low-level mixers require very little dnve power. However, m high-level mixing this disadvantage IS overcome in that drive requirements at such mixing levels are generally the same, no matter whether bipolar or FET devices are used.
When high-performance, high-frequency junction field-effect transistors (JFETs) are used in the design of active balanced mixers, the resulting FET mixer circuit demonstrates clearly superior characteristics when compared to l!s popular passive counterpart employing hot-carrier diodes. Companson of several types of mixers is made in Table I. The advantages and disadvantages of senuconductor devices currently used in various mixer cirCUits are shown in Table II.
Why FETs for Balanced Mixers? The performance pnoritles of modern communication systems have stnngent requuements for wide dynamiC range, suppression of mtermodulation products, and the effects of cross-modulation. All of the foregoing parameters must be conSidered before noise figure and gam are taken mto account.
Why an Active Mixer? Active mixmg suggests lugh-Ievel ITIlxmg capability. High level nuxing m turn infers that active mIXers outperform passive mixer circuits in terms of wide dynamic range and large-Signal handling capability. Additionally, the active mixer offers unproved converSiOn efficiency over the passive mixer, permitting relaxation of the IF amplifier gain requirements and even possible eliminatiOn of the customary RF amplifier front end.
Since FETs have inherent transfer charactenstics approximatmg a square-law response, their third-order intermodulatlon distortIOn products are generally much smaller than Table II
Table I MIXER TYPE
Charactenstic BandWidth
Single-Ended Several
DEVICE
Single
Double
Balanced
Balanced
Decade
Decade
decades possible 0.5
025
Interport Isolation
Little
10-20 dB
>30dB
Relative
OdB
Bipolar
Low NOIse Figure
High Gam
High 1M Easy Overload
Low D.C. Power
Subject to Burnout
Low NOise Figure High Power Handling High Burn-out Level
High L.O Dnve
Interface to I.F. Conversion Loss
Low NOise Figure
Optimum Conversion Gam not
Conversion Gain Excellent 1M products Square Law CharacterIStic Excellent Overload High Burn-out Level
possible at Optimum Square Law Response Level
JFET
+3 dB
DISADVANTAGES
TranSistor
Diode
1.0
Relative 1M DenSity
ADVANTAGES
+6dB
L.O. Power Dual-Gate MOS FET
Siliconix
Low 1M Distortion AGC Square Law Characteristic
High L.O. Power
High NOise Figure
Poor Burnout Level Unstable
7-55
II1II
those of bipolar transistors. Harmonic distortion and cross· modulation effects are third.order-dependent, and thus are greatly reduced when FETs are used in active balanced mixers.
ahead an additional one-half of the IF cycle, FET "A" is again ON, but the noise component has advanced 1800 (wift) through the coupling structure, and is now "out of phase". The process continually repeats itself.
A secondary advantage derives from available conversion gain, so that the FET mixer becomes simultaneously equivalent to both a demodulator and a preamplifier.
The end result of this averaging (detection) is the cancellation of the noise which originated in the local oscillator, providing that the mixer balance is precise. (1)
First Order Balanced Mixer Theory
The analysis of the conversion of the signal to the IF passband is similar, but the signal is injected into the coupling structure at the equipotential tap. Thus at time t2' the signal vector (e s) is "out of phase" with the local oscillator vector, elo. The resulting envelope develops a cyclic progression at the IF rate, since the signal is "demodulated" by the mixing action of the FETs.
Essential details of balanced mixer operation, including signal conversion and local oscillator noise rejection, are best illustrated by signal flow vector diagrams (Figure 1).
I,
A schematic of a prototype balanced mixer is shown in Figure 2. DeSign criteria, in order of priority, include the following:
II,:;::J H'--..:..,..u....u---------f-- IF
(1)
Intermodulation and Cross-Modulation
(2) (3)
Conversion Gain Noise Figure
FETe
SIGNAL CONVERSION
NOISE J\EJECTION
A
I
Selecting the Proper FET Local Oscillator Injection
(6)
Designing the Input Transformer
(7)
Designing the IF Network
Intermodulation and Cross-Modulation A basic aim in mixer design is to avoid the effects of intermodulation product distortion and crossmodulation. Part of the problem may be resolved by using a balanced mixer circuit. The active transfer function of the FET is represented by a voltage-controlled current source. For both crossmodulation and interrnodulation, the amount of distortion is proportional to the amplitude of the gate-source voltage. Since input power is proportional to input voltage, and inversely proportional to input impedance, the best FET 1M and cross-modulation performance is obtained in the commongate configuration where the impedance is lowest.(2)
elo
~ lien I,
_11_WfJ
II
Signal and Noise Vectors
Figure'
Energy conversion into the intermediate frequency (IF) passband is the major concern in mixer operation. In the following analysis, both the signal and noise vectors are shown progressing (rotating) at the IF rate (wift); the resulting wave occurs through vector addition. The analysis of local oscillator noise rejection (Figure 1) assumes, for simplicity of explanation, that noise is coherent. Thus at some point in time (t l ) the noise component (en) is "in phase" with the local oscillator vector (elo) and FET "A" (the rectifying element) is ON; the JFET mixer acts as a switch, with the local oscillator acting as the switch drive signal. One-half cycle later, at time t 2 , the signal flow is reversed for both the local oscillator vector and the noise component, FET "A" is OFF and FET "B" is ON. Moving
7-56
(4) (5)
When JFETs are used as active mixer elements, it is important that the devices be operated in their square-law region. Operation in the FET square-law region will occur with the device in the depletion mode. Considerable distortion will result if the FET is operated in the enhancement mode (positive, for an N-channel FET); by analogy, the problems encountered are similar to those which arise when positive drive is placed on the grid of a vacuum tube. Square-law region operation emphasizes the importance of establishing proper drive levels for both quiescent bias and the local oscillator. The maximum conversion transconductance, gc' is achieved at about 80% of the FET gate cutoff voltage, VGS(off)' and amounts to about 25% of the forward transconductance, gfs' of the FET when used as an amplifier.
Siliconix
T,
III III III III III III
SIG
C, 50nn
~
4 50n
OUTPUT IF
C1. C5 - 01 "fd c2. C4- 1 - 10 pF C3 - 1000pF C6. ca - 30 pF C7. Cg - 68 pF
C31
eTO -OlI1F LT. L2- 1 311Hy
===.
°1.°2- U310 121 T1
0. U430
- RELCOM BT-9
Prototype Active Balanced Mixer
Figure 2
Since conversion gam (or loss) must be considered, it common to equate voltage gain Av, as:
IS
load impedance is high, then distortion will develop. However, if proper steps are taken to prevent drain load distortion, the varactor effect will also be inhibited.
(1)
where gc is the conversion transconductance and RL is the FEr dram load.
15
criminately increasing the drain load resistance will adversely affect any design priority concerning distortion - particularly intermodulation product distortion.
SOURCE INJECTED MIXER (L & SIGNAL) FREQ LO .. 120 MHz, POWER LO +17 dBm
\ 14
An attempt to achieve maximum conversion gam by mdls-
a
\
13 12
" '0
Distortion takes different forms in mIXers. Most obvIOUS is that distortion which will occur if the FEr is driven into the enhancement mode, as noted earlier. A more pernicious form is drain load distortion. And finally, there is the socalled "varactor effect."
\
~~~iNS:~;E~!:CHEl
1700 ohms
50DOohms - -
\ \
INTERCEPT POINT
\
.44 .40
.3. >32
\ \
"',0 .'2
., .4
The most frequent cause of poor mixer performance stems from signal overloading in the drain circuit. Excessive drain load impedance degrades the intermodulation characteristics and produces unwanted crossmodulation signals.(3) A characteristic of the FEr balanced mixer is that the correct drain load impedance is inversely proportional to the value of the conversion transconductance. Figure 3 shows the improvemen t in IM characteristics obtained in the prototype mixer with the drain load impedance reduced to 1700 n from 5000 n. Specifically, the dynamic load line must be plotted so that the signal peaks of the instantaneous peak-topeak output voltage are not permitted to enter into the nonsaturated ("triode") region of the FEr. Suitable and unsuitable drain load lines are shown in Figure 4. Load impedance selection is quantified in Equations 18 through 20. Distortion from the "varactor effect" is of secondary importance, and arises from an excessive peak voltage signal swing, where the changing drain-to-sorce voltage can cause a change in parasitic capacitance, erss' and give rise to harmonics.(4) A FEr tends to be voltage-dependent when the drain voltage falls appreciably below 6 volts. If the source voltage (from the power supply) is also low and the drain
Silicanix
VGS
Comparison of Mixer 1M Characteristics
Figure 3
Plotting Drain Load Lines
Figure 4
7-57
Conversion Gain
Figure 5 shows plots of normalized conversion transconductance, gc/gfs versus normalized quiescent bias, VGS/ VGS( off), for different oscillator injections.
In a FET, forward transconductance is defined as( 5)
(2)
-1- t- ~~~~':>:0
28
and conversion transconductance is defined as(6) dID(wi)
c
dVgs(wr)
! \ \
2.
(3)
g =---
1..-- I~
24
~
/,-16
~
where wi = the intermediate frequency and wr = the signal frequency.
12
The effects of time-varying local oscillator voltage, V 2, and the much smaller signal voltage, V I, must be considered: Vgs = VI cos Wit + V2 cos w2t
I o
(4)
/
VLO = VG~(Off' -
\ov
VGSloffJ
- LO=-,-_
V
/
X
rv
r-VLO" 0 8 VaS(off)
v
~ ,\ \ ~ \ i\
VaSfoffl LO=-.-
02 04
06 DB 10
~ I\.
1214
16 18 20
VGONGSloff)
For square law operation(7)
Normalized 9cl9f vs. VGl;N GS(off) (from "FET RF Mixer DeSign Technique", S.P. Kwok, WESCON Convention Record (1970) 8/1, p.2.) Figure 5
(5)
V2 + VGS ';;;VGS(off) Drain current is approximately defined by (8) VGS] 2 ID =IDSS [ I - - - VGS(off) or (9) I
""gfso VGS(off) D 2
[1- ~l
(6) Noise Figure 2
VGS(off)
(7)
or I
gfso D"" 2VGS(off)
(8)
then (10) ID""
g[so 2VGS(off)
(complex Taylor expansion)
(9)
which can be reduced to gfso ID(IF)""2V VIV2cos(wl-w2)t GS(off)
(10)
Like the common-gate FET amplifier, the common-gate FET balanced mixer is sensitive to generator resistance, R g.(1I) A change of a decade in Rg can produce a noise figure variation of as much as 3 dB. In the design of the prototype FET active balanced mixer, the generator resistance of the FETs is established by th~ hybrid coupling transformer. Two important cliteria for the FETs in the circuit are high forward transconductance, and a value of power-match source admittance, gigs' which closely matches the output admittance of the coupling transformer. In the common-gate configuration, match point~ fer optimum power gain and noise do not occur at the same value of generator resistance (Figure 6). Optimum noise match can only be achieved at the sacrifice of bandwidth.
and the conversion transductance is (11) Equation II suggests that gc increases without limit as V 2 increases without limit. However, to avoid operation of the FET in the "triode" region, the peak-to-peak swing of V 2 should not exceed VGS( off)' Thus 2 V2 peak ';;;VGS(off)
(12) GENERATOR RESISTANCE In}
or V
7-58
k ~ VGS(off) 2 pea '" 2
(13)
Silicanix
Power Gain and Noise Matching Figure 6
How to Select the Proper FET Conversion efficiency is determined by conversion transconductance, gc' which in turn is directly related to such FET parameters are zero-bias saturation current, lOSS, and the gate cutoff voltage, VGS(off): lOSS gC=VGS(off)2 IV21
however, that conversion transconductance, gc' can never be more than 25% of forward transconductance. Thus as tradeoff considerations begin, the first sacrifice to be made will be the degree of achievable conversion gain. Intermodulation performance will follow with the third tradeoff being available noise figure. Table III lists a numbet of possible alternatives to the U310.
(14)
gfso
Table III DEVICE TYPE
TYPical
""-==-=-=--
(15)
2VGS(0ff)
Equation 15 appears to indicate that FETs with high lOSS are to be preferred. However, lOSS and VGS(off) are related, and Figures 7 A and 7B show that devices from a family selected for high lOSS do not provide high conversion transconductance, but actually produce a lower value of gc'
v
Characteristic
lOSS
U310*
2N5912
2N441S*
14K
SK
5K
2N3823 3.5K
40mA
15mA
lOrnA
lOrnA
·Similar devices are also available in plastic packages: U310 (J310) 2N4416 (2N5486. J304-18)
Local Oscillator Injection
/
Low 1M distortion products and noise figure, plus best conversion gain, will be achieved if the voltage swing of the local oscillator across the gate-to-source junction is held to the values presented in Figure 5. VLO is expressed in terms of peak-to-peak voltage, while VGS(off) is a d.c. voltage.
2r-~-r-r~~t------+---+--4
Local oscillator injection can be made either through a bruteforce drive into the JFET source through the hybrid input transformer, or through a direct-coupled circuit to the JFET gates where less drive will be required for the desired voltage swing, Two circuits to obtain direct gate coupling are suggested in Figure 8.
'oss(mA.)
a.
4r--r-r-r+-~+------+--~-
'3L-~-5~LJ-LL'~.------2~.--~3.~4. IDSS (mAl
b.
--
Relationship of lOSS and VGS(offl Figure 7
GATES TIED IN PARALLEL L2 RESONATES WITH Cg a.
Best mixer performance is achieved with "matched pairs" of JFETs. Basic considerations in selecting FETs for this application are gate cutoff voltage, VGS(off)' for good conversion transconductance, and zero-bias saturation current, lOSS' for dynamic range. A match to 10% is generally adequate. Among currently available devices, the Siliconix U310 and the dual U431 offer excellent performance in both categories; common-gate forward transconductance is 20,000 pmhos max at VOS = 10 V, ID = 10 rnA, and f= 1 kHz. There is, of course, the possibility that FET cost is a major consideration in evaluating the active balanced mixer approach - the familiar price/performance tradeoff. If this is the case, there are a number of other Siliconix FETs which will provide suitable alternatives to the U310. Remember,
Siliconix
GATES DRIVEN PUSH-PULL SOURCES TIED TOGETHER b. Alternate Forms of L.O. Injection Figure 8
7-59
-
The source-injection method is used in the design of the present mixer to maintain the inherent stability of a common-gate circuit. A minor disadvantage with the dlrectdrive method is that the required gate-to-source voltage swing requires considerable local oscillator input power_ For source injection through the transformer. best mixer performance is obtained with a local oscillator drive level of +12 to +17 dBm across a 50-ohm load.
",
"
Conversely, direct coupling to the FET gates occurs at a higher impedance level and less local oscillator drive power is required. The functional tradeoff resulting when the gates are tied together is that shunt susceptance requires some form of conjugate matching, and thus brings about an undesirable reduction of instantaneous mixer bandwidth.
"
", 4-Port Hybrid with Phase and Isolation Figure 9
Designing the Input Transfonner Five criteria are important to the design of the hybrid input coupling transformer for best mixer performance. The impedance transformer must
(1)
Consist of four single-ended terminals, for the local oscillator, the input signal and FETs A and B
(2)
Offer a match between either input to a symmetrical balanced load '
(3)
Provide as much isolation as possible between the signal and local oscillator ports (Figure 9)
(4)
Maintain a differential phase of 1800 across the symmetrical balanced loads
(5)
Introduce the least possible amount of loss
A transformer using ferrite cores and meeting these five requirements is derived from elementary transmis~ion-Iine theory (Figure 10). Transmission line transformers have a low-frequency cutoff determined by the falloff of primary reactance as frequency is decreased. This reactance is determined by the series inductance of the transmission line conductors. On the other hand, high-frequency performance is enhanced by minimizing the phYSical length of the transmissIOn line. Minimizing overall line length while mamtaining suitable reactance can be accomplished by using a high-permeability core material such as a ferrite. (12) The transformer constructed for the balanced FET mixer closely resembles the balanced 4-port unsymmetrical 1800 hybrid device described by Ruthroff.(l3)
2"
:: ==
Hybrid Input Coupling Transfonner Figure 10
7-60
Siliconix
=.
'" Zo"2R
Although Ruthroff does not discuss the method of determining the winding length ofbifilar Wife, a solution is offered by Pitzalis.(l4) The Pitzalis definitions for wire length are as follows (Figure 11): 7200n . max length = -f- - (mches) upper
A
2R
(16) ZR
. nun length
20RL /) f
=(1 + P Po
lower
(mches)
-=-
(17) a.
where RL = the load impedance, p/Po = the relative permeability of the ferrite at the lower frequency, and n = a fractional wavelength determined by the amount of allowable phase error.
Zo" 2 Zo OPTIMUM
Zo = Zo OPTIMUM
Zo= }Zo OPTIMUM
Selection of the ferrite core material is determined mainly by performance requirements. A prime consideration for wide band performance is the temperature coeffiCient of the ferrite, which must have a low loss tangent over the required temperature range, i.e., high Q.
02
06
14
,.
LENGTH OF WIRE A (n)
b.
In addition, an important design factor involves the relative permeabihty of the core, since inductance of a conductor is proportional to the permeability of the surrounding medium.(1S) A high permeability material placed close to the transmission line conductors acts upon the external fringe field present, appreciably magnifying the inductance and providing a lower cutoff frequency. Power transferred from input to output is coupled directly through the dielectric medium separating the transmission hne condcutors; thus a relatively small cross-sectIOn of ferrite material can operate in an unsaturated state at impressively high power levels. For the FET balanced mixer, ferrite core material with a permeability of 40 provides satisfactory operation from 50 to 250 MHz. Figure 11 also demonstrates that a lower transmission line impedance, Zo, is to be preferred over a higher ZOo Both S().ohm and 10().ohm transmission lines are required for the mixer transformer; twisted pairs will provide satisfactory results. A characteristic impedance of 45 on is obtained from 3 turns-per-inch of Belden No. 24 AWG enamel wire, while 3~ turns-per-inch of No. 24 (7X32) Belden plastic covered wire provide Zo = 100 ohms. Each core is wound with 2 inches of the proper twisted pair, with min/max lengths calculated from Pitzalis' data (Formulae 16, 17). As with all broadband transformers, the coil has an inherent parasitic inductance which must be capacitor-compensated (C 2, C4, Figure 2).(16) A trim capacitor is required at the two input terminals, and is adjusted only once to optimize the differential phase shift across the symmetrical balanced FETs. Phase match of the hybrid structure may be tracked to within ±2 degrees (about 180°) to 250 MHz. Effective resistance transformation is useful from 50 to 550 MHz (Figure 12) - but phase track beyond 250 MHz may show too much deterioration.
Toroid Coil Winding Data Figure 11
Designing the IF Network The IF network performs two important functions III the FET balanced mixer circuit. It provides for optimum match between the FETs and the IF amplifier, and it effectively bypasses the circuit RF components (signal and local oscillator). In network deSign, it is essential that the RF and local oscillator signals be sufficiently isolated from the intermediate frequency signal to maintain rejection levels of at least 20 dB. If thiS isolation IS not maintallled, conversion gain and noise figure are degraded. The simplest technique for design of the IF network is to use the well-known pi (11) match structure from each FET drain to a common balanced output transformer network. (17) This pi match technique is especially suitable for a narrow-band intermediate frequency output, serving three useful functions. First, it serves to achieve the proper drain load match between the FETs and the IF structure. Second, it provides the very necessary isolation of the intermediate frequency signal. And third, it serves as a simple filter to provide a monotonic decrease in Impedance as frequency departs from the IF center frequency, f o.(l8, 19) This third function, shown in Figure 13, prevents the drain load impedance from skyrocketing out of control and giving rise to distortion products. Selection of the dynamic drain impedance value in the IF network is a critical point in design of the structure. Intermodulation product distortion and crossmodulation will be
Siliconix
7-61
~
__
50n - 200n Balun Figure 12
both affected by the instantaneous peak-to-peak output voltage of the FETs, if the value of the dynamic drain impedance allows these signal peaks to enter either the pinch-off voltage or breakdown voltage regions of the transistors'<20) If the impedance is too high, the dynamic range of the mixer will be severely limited; if the impedance is too low, useful conversion gain will be sacrificed.
A first-order approximation to establish the proper load impedance may be obtained when
For the U3lO FET, the optimum drain load impedance is established at slightly less than 2000 ohms, with sufficient local oscillator drive and gate bias determined from the conversion tran scond uctance curve in Figure 5. The output IF coupling structure is an 800-ohm CT to 50ohm trifilar-wound transformer (Relearn BT-9 or equivalent). The pi (n) match into this transformer provided a dynamic drain load impedance of 1700 ohms on each FET; excellent
(18)
t DISTORTION REGION
where
. = IDSS [1 v gs- ] 2 Id - -
(19)
VGS(oft)
=======,,-,-,---,====='-' '.
and (20)
7-62
Siliconix
Pi hr' Match Filter Function Figure 13
1M performance was obtained. Value of operating Q was established at 10 as the best compromise to insure that the tolerance of the pi match components would permit the IF output to peak within the allowable bandwidth at the associated IF amplifier. A Q of more than 10 would result in a greatly restricted bandwidth, while a Q of less than 10 would result in excessively high capacitance, excessively low induc· tance, and unsatisfactory filter performance.
Table IV 5()'250 MHz Mixer Performance Comparison
JFET
Characteristic IntermoduJatlon Intercept Point
+32 dBm +28 dBm
Dynamic Range
80dBt
+8.5dBm
+3dBm
+1 dBmt
+2.5 dB'
-6dB
+18 dB
7.2dB
6.5 dB
6.0dB
Signal when the deSired Signal
first expenences compression) ConverSion Gam Single~sldeband
NOise Flgure@
50MHz
tEstlmated
Insertion loss measurements on the IF network amounted to 3 dB in the center of the passband, while insertion loss on the hybrid assembly measured 1.2 dB. The network exhibited a Q of 10. Gain .and noise fIgures were measured over the full S(}'2S0 MHz bandwidth, with a single-sideband noise figure ranging from 7.2 dB at SO MHz to 8.6 dB at 2S0 MHz. Conversion gain was a flat +2.S dB.
Two-tone third-order inter modulation is expressed in terms of the intercept point.(21) With two signals 300 kHz apart, the balanced mixer suppressed third-order products -89 dB with both signals at -10 dBm, representing an intercept point of+32 dBm.
r. ";::<
:
Ih
+12 dBmt
100dB
(the level for an unwanted
Tests of the operational prototype FET balanced mixer demonstrated that the active mixer has several characteris· tics superior to those of passive mixer counterparts. These comparisons are made in Table IV (measurements of all three mixers were made under laboratory conditIOns).
m
Bipolar
100dB
Desensitization Level
Mixer Performance
Schottky
'If.
·Conservatlve minimum
Figure 14 shows a comparison of third-order 1M products emanatmg from both the JFET balanced mixer and a typical low-level double-balanced diode mixer, under similar operating conditions. Noise figure and intercept point are shown at various bias and local oscillator drive levels in Figure IS.
The performance of the active mixer is clearly supenor to that of the diode mixers, contributing overall system gain in areas critical to telecommunications practice, and reducing associated amplifier requirements.
r
.
lIH
"up ..
J,9
-"
t
:-,-
~.".-"
~
JfET BALANCED MIXER
-
l&1li
Comparison of 3rd Order 1M Products Figure 14
Silicanix
7-63
MEASURED PERFORMANCE SOURCE - INJECTEO MIXER L 0 POWER +17 dBm AND +22 dBm DRAIN LOAD IMPEDANCE 170on, 5000n
15
I
14
\
13
12 11
,.
?. \
17K
6.
\
2.
\
24
"
2.
,. 12
VGS
Noise Figure and, Intercept Point Performance
Figure 15
CONCLUSION The reason for using the three-core bifilar transformer (Figure II A) in this tutorial article stemmed from the relative analytical simplicity of such a design. An alternative transformer is the single-core trifiJar-wound design. The definitions for wire lengths (Equations 16 and 17) are equally applicable to trifdar as they are for bifilar.
(8) J. Watson, INTRODUCTION TO FIELD-EFFECT TRANSISTORS, Siliconix, Inc., Santa Clara, Ca., 95054 (I 970). p. 18. (9) Op. cit., ECOM.Q503-P005-G82I. (10) Op. cit., "Non-Linear Distortion and Mixing Processes in FETs," p. 2112. (II) Op. cit., "High-Frequency JFET Characterization." (12) O. Pitzalis and T. Couse, "Broadband Transformer Design for RF Transistor Power Amplifiers," ECOM2989, July 1968. Also in Proc. Electronic Component Conference (1968).
REFERENCES (I) Pound, R.V., MICROWAVE MIXERS, MIT Rad. Lab. Series, Vol. 16, Figure 6.14, p. 274 (1948). (2) "High-Frequency JFET Characterization and Applications," J.B. Compton, DESIGN ELECTRONICS, March, 1970. (3) "The Solid State Receiver," W. Sabin, QST, July 1970, pp. 35-43. (4) Penfield, P., and Rafuse, R., VARACTOR APPLICATIONS, MIT Press, Cambridge, Mass., (1962), pp. 73ff. (5) "Non-Linear Distortion and Mixing Processes in FETS," J.S. Vogel, Proc. of IEEE, Vol. 55, No. 12 1967, pp. 2109-2116. (6) "UHF FET Mixer of High Dynamic Range," ECOM0503-P005-G821 (1969).(Available from U.S. Army) (7) Op cit., ECOM-0503-P005-G821.
7-64
(13) "Some Broadband Transformers," C.L. Ruthroff, Proc. IRE, Vol. 47, Aug. 1969, pp. 1337-1342 (Figure 7(b). (14) Op. cit., ECOM-2989, July 1968. (IS) Op. cit., ECOM 2989, p. 6. (16) Op. cit., ECOM 2989, p. 7. (17) ARRL HANDBOOK, American Radio Relay League, NeWington, Conn. (1970) p. 49. (18) "Reactive Loads - The Big Mixer Menace," P. Will, MICROWAVES, April 1971, pp. 38-42. (19) Op. cit., "The Solid State Receiver." (20) "Distortion in FET Amplifiers," J. Sherwin, ELECTRONICS, Dec. 12, 1966. (21) "Don't Guess The Spurious Level," F.C. McVay, ELECTRONIC DESIGN, Feb. 1,1967, pp. 70-73.
Siliconix
H
Siliconix
A New Current Limiter Extends Protection to 240V Ted List
INTRODUCTION SIlicomx has developed a family of protective devices with ratings ranging from 135 volts to 240 volts. These are two terminal devices which provide active current control over a voltage range of (l.9V to 240V. Five parts are offered which provide protectIOn for the following maximum voltages: Part No. JR JR JR JR JR
Peak Operating \bltage 135 170 200 220 240
135V 170V 200V 220V 240V
volts volts volts volts volts
signal levels below 0.6 volts, no additIOnal distortIOn is introduced. Power consumption is micro-watts, except In the protective mode where the dISsipatIOn IS the applied voltage multiplied by the limiting current. Because these are two-terminal devices, Installation into a PC board is simple, cost effective, and no additional CirCUitry or power supplies are needed.
FUNCTIONAL DETAIL
The current IS limited to a minimum of 160l'A at 0.9 volts and a maximum of ImA at the Peak Operating \bltage (POV). The series Impedance is a resistive 5Kll and at
The eqUivalent cirCUit (shown in Fig. lc) IS a current generator With a resistor and capacitor in parallel. This differs from the classic constant-current diode in that it contains no external source resIStor. Voltage is developed across the channel-source resistance (VP/ Idss).
c
a) Symbol
b) Schematic
c) Equivalent
FIGURE 1 High Voltage Protection Diode (current limiter)
Siliconix
7-65
l !zw a: a:
:::)
U
w
C
o ~ c
; a:
fZ
~
I
~0~1I~~H-11-1-1-1-1-1-1-1-+-+++1-+-+-+-+-+-+-r-r1-~
II o
I
I 50
100
150
200
250
VAC ANODE - CATHODE VOLTAGE (VOLTS)
FIGURE 2 JR135 Output Characteristics
FIGURE 2 OUTPUT CHARACTERISTICS There is a difference between a current limiter and a current regulator. The difference involves both the intended usage and the current tolerance. The current regulator is mtended to be an accurate device providing a specific amount of current at a specific circuit location. Naturally, a nominal value and a tolerance are involved; typical maximum tolerances are 5%, 10%, 20% or 30%, and interchangibiiity and control of circuit parameters are the reasons for the tolerance. In contrast, the currenL iiInitel J~ a plutective uevice. Minimum and maximum limits of current are imposed, but the tolerance is much less Important. The JR 135, for example, has no nominal value but does have a 770!,A maximum value and a 200!,A minimum value. This equates to a nominal 485!,A ±58~,.
The output characteristic is shown in Fig. 2 with the measured and typical parameters to show how device functions and how it is controlled. The first point of note is VL, the limiting voltage. This is 0.9 volts and is measured at 80% of IFI minimum. The other information provided by this measurement is the maXlffium insertion resistance. Applying Ohm's law, 0.9 volts divided by l60!,A (0.8 x 200t.) gives series impedance (resistive) of 5625 ohms. The device is measured for minimum current at 2.0 volts. The value is 200jLA minimum. This value defines one point on the line representing dynamic impedance. The dynamic
7-66
impedance IS a measure of control of current as voltage changes. A typical value of dynamic impedance is specified at 25 volts. The value is 2 meg ohms minimum. The current will change 0.5jLA per volt of voltage change. The next point of interest is at 100 volts. At 100 volts, both minimum and maximum currents are measured. Interestmgly enough, if we apply what we know about the parts, some trends then form: 1. Minimum value 200!,A at 25V plus 75 volts-timesO.5!'A shows a mmmum lOO-volt limit of 2371-'A. 2. Working backward from 77U!'A at IUOV gives maximum value at 2 volts of 733!'A and a band 533!,A wide instead of 570!,A. The remaining point of mterest is the POY. This is measured at lmA because the maximum allowable open line current in a telephone system is lmA, and this part was developed with the telephone market m mind. The breakdown characteristic of this device is softer than that of the J-Fet current regulator.
APPLICATIONS The primary advantage of using this device is high POY. The JR series of devices offers applicatIOns for two types of needs: 1.
Protection
2. Current Regulation
Siliconix
IR TO REST OF CIRCUIT
VOLTAGE ACROSS Rin (VOLTS) FIGURE 3a Simple Series Protection
iR TO REST OF CIRCUIT DIODE
t
go
VOLTAGE ACROSS Rin (VOLTS) FIGURE 3b Series Protection With Shunt Diode
IR eln
•
-IR
~ ~
•
TO REST OF CIRCUIT
},:
+
i r
-=-
VOLTAGE ACROSS Rin (VOLTS) FIGURE 3c Bipolar Series Protection
iR eln
•
iR
~ ~
TO REST OF CIRCUIT
•
I·:
1 go
-
VOLTAGE ACROSS Rln (VOLTS)
FIGURE 3d Series Regulators Increase Voltage Protection
Siliconix
7-67
Protection
Current Regulation
FIg. 3 illustrates four variations on the Prot('ctive TIlt'me. A plot of the resultant voltage (VRL) and lin accompani('s each vanation. Comhined variations are possible.
Another use of the high-voltage current hmiter is that of current regulator. TillS is a mutter of current tolerance. The JR Series current limit IS 200,.,A to 770,.,A measured at 100 volts. These parts are also measured at 2.0 volts with a single limit value of 200,.,A minimum. The maximum value is :3t;O')" of the minimum value. This does not make a good current regulator, but selection is possible.
Fig. :3a depIcts the sImple ",'rips Iinlltpr. TIlt' voltag<' developt'd across Rin IS a fum·t IOn of tilt' resIstance of [{in. If Rin is large, the voltagp applied to Rin will be large. [fthe power dissipated in Hm and th" remainder of the input drcuit is too large, Pltllt'r the Rill must lw reducl'd or the voltage must b(' limited. Zenpr di()(lp, or forward-hIased diodl's will limit this voltage. A diode can be used to IhUlt til<' \"oltagp across Hill (Fig. 3b). The diode starts to limit at 0.(; or 0.7 volts, til!' samp as thp current limiter. Bipolar voltage protect ion (·an II(' pl·o\~ded by using backto-hack eurrent Iimitprs. (Fig. at"). T[lt' ,ame eonsideratrons apply as III Fig. :3a and :3b. Increased protection can be accomphshed by connecting the de~ees in seri('s. (Fig. :3d). The ultlluate circuit using:3 de~ces in series appl'ars in FIg. 4
Cl1
o
Cl2
Cl3
Cl4
Cl5
Cl6
~~~ ~
By special order, parts can be selected to 100,.,A band. ThIS would Ill' a mId hand JlelT('ntagp of ±1O.:j"" varymg from 7"" at til!' lugh ('nd to 20"" at til!' low !'nd. In addItIon, the l"UlTPnt rang!' canlw t'xtplHipd to 2mA. So, ll('twppn :WO,.,A and 2mA, ,plpctions as tight as lOO,.,A ean hl' madl'.
APPLICATIONS The i()i1n,,"ing are apphcatlons of the ,JI{ Sencs of DCVlel's. The,e appileatlOns would requIre the spleetl'd devices. Different.ial Amplifier The constant-current dIOde makes an excellent current source for a differential amplifier. Improved commonmode voltagp rejection will result from the low-comphance voltage of til(' device.
fllw~ - - -
- -
0
.t I CURRENT LIMITER
+V-. (
I I
I I
D2
-50'10
_____ -100% .2 .4 .6 .8 1.0 VOLTAGE ACROSS RI"
11~
T
0
i = IF1 = (200j.LA to 2m A)
'v
FIGURE 5 Differential Amplifier Current Source
FIGURE 4 High Voltage Bipolar Clamped Protection Circuit
TIming Circuits One last concept needs to he brought forward. A protective de~ce must be transparent to information passed through it when it is inactive. The J-Fet current limiter is transparent to voltages of less the ±O.H volts. In this voltage span, the proteetive device functions as a resistor with a maxImum value of 5H25 ohms.
7-68
Timmg circuits often reqUIre ramp gl'nerators, and the ob~ous choice for a ramp generator IS a current source in the series with a capacitor. Current flows through the constant current diode and charges the capacitor at a constant rate. (Fig. tia). Additional circuItry to stop the charging and to discharge the capacItor completes this simple, accurate "heart" for timing circuits.
Siliconix
15V
eout
TIME---.
FIGURE 6a Saw Tooth Generator
+15V CL1
CL2
eout
-15V
-
FIGURE 6b Variable Frequently Saw Tooth Generator
Siliconix
7-69
Vln
.G
a
CURRENT LIMITER
<E---- -, SV ~~ ZENER ~ ..
"* ein
RO
!
CAP 20 MFO
I ~ RL ~ 2.SK
..L
":"
FIGURE 7A
= 2Mll
eout
Xz=100n
:
~~;
RL
= 2.SK II
FIGURE 78
FIGURE 7 Current Limiter as Filter Circuit Element and Equivalant Circuit
Timing circuit in Fig. 6b shows the complete circuit, including the capacitor dischargl' switch.
Ripple frequency would be 120Hz and maximum value could be as high as 30 volts. The combined impedance of Xz and Xc would be 40 ohms. Forty ohms is series with 2 meg ohms attenuates the ripple by 4xlO- 5 (lOOdb).
FILTERING
SUMMARY
An interesting effect occurs if the diode In Fig. 3b is replaced by a zener. The current limiter assumes the functions of a constant current for the zener, and the combination becomes a lowpass fIlter. This leads into the final application. This application uses current limiter dynamic-impedance to replace frequently sensitive magnetics as ripple fIlters into low-power power supplies.
The current limiter series of deVices are primarily rated for high breakdown and low compliance voltage. They serve a complete range of constant current diode applications. Use of the normal strong features, high voltage, high dynamic impedance, low hmiting voltage plus a willingness to select current values through practical current range, extends the usefulness of these current limiters throughout the entire range of possible constant current applications.
7-70
H Silicanix
The FET Constant Current Source
INTRODUCTION The combination of low associated operating voltage and high output impedance make the FET attractive as a constant current source. An adjustable current source may be built with a FET, a variable resistor and a small battery, Figure L For good thermal stability, the FET should be biased near the zero T.C. point.!
The value of goss is an il\lportant consideration in the accuracy of a constant current source. As goss may range from less than 1 !Lmho to more than 50 j.lmho according to the FET type, the dynamic impedance can be greater than 1 megohm to less than 20K. This corresponds to a current stability range of 1 !LA to 50 !LA per volt. The value of goss depends also on the operating point, being highest at IDSS and at low VDS' Output conductance goss decreases approximately linearly with I D, becoming less as the FET is biased toward cut-off. The relationship is 10 goss lOSS = g~ss
Field-Effect Transistor Current Source Figure 1
Whenever the FET is operated in the saturated region, its output conductance is very low. This occurs whenever the drain-source voltage VDS is significantly greater than the cut-off voltage VGS(off)' The FET may be biased to operate as a constant current source at any current below its saturation current I DSS-
(4)
where
(5) when (6)
For a given device where IDSS and VGS(off) are known, the approximate VGS required for a given I D is VGS=VGS(off) [1-(I:S)
11k]
(1)
So as VGS ~VGS(off), goss~zero. For best regulation, ID must be considerably less than loSS' It is possible to achieve much lower goss per unit I D by
cascading two FETs as shown in Figure 2_ where k can vary from L 7 to 2.0, depending upon device geometry. The series resistor RS required between source and gate is VGS RS=Ji)
(2)
A change in supply voltage, or change in load impedance, will change I D by only a small factor because of the low output conductance goss'
(3)
Silicanix
RS
'--......---ovss~
Cascade FET Current Source Figure 2
7-71
Now, ID is regulated by QI and VDSI = -VGS2 . The doc value of ID is controlled by RS and QI. However, QI and Q2 both affect current stability. The circuit output conductance is derived as follows:
IfVDG <2VGS(off)' the goss will be significantly increased, and circuit go will deteriorate. For example: A 2N4340 has typical goss = 4 J.Lmho at VDS = -20 V and VGS = O. At VDS "" - VGS( off) = 2 V, goss "" 100 J.Lmho.
Figure 2 is redrawn in Figure 3 for the condition VGS I = O.
The best FETs for current sources are those having long gates and consequently very low goss. The Siliconix 2N4869 exhibits typical goss = I J.Lmho at VDS = 20 V. A single 2N4869 in the circuit of Figure 4 will yield a current source adjustable from 5 J.LA to I mA with internal impedance greater than 2 megohms.
~ Q2
....---_-----'0
S D
0,
'0
+
S
90151
Vdsl
= =
-Vgs2 lo/90ss1
(b)
(.)
RS= IMU,2W Figure 3
(7)
. 10
vds2goss2goss1 = gossl + gfs2
(8)
Adjustable Current Source Figure 4
The cascade circuit of Figure 5 provides a current adjustable from 2 J.LA to I mA with internal resistance greater than 10 megohms.
(9) Ql =2N4340 Q2 = 2N4341 RS = IMU,2W
(10)
io goss 1goss2 go = va = gossl + goss2 + gfs2
(11) Cascade FET Current Source Figure 5
(12) (13)
~
I 1
When RS
For each circuit discussed, goss is represented by the following equations:
'* 0 as in Figure 2
(14)
(16)
'*
0), the circuit output conIn either case (Rs = 0 or RS ductance is considerably less than the goss of a single FET. In designing any cascaded FET current source, both FETs must be operated with adequate drain-gate voltage VDG . That is,
REFERENCES (I)
VDG rel="nofollow"> VGS(off} preferably VDG> 2 VGS(off) (17)
7-72
Siliconix
"Biasing FETs for Zero DC Drift," Evans, L., Electrotechnology, August 1964.
H
Siliconix
BUILD A PRECISION CONSTANT CURRENT SOURCE By John Grabeklis
Thejunction field-effect transistor (J-FET) has been popular as a constant-current source (eeS) but was restricted in application because of its relatively low current and voltage ratings. Furthermore, the J-FET ees generally involved a tradeoff between lllgh current and low precision, or low current with somewhat improved preCISIOn; and temperature always played a critical role.
to 100 rnA. This current is provided by the dual 15 V power supply which must also accommodate the ees reference current. The Circuit shown m Figure I can work into loads rangmg in voltage from -10 VDe to +50 V DC. Power dissipation IS a lumtmg factor at high currents and care must be taken in mountmg the MOSPOWER FET to a suitable heatsink.
The MOSPOWER® FET, controlled by a low-cost op-amp resolves many of the former problems ofthe J-FET regulator. MOSPOWER FETs may be selected offering lllgh standoff voltages capable of handhng many amperes. Since precision control of current no longer depends solely upon the selection of the FET precision high-current regulation IS possible.
Since It is impossible to deSign a ees with an output current lower than the lOSS of the MOSFET, care should be taken to use the lowest leakage MOSFET consistent with the deSired goals. Furthermore, the overall preciSIOn of the regulator depends upon using the lowest gate leakage current, lGSS, available.
An adjustable ees using a MOSPOWEH FET and an opamp can have either a pOSitive or negative compliance voltage. A ees with negative compliance IS shown m Figure 1. Th establish a positive compliance voltage, the n-channel VN1206B is replaced by a p-channel VN1206B; ground is connected to point B instead of point A; and the currentsensmg resistor is connected to point e instead of point O. The output current range, using either the p-channel VN1008B or the n-channel VN1206B, extends from 10 p.A
Combming the VN1206B and the VN1008B a dual bidirectional ees regulator can be assembled, as shown in Figure 2. By gangmg the switches, KI - K4, thiS design can be used to supply either a pOSitive or negative current. Current tracking between the two outputs, eel and ee2, depends upon the precision matching of Rl and R2. Accuracy depends upon the combmed gate leakage current, lGSS; the offset voltage and current of the op-amps; the tolerance and match of the resistors, RI and R2; and the accuracy of the reference voltage, VREF.
Silicanix
7-73
-
TABLE VALUE OF R (Fig. 1 & Fig. 2) ILoad (IL)
Resistance (R)
10 J.lA 100 J.lA 1 rnA 10 rnA 100 rnA
1.5 M!l 150 K!l 15 K!l 1.5 Kn 150 Kll
Power Rating
V.W V.W V.W 'hW 3W
D
Precision Current Source Figure 1 (Note 1)
-15 VOLTS
Dual Precision Current Source Figure 2 (Note 1)
NOTE: 1. All sWitches are shown for negative compliance.
7-74
Siliconix
H
Silicanix
FETs As Voltage-Control/ed Resistors
,INTRODUCTION The Nature of VCRs A voltage-controlled resistor (VCR) may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential applied to the third. A junction field-effect transistor (JFET) may be defined as a field-controlled majority carrier device where the conductance in the channel between the source and the drain is modulated by a transverse electric field. The field is controlled by a combination of gate-source bias voltage, VGS, and the net drain-source voltage, VOS.
Figure 1 details typical operating characteristics of an NChannel JFET. Most amplification or sWitching operations of FETs occur in the constant-current (saturated) region, shown as Region II. A close inspection of Region I (the unsaturated or pre-pinchoff area) reveals that the effective slope indicative of conductance across the channel from drain to source is different for each value of gate-source bias voltage.(2) The slope is relatively constant over a range of applied drain voltages, so long as the gate voltage is also constant and the drain voltage is low. VOS" VGS - VGSIOffl--fLOCUSCURVE
REGION
Under certain operating conditions, the resistance of the drain-source channel is a function of the gate-source voltage alone and the JFET will behave as an almost pure ohmic resistor.(l) Maximum drain-source current, lOSS, and minimum resistance, rOS(on)' will exist when the gate-source voltage is equal to zero volts (V GS = 0). If the gate voltage is increased (negatively for N-Channel JFETs and positively for P-ChanlJ~_tl:le resistance will also increase. When the drain ciirr;nt is r;ctiiam to a point where the FET is no longer conductive, the maximum resistance is reached. The vo~tage at this point is referred to as the pinchoff or cutoff voltage and is symbolized by VGS = VGS(off). Thus the device functions as a voltage-controlled resistor.
Siliconix
11_--r.~1--REGION II~
VGs"O ------~-~---------
SATURATION REGION
-
VoslVI
Typical N-Channel JFET Operating Characteristics Figure 1
7-75
Resistance Properties of FETs The unique resistance-controlling properties of FETs can be deduced from Figure 2, which is an expanded-scale plot of the encircled area in the lower left-hand corner of Figure 1. The output characteristics all pass through the origin, near which they become almost straight lines so that the incremental value of channel resistance, rds' is essentially the same as that of d.c. resistance, rDS, and is a function of V GS.(3)
Typical rDS curves for several Siliconix N-channel JFETs are plotted in Figure 4.( 4) the graphs are usefulin estimating IDS values at any given value of VGS. All quantities given in Figure 4 are for typical units, so some variation should be expected for the full range of production devices. It is therefor deisrable to convert Figure 4 to a ndrmalized plot. This 1MEG
Figure 2 shows extension of the operating characteristics into the third quadrant for a typical N-Channel JFET. While such devices are normally operated with a positive drainsource voltage, small negative values of V DS are possible. This is because the gate-channel PN junction must be slightly forward-biased before any significant amount of gate current flows. The slope of the VGS bias line is equal to /:;IDj/:;V DS = IjrDS. This value is controlled by the amount of voltage applied to the gate. Minimum rDS, usually expressed as rDS(on)' occurs at VGS = 0 and is dictated by the geometry of the FET. A device with a channel of small cross-sectional area will exhibit a high rDS(on) and a low IDSS. Thus a FET with nigh IDSS should be chosen where design requirements indicate the need for a low rDS(on).
~
:2
100K
/
/
I
/
.....-r
/
V / V /, ~
/
/,./ V /
/
-
vc;s"a
voslO1v-
-- c-- I-100
-1
-2
-3
-4
-5
-6
VGS - GATE·SOUACE VOLTAGE (V)
Incremental Drain-Source Resistance for Typical N-Channel FETs Figure 4
has been done m Figure 5. The resistance IS normalized to its specific value at VGS = 0 V. The dynamic range of rDS is shown as greater than 100:1, although for best control of rDS a range of 10: 1 is normally used. N-Channel JFET Output Characteristic Enlarged Around VOS = 0 Figure 2
Figure 3 extends the rds characteristics of a FET to a comparison with the performance of 4 fixed resistors. Note the pronounced similarity between the two types of devices.
Siliconix offers a family of FETs specifically intended for use as voltage-controlled resistors. The devices are available in both N-Channel and P-Channel configurations (Figures 6A and 6B) and have rDS( on) values ranging from 20 n to 4,000 n (Figure 7).
Comparison of FET and Resistor Characteristics
Figure 3
7-76
Siliconix
=VOS
'0
102
I - - r-
1
1
0
~'----------'
L
[b) P-channelFET
./ 1
~ 02
04
06
OS
1
Circuit Arrangement for Both an Nand P Channel FET Figure 6
VGsNGS{off)
Normalized rds Data
Figure 5
0 VGS=D
~ 5 w
~o
>
VCR3P'\.~
2
~ ~
5 <J
w
<J
1
a: 10
~
~,
== ~~'VC •
VGs"O
Your
V'N
R2N
VCR4N
-M
1TI
J
2
I
1 10
Simple Attenuatar Circuit
rd'IONI - DRAIN-SOURCE ON RESISTANCE lohms)
Figure 8 rdslon) IOrain·Source Resistance at VOS = V GS = 0) Varies as an Inverse Function of VGS(off)
Figure 7
Applications for VCRs
The output voltage is
The FET is ideal for use as a voltage·controlled resistor in. applications requiring high reliability, minimum component size, and circuit simplicity. The FET VCR will conveniently replace numerous elements of conventional resistance con· trol systems, such as servomotors, potentiometers, idler pul· leys, and associated linkage. FET power consumption is minimal, packages are very small, and cost comparisons with conventional control schemes are most favorable. A simple application of a FET VCR is shown in Figure 8, the circuit for a voltage divider attenuator.(S)
(1) It is assumed that the output voltage is not so large as to push the VCR out of the linear resistance region, and that the rDS is not shunted by the load.
The lowest value which vOUT can assume is Vin rnS(on) VOUT(min) = R + rnS(on)
SilicDnix
(2)
7-77
--
The highest value is
V,N o-----lf--......----oVOUT
(3)
VOUT(max) = vin
VCR
since rDS can be extremeley large. A number of other FET VCR applications are shown in Figures 9-16. VC R Phase Advance Circuit Figure 13
V,No--Mc......--r--ovOUT VCR
Voltage-Tuned Filter Octave Range with Lowest Frequency at JFET VGS(offi and Tuned by R2' Upper Frequency is Controlled by R1
0-----][+_----------0
Figure 9
VC R Phase Retard Circuit Figure 14 Your VGS
!:O----4-----. Electronic Gain Control
Figure 10
V,N o--IIM-,--oNo>l'--r-OVouT
P·Channel VCR Photomultiplier Load. Required Low Photomulti· plier Anode Current (Usually < 1 "AI Implies that VC R will Always Perform in Linear Region Near Origin
Figure 15
Cascaded VCR Attenuator Figure 11
,----,--------__oVCC VIDEO
OUTPUT ~-------__oVOUT
V,N
o-jH---+-I::.
Wide Dynamic Range AGC Circuit. No Gain through FET with
Voltage Controlled Variable Gain Amplifier. The Te. Attenuator
Distortion Proportional to Input Signal Level
Provides for Optimum Dynamic Linear Range Attenuation
Figure 12
Figure 16
7-78
Siliconix
Signal Distortion: Causes
Reducing Signal Distortion
Figure 17A repeats the FET output characteristic curves of Figure 2, to show that the bias lines bend down as VOS increases in a positive direction toward the pinch-off voltage of the FET. The bending of the bias lines results in a change in rDS, and hence the distortion encountered in VCR circuits; note that the distortion occurs in both the first and third quadrants. Distortion results because the channel depletion layer increases as VOS reduces the drain current, so that a pinch-off condition is reached when VOS =VGS - V GS(off). Figure l7B shows how the current has an opposite effect
The majority of VCR applications require that signal distortion be kept to a minimum. Also, numerous applications require large signal handling capability. A simple feedback technique may be used to reduce distortion while permitting large signal handling capability; a small amount of drain signal is coupled to the gate through a resistor divider n-etwork, as shown in Figure 18. VCR LINEARIZATION
VGS -0
VOUT -'1.5 V -25V
-
. .-'""T-_;:::---~tf~;::=:f= 10
-30V
Figure 18
N-Channel JFET Output Characteristic Enlarged Around Figure 17A
Vas = 0
The application of a part of the positive drain signal to the gate causes the channel depletion layer to decrease, with a corresponding increase in drain current. Increasing the drain current for a given drain voltage tends to linearize the V GS bias curves. On the negative half-cycle, a small negative voltage is coupled to the gate to reduce the amount of draingate forward bias. This in turn reduces the drain current and linearizes the bias lines. Now the channel resistance is dependent on the DC gate control voltage and not on the drain signal, unless the VDS = VGS - VGS( off) locus is approached. Resistors R2 and R3 in Figure 18 couple the drain signal to the gate; the resistor values are equal, so that symmetrical voltage-current characteristics are produced in both quadrants. The resistors must be sufficiently large to provide minimum loading to the circuit:
>V---------~
(4)
-V~--~---7J-V
Typically, 470K n resistors will work well for most applications. RJ is selected so that the ratio of rDS(on) IIRL to [(rDS(on) II R0 + Rrl gives the desired output voltage, or:
o
1
rOS(on) IIRL . (rOS(on) IIRL) + Rl
DIODE CATHODE WHEN SIGNAL SWINGS NEGATIVE
V,N
VOUT
(5)
The feedback technique used in Figure 18 requires that the gate control voltage, VGG' be twice as large as V GS in Figure 17B for the same rDS value. Use of a floating supply between the resistor junction and the FET gate will overcome this problem. The circuit is shown in Figure 19, and allows the gate control voltage to be the same value as that voltage used without a feedback circuit, while preserving the advantages to be gained through the feedback technique.
Figure17B
in the third quadrant, rising negatively with an increasingly negative V DS. This is due to the forward conduction of the gate-to-channel junction when the drain signal exceeds the negative gate bias voltage.
Appendix A to this Application Note is an analytical approximation of VCR FET distortion characteristics, both calculated and measured.
SilicDnix
7-79
l1li
,
The forward-biased gate-drain PN junction may be seen at approximately -0.6 V, and bending of the bias curve is apparent in the third quadrant. The photo also demonstrates the comparison between a fixed resistor (the linear line superimposed on the bias curve) and the distortion apparent in the VCR without feedback compensation; the VCR signal is unusable with the indicated amount of distortion.
", V ,N
Experimental Results
In Figure 21, the same VCR7N FET is shown operating with the addition of the feedback resistors. Distortion has been reduced to less than 0.5%, and the characteristics of the VCR are now closely comparable to those of a fixed resistor.
Figures 20 through 23 show low voltage output characteristic curves for a typical Siliconix N-Channel voltage-controlled resistor, VCR7N. Bias conditions are shown both with and without feedback. Figure 20 shows a two-volt peak-to-peak signal on the V GS = 0 V bias curve, with the VCR operating in the first and third quadrants. The VCR is operated without feedback.
In Figures 22 and 23, the same VCR FET characteristics are shown, with VGS adjusted for higher rDS' No feedback network is employed in Figure 22, and measured distortion is greater than 8%. In Figure 23, the feedback resistors have been added and distortion has been reduced to less than 0.5%.
Figure 19
<"
.:1 _0
200
200
100
100
<"
.:1
0
.E'
~
.
0
-100
-100
-200
-200
I
-I
I
eol lTfl mil Ii! ,!! ~
II
!. I ! I J
IriIi II!;i
~
-1.0
-0.4
0
0.4
-1.0
1.0
I -0.4
VCR7N with No Feedback Figure 20
-0.4
0
I 1.0
0.4
VCR7N with Feedback Figure 21
-1.0
1.0
-0.4
0
0.4
Vos(V)
Vos(V)
VC R7N with Feedback Figure 23
VC R7N with No Feedback Figure 22
7-80
0.4
Vos(V)
Vos (VI
-1.0
0
Siliconix
1.0
Some degree of non-linearity will be experienced in both the first and third quadrants as VGS approaches the FET cut-off voltage. For this reason, it is important that the feedback resistors be of equal value so that the non-linearities likewise will be equal in both quadrants. Figure 24 shows a curve of distortion vs R2/R3, in both quadrants.
It has also been shown that FETs with high pinch-off voltage require larger drain-to-source voltages to produce drain current saturation. Therefore, FETs with high V GS(off) will have a larger dynamic range in terms of applied signal amplitude, while maintaining a linear resistance. It is advautageous to select FETs with high V GS(off) (compatible with the desired rOS value) if large signal levels are to be encoun teredo
",
'~' "2
R3
,.
,,
,.
,
~
APPENDIX A -
From proceedings of the IEEE, October, 1968, pp. 1718-1719.
VCR
"",\o,'Os~."".
Abstract - An analytical approximation of FET characteristics for positive and negative voltages is presented. The distortion in an application as a controlled attenuator is calculated, and a method of reducing distortion by a factor of more than 50 is described.
fO'l'COS.,""
p.Ol\)o:;t~".,
'2
........ ....
"G'3,. .." VGS=O
'.0
~
0.2
04
06
08
10
25
20
15 R2/R 3
Controlled resistors are used in oscillators, controlled amplifiers, and attenuators.c 6,7) The possible control range is much larger for field-effect transistors (FET) than for other elements with comparable time constants (e.g., diodes). The signal-to-noise ratio is considerably improved.
Distortion vs R2/R3 Figure 24 '0
Distortion resulting from changes in temperature are also minimized by the feedback resistor technique. rOS will change with temperature in an inverse manner to the behavior of FET drain current. Table I presents the result of VCR laboratory performance tests of distortion vs temperature. The VCR7N again was employed. Signal level was 2 V peakto-peak. Table I Temperature
Without Feedback ros - 10 'oseO")
I
With Feedback
fOCI
ros .. rOSlonl
+125
>13%
<05%
<05%
+ 25
>10%
>5%
<05%
<05%
- 55
39%
32%
<05%
<05%
>6%
'OS
rOSlon)
rOS" 10 rOSlonl
I
Comparison Between Mathematical Approximation of FET Characacteristics (Solid Lines) and Measured Curves (Broken Lines) for a Typical N·Channel JFET Figure 25
SUMMARY This Application Note has presented a brief description of the use of junction field-effect transistors as voltage-controlled resistors, including details of operation, characteristics, limitations, and applications. The VCR is capable of operation as a symmetrical resistor with no DC bias voltage in the signal loop, an ideal characteristic for many applications. Where large signal-handling capability and minimum distortion are system requirements, the feedback neutralization technique for VCRs is an important tool in achieving either or both ends.
Figure 25 shows idealized and real FET characteristics. In region A (above pinch-off) 10 is independent of V OS:(8)
ID =IDSS
(
VGS) 1- Vp
2
(1)
Region B, where VOS < (V GS - Vp), is the so-called triode region. (In the following discussion all the signs (+, -) will be valid for N-Channel FETs.) The characteristics can be
Silicanix
7-81
-
approximated by a quadratic function, of which the maxi· mum and a second point (the origin) are known. The approxi· mation is
where gDS is the differential conductance at the origin; when VGS = 0, then gDS = gDSS' The attenuation for the circuit of Figure 26(a) is
ID=IDSS
1+
21DSS = (Vp)2
]_1
RgDS
=[
(7)
RgDSS VI
+
--~----~~~~--~~-
2RgDS VI ) 2Vp ( I + RgDS + 2Vp (I + RgDS)
This is the same function that can be found by a simple analysis based on semiconductor theory. The less negative of the two voltages across the junction (VGS, VG D) controls the channel conductance. Under the condition that the FET is symmetrical (drain and source interchangeable), the fol· lowing consideration is true. If VGD were the controlling voltage and VDS < 0, I D < 0, then the characteristics would be the same as in the first quadrant:
v,
b I
V2
Vos
(.,
",
Since the controlling voltage for both regions (B and E) is VGS,
V,o-~~----~---------oV2
(4) Substituting (4) into (3), we get (2); the same approxima· tion can be used in Band E. The limits of region E where (2) is valid are VGD = 0 and VGD = Vp. The characteristics in region D can be found from (1) with the same consider· ation:
ID=-IDSS
( 1- VGS-VDS ) Vp
2 (5)
The mathematical approximation is compared with the measured characteristic in Figure 25. In the regions C and F the junction is forward biased. The characteristics are depen· dent on the internal resistance of the gate voltage source since gate current flows. The FET as a controlled resistor works in region Band E. The higher the resistance, the more non·linear are the char· acteristics. For most applications this is undesirable. Based on the simple approximation (2), the relation between distor· tion, control range, and maximum to minimum attenuation will be described for a simple voltage divider [Figure 26(a)]. Most applications can be based on this simple example. The conductance in any point of region BorE is
G DS
=~ =- 2lDSS VDS
Vp
(1-
VGS) Vp
lDSS gDSSVDS - (Vp)2 VDS = gDS + 2Vp
7-82
(bl
(al Controlled JFET Attenuator. (bl Controlled Attenuator with "Feedback" Making Characteristics Linear and Svmmetrical Figure 26
To reduce (7) to a more tractable form, the following in· equality is introduced: VI RgDSS 2Vp (1
+ RgDS] 2
«I
so that (7) can now be approximated by the expansion VI- - ( 1RgDSVI ) V=+ 2 I + gDSR 2Vp (1 + RgDS] 2 ...
(8)
Only the second harmonic will be considered for the distor· tion since the third is much smaller. For small distortion (d« I and RgDSS» 1), VI RgDSS d =---=---==---;: 41Vpl [I + RgDS] 2
(9)
If V2 is held constant,
(6)
Silicanix
(10)
"'"
There are several means of reducing distortion. By connecting two identical FETs in antiparallel or antiseries, nonlinearities can be cancelled out to a certain extent. A better linearization is possible by usmg one FET with "feedback". It has been shown above that the characteristics would be symmetrical if VGO were the control voltage in the third quadrant. By adding 0.5 VOS to the control voltage, the two voltage VGS and VGO interchange when VOS changes sign:
,":;
JSf.)
I-~---
~
~VGS(OIfI
...1
fA
(b";
~\ a
•
\
§
1%
I
V
~.:.--==
~2"OOlVGS(QfU i I
•
VGS = VH + 0.5 VDS
i
j .,
01%
I •
V2=OTVGS(off!
,........
•. . . . .
~ e
jl
n
~
then (13) used in (2) gives
I
~
I
",. ...t 001';;
o
'"
(14)
V2 = 0 01 ~GS(Offl
y
(13)
VGD = VH - 0.5 VDS
o'
VGSIVGS(offl
Distortion as a Function of VGSIVGS(off) for Two Different V2/VGS(off)' la) Theoretical for Figure 26(a). Ib) Measured with Circuit of Figure 26Ia). Ie) Measured with Circuit of Figure 261b) Figure 27
Figure 27 shows a comparison of measured and calculated distortion. If VGS approaches Vp, the above restrictions are violated; the expression for the distortion can no longer be applied. If V DS < 0, VGS = 0, then the FEr works in regIOn F; the distortion will be higher than predicted. From (10) we get for a prescribed maximum distortion a maximum amplitude as a function of VGS: (11)
V2max = 4d max IVp - VGSI
For a given d max and V 2max the ratio of minimum to maximum attenuation is Amin 1 + RgDSS Amax = m = + V2max 1 RgDSS 4d max IVpl
The resulting characteristic is linear and symmetrical in B and E. The improvement in distortion performance can be seen in Figure 27. A distortion of 12 percent for V 2 =0.1 Vp at VGS = 0.8 Vp is reduced through linearization to 0.1 percent. Figure 26(b) shows a possible circuit. The frequency range of the controlled signal must be much higher than that of the con trolling signal V H to keep the direct interference of V H on V 2 small. R3 is set for minimum distortion. If V 2 and VH are in the same frequency range, a high impedance amplifier must be used. V 2 is at the input; the output is connected to the FET gate. The amplification is approximately 0.5 (adjustable). The control voltage is introduced through a second input so that no direct interference with V 2 occurs.
REFERENCES (1)
J. Watson, INTRODUCTION TO FIELD-EFFECT TRANSISTORS, Siliconix, Inc. Santa Clara, Calif. 95054 (1970), p. 58.
(2)
"FETs As Voltage-Variable Resistors," Carl D. Todd, ELECTRONIC DESIGN, Sept. 13, 1965, pp.66-69.
(3)
Op. cit., AN INTRODUCTION TO FIELD-EFFECT TRANSISTORS, p. 22.
(4)
"FETs As Voltage-Controlled Resistors," Siliconix, inc., Santa Clara, Calif., 1966.
(5)
Op. cit., AN INTRODUCTION TO FIELD-EFFECT TRANSISTORS, p. 61.
(6)
W. Gosling, "Voltage Controlled Attenuators Using Field-Effect Transistors," IEEE Trans Audio, Vol. AU-13, pp. 112-120, Sept.-Oct., 1965.
(7)
J.S. Sherwin, "Voltage Controlled Resistors (FET)," Solid State Design, pp. 12-14, Aug. 1965.
(8)
L.J. Sevin, "Field-Effect Transistors," New York, McGraw-Hill, 1965.
4d max IVpl
"'"
(12)
V2max
valid only for m > 1. Note that the maximum distortion is reached only for minimum attenuation. Examples: dmax = 10 percent V2max = 0.001 Vp
m = 400
d max = 1 percent V2max = 0.01 Vp
m=
4
Although these relations are only first-order approximations, they give a good estimate of FEr attenuator characteristics_ The maximum amplitude is proportional to Vp. FETs with high Vp are desirable for attenuator applications. Unfortunately, the majority of commercially available FETs are made with low Vp for use in amplifiers.
Siliconix
7-83
l1li
H
Siliconix
FETs as Analog Switches
INTRODUCTION The past has seen a pronounced growth of analog/digital systems which employ integrated circuits. One of the interface elements in such a system is the digitally-controlled analog switch. As more and more applications arise for the analog switch, especially in the areas of industrial processing and control, the question is often asked: "Which is the best switch for my application?" The sheer variety of applications precludes any pat answer to this question; however, the user of analog switches can gain valuable insight on the subject through an understanding of the nature of solid·state switches. Areas which require exploration include:
(I) (2)
Cross-sections for three types of N-channel FETs are shown in Figure I. GATE Igl SOURCE (~l
DRAIN Igi
N-CHANNEL DEPLETED WITH APPLICATION OF NEGATIVE GATE VOLTAGE
(AI
Basic factors affecting switch performance. Details of switch-driver circlIi! design.
uATEIg,1
(3)
Total switching characteristics of driver circuits and switches.
(4)
Characterization of the analog switch at high frequencies.
SOURCE I§I
DRAIN IQI
BODY (!I
GATE
MOS-fET
The intent of this Application Note is to consider (I) above, in detail, with minor attention to the other areas. (8)
N-CHANNEl DEPLETED WITH APPLICATION OF NEGATIVE GATE VOLTAGE NEGATIVE BODY VOL lAGE ALSO DEPLETES THE CHANNEL
Field-Effect Transistor Operation The field-effect transistor (FET) is in effect a conductor whose cross-sectional area may be varied by the application of appropriate voltages. When the conducting area (the chan· nel) is maximum, conductance is also maximum (minimum resistance). When the conducting area is minimum, conductance is minimum (maximum resistance). This phenomenon makes possible the use of FETs as analog switches. When conductance is maximum, the switch is in the ON state; when conductance is minimum, the switch is in the OFF state. In the ON state, an N-type channel contains N-type carriers; similarly, P-channel FETs contain P-type carriers.
7-84
GATE 191
METAL
BODY
f!.1
GATE MOS-fET
(el
Siliconix
N-CHANNEL CREATED HERE WITH APPLICATION Of POSITIVE GATE VOLT AGE
N·ehannol FET eross-Sections Figura 1
P-channel FET cross-sections are quite similar, except that the channel contains P-type carriers and the voltage polarities are reversed. Depletion-mode devices are shown in Figures IA and IB; these FET types have high channel conductance (are ON) with zero gate-channel voltage, and are characterized as "normally-ON" switches. An enhancementmode FET is shown in Figure 1C. This device requires that voltage be applied to the control gate to create a conducting channel - the ON state. Enhancement-mode FETs are said to be normally-OFF. For enhancement-mode devices, channel conductance (gOS) is a function of length (L), width (W), thickness (T), carrier mobility (P), and mobile carrier concentration (Nc):
Note that the slopes (lIg0S/lIVGS) for all three types of N-channel FETs are constant and positive, while the slopes for the P-channel devices are constant and negative. N- and P-channel depletion-mode FETs are ON when VGS =0, while enhancement-mode devices of both types are OFF when VGS = O. Typically, the cut-off voltage, VGS(off)' is designed to fall in the 1-to-1O volt range, while the gate-to-source threshold voltage, VGS(th) - that amount of voltage applied to the point where the device begins to conduct - falls in the l-to-5 volt range. Figure 2 also demonstrates that gos is approximately a linear function of VGS , with zero gos occuring at VGS(off) or VGS(th), as follows:
gDS
Effective channel thickness and carrier concentration are functions of the electric field in the channel. Voltage on the control gate changes the field, and hence the channel conductance, gDS. The gate voltage is applied with respect to the channel (source or drain). In most devices, the function of the source and drain can be interchanged, because of symmetrical FET geometry. By convention, however, voltage is specified between gate and source, VGS. Figure 2 shows the variation of gos with VGS for both N- and P-channel devices. In all cases, gos = l/roS·
(depletion)
gDS = K2!VGS - VGS(off)!
=K2!VCS - VCS(th)!
(enhancement)
For a given active area, a junction FET (JFET) will have a higher conductance slope than a MaS FET. Additionally, N-channel carriers have higher mobility than P-type carriers. Thus, all things being equal, N-type FETs have higher gos (= l/rDS) than P-type devices. If the active area of the device is increased to raise the gos level, three other FET parameters will also be increased: leakage, capacitance, and cost_ The design tradeoffs of these latter parameters are discussed in this Application Note. When a FET is used as an analog switch, the drain-to-source voltage, VOS' may be either positive or negative. In the OFF state, a typical switch may have VOS = ±20 V. In the ON state, current flows equally well from drain to source or from source to drain (the channel is a resistor). For most applications, the voltage across the switch will be small.
N-CHANNEL
P-CHANNEL
,
'os . -
os J-FET
o£'OS ~G S
o
Vp
(AI
Vp Vas
(D)
MOS-FEY (DEPLETION
TVPEI
:l s:
~±~.
0
o
'os
Vp
0
J
Gcr1fi
)...
t
B D--4-I
MOS-FET (ENHANCEMENT TYPE)
roo
VOSlth) 0
(c)
vGS
-
(E)
(B)
Channel Conductance vs Gate-Source Voltage Figure 2
Siliconix
'os
v GS
(F)
7-85
RS1O -
VS1G
-2-
"
I
V,
I
2 PORT NETWORK
RL
V2
(AI
OFF
(BI
V S1G
ON
(CI
I).C Equivalent Circuits Figure 3
OFF Condition Calculation
DC Equivalent Circuits The perfect switch would have infinite resistance (zero conductance) when open and zero resistance (infinite conductance) when closed. While the FET is not a perfect switch, there are many applications where this deviation from perfection is unimportant. This statement can be justified by an analysis of the implications of the circuits shown in Figure 3.
(I)
I I = IS = I nA VSIG - V I = I I . RSIG = (I nA)(IO n) = 10 nV % Error in V I =
(10-8 V) (102) 10 V = I x 10-7%
12=ID=lnA \ The general two-port network in Figure 3A couples the sig- (2) nal source, VSIG, to a resistive load, RV The network can be V2(ofO = 12RL = (I nA) (200K n) = -200 !LV characterized by its terminal voltages and currents, VI, V2, II, and 12. Figure 3B shows the equivalent circuit ofa FET (2 x 10-4)(102) % Error in V2(oft)* = 10 = 0.002% switch in the OFF state. In this condition, the "source" and "drain" are not connected to one another; however, two leakage current sources, IS and In, are present. The same device is shown in the ON state in Figure 3C. The following typical values are assumed for the circuit: ON Condition Calculation VSIG = 10 V (full scale)
II =IS+ID- 12
IS
V2 12 = RL
=ID= I nA
rDS = lOOn RL
~
VSIG RL + RSIG + rDS
VSIG - V2 ~ (50 !LA) (I 10 n) = 5.5 mV
=200Kn
RSIG= Ion In the following calculations, leakage curren t (deviation from the state of a perfect switch) is expressed in terms of error percentage.
7-86
% Error in V2* = (5.5 x
1~~3)(102)
*Referred to VSIG (full scale)
Silicanix
= 5.5 x 10-2 = 0.055%
The foregoing calculations indicate that for all but the most critical applications the performance of the FET equivalent circuits in Figure 3 is a good approximation of the perfect switch. In particular, the OFF condition leakage currents contribute only a negligible portion of total error. The actual error currents of three different types of FET switches are shown in Figure 4. The measured error is much lower than the I nA (1000 pA) obtained from the sample calculations. These data are taken from aMOS FET, an N· channeIJFET, and a complementary MOS (CMOS) combination including a P-channel device and an N-channel device diffused onto the same substrate. The behavior of these FETs as elements of analog switching integrated cirCUIts will be dealt with in detail elsewhere in this Application Note.
110
_. f-"'
90
~.
WITH RESISTANCE MODULATION
NO RESISTANCE MODULATION -100 % ERROR" , t Rl
~ ~ ..! V~ IV~ ='0) ~VDIVs=O)
100
turn Q2 ON and Q3 OFF, so that S] and G] are connected (VGS = 0 V) and QI is ON. If VGS is allowed to vary, gns (= l/rnS) will also vary. This variation in resistance appears as a source of error when the switch is ON, and the error is defined as resistance modulation. In Figure 6, the error percentage in the case of resistance modulation is greater than that which occurs when funs =O.
... ~;tl·
~.
~-
-100 HL
% eRROR" 1+
'as
'os -+ &'OS
Error Due to Switch ON Resistance (rOS) Figure 6
80
<
-.!:
70
~ 60
a: 0 -
if
rr
50 40
J
30
-
20 10
iGT ~'
~.
~.
~DGI72
-16
-12
-8
fI- ~I~~!!;;;
-1.-
DG200
-4
o
12
4
16
VOLTAGE IV)
FET Switch Error Currents Figure 4
The JFET as a Switch A suitable driving circuit must be considered when assessing the performance of the JFET as a switch. Such a circuit is shown in Figure 5.
~
.::.r--o °1
s,
+10V
V,N
G,
VS1G " tl0V
ON
-20V
I!=;= 0,
~
G,
The suggested driving circuit of Figure 5 eliminates t>rnS at low frequencies. The typical positive supply voltage is + I 0 V and the typical negative supply voltage is -20 V. In order for VGS to change, current must flow through Q2, which is ON. There are only two possible current paths through Q2; (I), through Q3, which is OFF and subject only to variations in leakage current, or (2), into the gate of QI, which is also subject to leakage current. Since both paths through Q2 provide only negligible changes in VGS, their effect in the circuit may be ignored. As the switching frequency is increased, capacitive reactance will provide lower impedance paths, so that some degree of funs is possible. Thus two conditions contribute to t>rnS = 0 in the circuit. First, VSIG ~ VG I, due to the low impedance between these points. Second, the output impedance of Q3 (driver output) is very large when compared to the RON of Q2. When VIN is +10 volts, Q2 is OFF and Q3 is ON; G 1 is at -20 volts and Q] is OFF. In Figure 7, note that QI will remain OFF only so long as VS1G > (VGI - VGS(off)' VGS(off) is a negative voltage for an N-channel FET; thus the negative analog signal is limited by the VGS(off) of Q] and the negative supply (VG I ~ -20 V). The ON condition is also shown in Figure 7. gns is constant because with VG ] ~ VSIG imposed by the switch control circuit, VGS ~ O.
,os ros,
19"1
'-
~------------
03
ON
VG1 a!VS1G
OFF
VGl
------
\
\
-20V
Vp
JFET Switch Control Circuit Figure 5
-'0
Note that QI is an N-channel JFET, Q2 is an enhancementmode P-channel MOS FET, and Q3 is an enhancement-mode N-channel MOS FET. From Figure 2, VIN of -20 V will
Siliconix
VS1G \
-'5
> (VG1 -
Vp)
FOR DeVICE TO REMAIN Off
-'0
-"
E!!
-20V
'0
VSIGIVI
Switch ON Condition Figure 7
7-87
--
The MOS FET as a Switch
The CMOS Switch
The P-channel enhancement-mode MaS FET is currently used in more applications than its N-channel counterpart. The consideration of MaS FET switch performance will thus center on P-channel devices.
As noted previously, the typical PMOS switch circuit will exhibit a variation in ON conductance as the analog voltage is varied. This undesirable characteristic can be overcome by paralleling P- and N-channel FETs, as shown in Figure lOA. For the ON state, the N-channel gate is forced positive and the P-channel gate is forced negative. Figure lOB shows the combined conductance of the two FET switches. The integrated combination of N-channel and P-channel devices on a common substrate is referred to as complementary MaS (CMOS).
The ON and OFF conditions of the MaS FET are analyzed in Figure 8. When the device is in the ON stage, note that the FET begins to tum ON when VSIG (VS or VO) becomes VGS(th) volts more positive than VG (= -20 V). +lDV B
I_ANALOG VOLTAGE RANGE_
I
s<>-:lir
r
I
D
1 I I
1
1 1
G
1 1
1
,#
I"~
,-4<::
lOS (-10V)
-'0
-20
I I I
CHANNEl-TO-BODY DIODE BECOMES FORWARD-BIASED
(A)
1/ 1 +'0
,
VS1GfVl 9
OS
PMOS Channel Conductance ('OS) vs Signal VoltagB Figu,e 8
=-
DOS OF CMOS
fOS
Figure 8 also indicates that at any given point along the gos vs VSIG curve, a unique value of gos will be obtained. Assume that a battery is inserted between the source and the gate, with the source clamped to the body as shown in Figure 9.
~B
/B'
~~~~S~trD------~
°1
J;,ov~rf
1
-'5
-'0
..
-5
+'0
+'5
...·SIG
T_____________'________---'j"L
....V_SIG__
P-MOS
I
"Floating" Battery and Clamped Sou,ca Figure 9
N-MOS
VG
-15V
+15V
ON
I VG
+15V
-15V
OFF
I I
(B)
A constant voltage between source and gate will produce a PARALLEL P-MOS AND'N-MOS (CMOS) constant value of gos vs VSIG , provided that the body-toOFF CONDITION source voltage is also constant. In a MaS FET, variation of DS 'os VG IN-TYPE)" -15V, the body-to-source voltage will also cause a modulation of VG (P-TYPE) • +1SV, gOS' To further complicate the picture, several MaS FETs /e, will have a common body when they are integrated on a single chip. Finally, the construction of a "floating battery" CHANNEL-TO-BODY circuit is difficult. Thus MOS FEr switch designers currently ~~;~N~~rL~-:"~DV DIODE OF f:- TYPE DEVICE FORWARD DEVICE FORWARD C?pe with the problem of L\.rOS by specifying rOS for a BIASED BIASED given switch at several points over the entire analog volt- -~~---r---.---+---;---r---,...t..= 10 15 --5 age range. -'0
,
•
o-
-,.
Referring to the switch in the OFF condition (VG = +10 V), it is apparent that no problem will exist until the source-tobody or drain-body diode becomes forward-biased.
7-88
Siliconix
(C)
Characteristics of CMOS Devices Figu,e10
The OFF condition for the CMOS deVIce wIll be main tamed so long as the channel-Io-body diodes do not become forward-biased, as shown in Figure IOC. The major advantages the CMOS construction technique makes to analog switching are: • Lower rOS vanation with analog signal characteristics, similar to the performance of a junction FET . • Analog signal range extends to + and - supply voltages. For instance, using the same ± 15 V supplies tYPIcal of operational amplifiers, the signal-handling capability of the syste111IS limited by the op amp, /lot by the slVllch. Summary of FET Switch Performance and Tradeoffs
v-",
"~ ~
100
--
-
u Z
~
in
iii
lon
-15V
1!!
TA=25C
/
/
/
/
CMOS (DG2CO)
cz: V~ ~..:
<.,()~
/
.."
,0+/
/ 001%
01%
'"
Tolerable level of t.rOS and rOS Figure 12
r-
JFET (OG181, 184, 187, 190)
JFET !DGlao. 183, 186, la9}
~
/
ALLOWABLE ERROR IN VL
I
10
/
//
.#+ ..
/
0001%
CMOS (OG300 SEAIES)
,
~
-----
.........JFET (DalB2, 185, 18a, 191)
0
.."
~lpMOS (oOll2)
CMOS (OGlOl)
..,--
'"z
I
/ ,-y . ,~
/
V+ '" t15V
'-
g
laOCH
IOOH
Figure II compares the performance of three ;wltch types wIth respect to IDS(on) vs VSIG' If one examInes the rDS charactenstlcs of the mtegrated sWltchlllg CIrcuits DG 172 and DG 181, thele may be a tendency to dIsmISS the DG 172 on the baSIS of Its apparent IIlfenor performance
,.
The curves in Figure 12 define the maximum rOS (or &OS) which can exist for a given allowable error percentage with a fixed value of R L. Recall that in the circuit in Figure 3, a resistive load of 200K n was assumed. If it is also assumed that an error level of 0.1 % is tolerable, then rOS =200 n is the maximum allowable switch resistance. On the other hand, if settling time is not critical, then an RL of I megohm, yielding rOS = IK n is permissible.
In situations where setthng time is indeed a design consideration, the circuits in Figure 13 will provide an overview of the exact nature of settling time for V2 (=V0 at turn-OFF and turn-ON. For a turn-ON SIgnal, CL charges through rOS' During turn-OFF, C'L dIscharges through RL' For a system error level of 0.1%, RL = 1000 rOS; therefore, the maximum settling time for V2 occurs during turn-OFF.
1
-lS
-10
-5
10
15 V,
Vo - ANALOG SIGNAL VOL rAGE (VOL lSI
t
Performance of Three F ET Switches Figure 11
In reality, the companson between the monolithIc DG 172 and the hybrid DG 181 is not clear-cut. Imtial Clfcuit design considerations must determine what degree of error can be tolerated by the application in terms of t.rOS and rOS' Once this error factor has been determined, the designer should contact a switch manufacturer for applications assistance in selecting the best switch for his purpose, in terms of both rDS and cost From thiS vlewpolllt, the slllgie-chlp DG 172 will perform creditably in applications where &OS and rOS error are not critical, and the device costs considerably less than the DGI81.
V,
sw
'os
R,
CD
Cs
OPEN SWITCH CAPACITANCE
V,
t
To amplify the preceding point, consider the definition of the tolerable level of &OS and rOS'
Siliconix
-
V, sw
FCs
'os
C~ ~
CLOSED SWITCH CAPACITANCE
Switch Settling Time Equivalent Circuits Figure 13
(Cont'd)
7-89
I
Switch Capacitance
.....
v,
V2
SW
'os ;:
+
*es
eo
"sTRAV
The simplified representation of switch capacitance shown in Figure 13 can be used to provide a very good estimate of what problems (if any) will be caused by switch capacitance in a given application.
OPEN SWITCH CONTAINING STRAY CAPACITANCE CL .. Co + eSTRAY
V,
V2
sil VSIG
+
'os ;:~
eo ~
*es
In general, the lower the switch capacitance the better the switching time and high-frequency isolation performance_ The subjects of switching time and high-frequency isolation are covered in other Application Notes in this series_
eSTRAY
In general, capacitance is proportional to the active area in a FET chip, prior to bonding onto a header. Additional stray capacitances are introduced when the leads are brought out through the device package. Thus, as lower rOS (higher gOS) is required, the active area is generally increased to obtain that parameter. The increase in area leads to an increase in capacitance. The foregoing statements are true so long as one is dealing with a given device type. However, in transition from a JFET to a PMOS device, a significant difference will be observed in the active areas required for a given rOS. Figure 14 compares the area of a JFET (from the hybrid DG181 circuit) and the monolIthic PMOS circuit of all 4 switches of a OG 172. Note that the rDS for the JFET is approximately one-third that of the total PMOS device, while the active PMOS area is almost three times greater than that of the JFET. Yet the ratio ofPMOS·to-JFET capacitance is almost 2: I. For the single OG 172 switch the comparison to the JFET is a larger rDS( on) for the smaller area.
CLOSED SWITCH CONTAINING STRAY CAPACITANCE
Switch Settling Time Equivalent Circuits Figure 13
=
Consider a switch with Cs Co = 3 pF, for an application requiring 0_1 % accuracy with 5 !Jsec settling time. A typical stray capacitance (C IN for an op amp) may be 6 to 7 pF. Therefore, CL =3 pF + 7 pF =10 pF. Resistance loads, RL' of lOOK n, 50K n, and 25K n are considered for the switch. The time required for an RC system to settle to within 0.1 % of its final value is 6.9 time constants (6.9 RC). Table 1 OGI72 (ALL 4 SWITCHESI MOS-FET (PMOSI shows the RL and rOS values necessary to satisfy a number of settling time specifications. From Table I, it is apparent that so long as R L .;;; 12K n, the desired settling time of 5 !Jsec will be achieved.
TABLE I
25K 25 50K 50 ·72K 72 lOOK 100
10 10 10 10
tON (V21" (0.1% settling timel (nsecl
tOFF (V 21" (0.1% settling timel
1.72 3.45 5.00 6.90
1.72 3.45 5.00 6.90
34.0 MILS
(Jlsecl
OG181 JFET
l
12.9 MILS
'MaK imum R L for tset = 5 Jlsee
., Does not include delav times 1--14.4MILS-I
If cost is a design constraint, it is wise to make a close analysis of actual system switch requirements. Too often, designers buy unnecessary performance capability. In Table I, the switch with rOS = 25 n costs nearly twice as much as does the switch with rOS = 50 n, yet either switch will meet the 5 !Jsec settling time specification.
7-90
!-13.7 MILs-l
'OS = 42.1l
'os=15.1l
AREA = 489.6 MIL 2
AREA = 176.7 MIL2
Co
= 10pF
Co = 6pF
Active Area Comparison of PMOS and JF ET Switches Figur.14
Siliconix
J
Switch Comparison A comparison between the characteristics of the three types of JFET switches is made in Table II.
This Application Note has surveyed the characteristics of FET switches and their associated drivers. In considering the FET as an analog switch, discussion has largely centered on the devices themselves, including specific load problems and
applicable driver circuits. Total switch performance is a function of the switch and the switch driver. Typically, high· performance switch drivers require numerous switching transistors. When discrete devices are considered, the total parts count will be high and the cost will be prohibitive. From the standpoint of cost, improved performance, and smaller size, the integrated circuit FET switch and driver is often the superior choice.
TABLE II Switch Tvpe
Analog Signal Range
.
'OS
LlrOS
Leakage, 10 0 '15
PMOS
(V.- VGS(th))
High
High
Low
JFET
(V_-VGS(off))
Low
Low
Low
CMOS
V.';;;;VSIG';;;;V+
Medium
Medium
Low
·Both VGS(th) (fa, PMOS) and VGS(offl (fa, N-channel JFET) are negative voltages. V+ is defined as positive supply voltage. V• is defined as negative supplV voltage.
Siliconix
7-91
H
Siliconix
DMOS FET Analog Switches and Switch Arrays Jack Armijos
INTRODUCTION
This Application Note describes in detail the principle of operation of the SD5000/210 series of high-speed analog switches, switch arrays, and drivers. It also contains an explanation of the most important switch characteristics. Application examples, test data, and other application hints are included.
A few of the many possible application areas for DMOS analog switches (and their improved characteristics) are listed below: 1.
Video and RF switching (high speed, high off-isolation, low cross-talk): - Multiple video distribution networks - Sampling scanners for RF systems
DESCRIPTION
The Siliconix SD210 and SD5000 series are single and quad monolithic arrays, respectively, of single-pole Single-throw analog switches. The switches are n-channel enhancementmode silicon field-effect transistors that are built using double-diffusion silicon-gate technology.
2.
- High-speed switching Audio switching systems using digitized remote control 3.
This family of devices is designed to handle a wide variety "Of video, fast ATE and telecom, analog switching applications. They are capable of ultrafast switching speeds (t r = Ins, toff = 9 ns) and excellent transient response. Thanks to the reduced parasitic capacitances, DMOS can handle wideband signals with high OFF-isolation and minimum cross-talk. The SD210 series of single-channel FETs is available nonzenered to minimize leakage and in Zener protected versions to eliminate electrostatic discharge hazards. The SD5000 series is presented in 16-lead dual in-line plastic or side braze ceramic packages, as well as in 14-lead SOT plastic packages. Analog signal voltage ranges up to ±IO V and frequencies up to I GHz can be controlled.
Audio routing (glitch-and nOise-free)
Data acquisition (high speed, low charge injection, low leakage): High-speed sample and hold AudIO and communIcation analog-to-digital converters
4.
Other: -
Digital switching PCM distribution networks UHF Amplifiers VHF Modulators and Double Balanced Mixers High-speed inverters/drivers Switched capacitor filters Choppers
PRINCIPLE OF OPERA TlON APPLICA TlONS
Thanks to the fast switching speeds, low ON-state resistance, high channel-to-channel isolation, low capacitance, and low charge injection, these DMOS devices are especially well suited for a variety of applications such as: high-speed video/audio switching, fast analog or digital signal multiplexing, sample and hold, choppers, etc.
7-92
The electrical symbol shown in Figure 1 provides several important bits of information: It depicts an n-channel enhancement-mode device with an insulated gate and asymmetrical structure. The gate protection Zener is shown with broken lines to indicate that, although it is present on the chip, it is not a main constituent of the fundamental switch structure.
Siliconix
GATE
~~~AL
r-
~~CTION
~
i
SOURCE
a
:
iR '/
INSULATED GATE ENHANCEMENT MODE CHANNEL
TI~
L __
Figure 3
DRAIN
(a) Equivalent "OFF" Circuit
N-CHANNEL G
BODY
+~ Cas
DMOS Electrical Symbol
fOS(ON)
o-~~--JVVL~--OD
Figure 1 Each sWitch is a OMOS n-channel fleld-effect transistor of the enhancement-mode type; that is, the device is normally OFF when gate-to-source voltage (Ves) IS 0 V_ The lateral double-diffused MOS (OM OS) tranSistor, shown in crosssection m Figure 2, has th!ee terminals (source, gate, and drain) on the top surface and one (the body or substrate) on the bottom of the chip. A Zener dlOde with a breakdown voltage of approximately 40 V IS added to protect the gate agamst overvoltage and electrostallc discharges. The double-diffuslOn process creates a llun self-ahgning region of p-type matenal, Is01atmg the source from the drain reglOn. The very short channel length that results between the two junction depths permit achievmg extremely low source-to-drain and gate-to-drain capacitances at the same tlme that provides good breakdown voltages. The silicon-gate process allows for high manufacturing repeatability and very stable performance without the instabilities associated with the metal-gate technique. SOURCE
GATE
DRAIN
(b) Equivalent "ON" Circuit The oxide 1I1sulator present between gate and source forms a small capacitor that accumulates charge. If the gate-tosource potenllal (Ves) IS made pOSitive, the capacitive effect attracts electrons to the channel area 1I11mediately adjacent to the gate oXlde. As Ves 1I1creases, the electron density in the channel wlll exceed the hole density, and the channel becomes an n-type region. As the channel conductiVIty is enhanced, the n-n-n structure then becomes a simple slhcon resistor through which current can easily flow 111 either direction. Figure 4 shows the normal mode of operahon of a single sWltch for ±10 V analog signal processing. Note that the source is recommended for the input since feedback or reverse transfer capacitance IS lower when the drain is used as the output. In this case, the gate IS dnven by +20, -10 V for which an S05200, S0210, or 0211 could be used. +20V=SWON ·lOV=SWOFF
SWITCH
ftIN~OL _
G
SWITCH
~~+IOVf.: .I~lo:mvo -IOV
-~1 l~
-=-
'V
-=-
BODY
Cross-sectional View of the Idealized DMOS Structure
Normal Switch Configuration for ±10 V Analog Switch
Figure 2
Figure 4
When the gate potential is equal to or negative with respect to the source, the switch is OFF. In this state, the p-type material in the channel forms two back-to-back diodes and prevents channel conduction (Figure 3a). If a voltage is applied between the Sand 0 regions, only a small junction leakage current Wlll flow.
As can be seen from Figures 3a and 3b, the body-source and body-dram pn junctlOn should be kept reverse biased at all times; otherwise, signal clipping and even device damage may occur if unlimited currents are allowed to flow. Body biasing is conveniently set, in most cases, by connecting the substrate to V-.
Siliconix
7-93
-
MAIN SWITCH CHARACTERISTICS rOS(ON) . ON-channel resistance is controlled by the electric field present across and along the channel. Channel resistance is mainly determined by the gate-to-source voltage difference. When Ves exceeds the threshold voltage (VT), the FET starts to turn on. Numerous applications call for switching a point to ground. In these cases the source and substrate are connected to ground and a gate voltage of 3 to 4 V is sufficient to ensure switching action.
Threshold Voltage Test Configuration Figure 6
With aVes in excess of +5 V, a low resistance path exists between the source and the drain. The circuit shown in Figure 4 exhibits the rOS(ON) vs. analog signal voltage relationship shown in Figure 5. BOOYEFFECT -;;;-
200
e. " "'" 1;;
(~)
160
VBOIJ'r =
lOY VGATI =+~OV
(hI VBODY=
lOY V(.ATI =+15V OV V(.An=+I~V
hI VBOI)Y=
'-'
'ri
120 (b)
~
;Z; 0
I VI ....-: V
80
Z
0
'li'i 0
For a MOSFET with a uniformly doped substrate, the threshold voltage is proportional to the square root of the applied source-to-body voltage. The S05000 family has a non-uniform substrate, and the Vth behaves somewhat differently. Figure 7 shows the typical Vth variation as a function of the source-to-body voltage VSB.
_'OnLlllltln\
S
.r:
40
~
-10
-s
(,)
(al J
" 10
Vs Analog Voltage (Volts)
"
ON-Resistance Characteristics Figure 5
./
~
When th.e analog ~ignaI excursion is large (for example ±1Q V) the ON-channel resistance changes as a function of signal level. To achieve minimum distortion, this ONchannel resistance modulation should be kept in mind, and the amount of resistance placed in series with the switch should be properly sized. For instance, if the switch resistance varies between 20n and 30n over the signal range and the switch is in series with a 200-load, the result will be a total M = 4.5%. Whereas, if the load is 100 kn, M will only be 0.01%_ THRESHOLD VOLTAGE The threshold voltage (VT) is a parameter used to describe how much voltage is needed to initiate channel conduction. Figure 6 shows the applicable test configuration. In this circuit, it is worth noting, for instance, that if the device has a VT = 0.5 V, when V+ = 0.5 V, the channel resistance will be: 0.5 V =500 k n Rchannel =
~
,. IS
/ /
/ !
..JJ~J I." -
Vlht
c
5
I--
VSB~- I--
~ ::r IIII1 11111 0
I"
'0
VSB - Source-to-Body Voltage (Volts)
Threshold vs. Source-to-Body Voltage Figure 7
As the body voltage increases in the negative direction, the threshold goes up. In consequence, ifVes is small, the ONresistance of the channel can be very high. Figure 8 shows the effects of VSB and VGS on RON. Therefore, to maintain a low ON-resistance it is preferable to bias the body to a voltage close to the negative peaks of VS and use a gate voltage as high as possible.
Ji:iA"
7-94
-
.--I---
.......
Siliconix
Vo
-
~()()
JllmA
-
/
f
Switching spIkes occur at switch turn-on as well as turn-off tIme. When the switch turns on, the charge injection effect is mmunized by the usually low signal-source impedance. This low impedance tends to produce a rapid decay of the extra charge mtroduced m the channel. At turn-off, however, the injected charge might become stored in a sampling capacitor and create offsets and errors. These errors w!ll have a magnitude that is inversely proportional to the magnitude of the holding capacitance.
/
::11
c.------J~ -vGst vsal0 _ 0
}j /
/ ./ ..... V V
I---
-
~
v
/IV
"'
IOV 1
I,. VSB - Source-la-Body VoltJge (Volt,)
ON-Resistance vs. Source-to-Body and Gate-to-Source Voltages Figure 8 CHARGE INJECTION Charge mjection descnbes that phenomenon by which a voltage excursIOn of the gate produces an injection of electric charges via the gate-to-drain and the gate-to·source capacItances into the analog signal path. Another popular name for this phenomenon is "switching spikes."
Figure 9 illustrates several typIcal charge injection characteristICS. Figure 10 shows some of the corresponding waveforms. The DMOS devices, thanks to their inherent low parasitIc capacItances, produce very low chalge mjection when compared to other analog switches, either PMOS, CMOS, JFET, BIFET etc. Shll, when the offsets created are unacceptable, charge lIljection compensation techniques exist that elimlllate or mlllunize them. The solutIOn basically consists of lIljecting another charge of equal amplitude but opposite polarity at the time when the switch turns off.
Since these DMOS devices are asymmetrical I , the charges injected into the Sand D terminals are different. Typical parasitic capacitances are on the order of 0.2 pF for CDG and 1.5 pF for CSG. Another factor that influences the amount of charge mjected is the amplitude of the gate-voltage excursion. This is a directly proportional relationshIp: the larger the excursion, the larger the mjected charge. This can be seen by comparing curves (a) and (c) in Figure 9. One other variable to consider is the rate of gate-voltage change: Large amounts of charge are injected when faster rise and fall times are present at the gate. This is shown by curves (a) and (b) in Figure 9.
~
~
[\
0
e;
~
e
-s
,
II / \
~
Q
-I. -I.
Top: Bot:
5 V/div Hor:.5 }J.s/div 50 mV/div Point (1)
(b)
Top: Bot:
5 V/div Hor: 2 }J.s/div 50 mV/div Point (2)
p1l" ':"
llO-ctt_lN
(b)
...........
~
c
~
j
'\..
c
0
3
(c),.-
(a)
V (2)
~
(0.1.)
/
±IO V, tt
(b) ±IO V, If
(el O. -10 V Ii
3 VIp." 03 V//J.s
J
VI.,
-
(1)/
(a)
---. ·s
-s
.,.
V." Ano.l.log Volto.l.ge (VoJb)
SD5000 Charge Injection
Waveforms for points (1) & (2) of Figure 7
Figure 9
Figure 10
1 The chlp geometry is such that non-identIcal behavior occurs when the SOllrce and drain termmals are reversed in a clIcuit.
Siliconix
7-95
OFF-ISOLATION AND CROSSTALK
SPEED
The dc ON-state resistance is typically 30 n and the OFFstate resistance is typically 10 IOn, which results in an OFF-state to ON-state resistance ratio in excess of 10 8 . However, for video and VHF switching applications, the upper usable frequency limit is determined by how much of the incoming signal is coupled through the parasitic capacitances and appears at the switch output when Ideally no signal should appear there, in the OFF state.
Because the ON-state resistance and input capacitance are low, the DMOS switches are capable of subnanosecond switching speeds. At these speeds the external circuit rather than the FET itself is often responsible for the rise and fall times that can be obtained. Let's consider the switching test circuit of Figure 12. At turn-on, the fall time observed at the drain is a function of RG and of the input pulse amplitude and rise time. The sooner CGS reaches VT, the sooner turn-o~ will occur, and the lower the rDS(ON) reached, the faster CDS will be discharged.
Off-isolation is defined by the formula: Off-Isolation (dB)
= 20 log -Vout V, In
TO SCOPE
+voo
(when the switch is OFF) When several analog switches are simultaneously being used to control high frequency signals, crosstalk becomes a very important characteristic. For video applications, the stray signal coupled via parasitic capacitances to the signal of an adjacent channel can form ghosts and signal interference. To help obtain high degrees of isolation, it becomes necessary to exercise careful circuit layout, reducing parasitic capacitive and inductive couplings, and to use proper shielding and bypassing techniques. Figure 11 shows the excellent off-isolation and crosstalk performance typical of this family of DMOS analog switches.
VOUTTO ~-(C~-o SCOPE
Sample Scope
Input Pu1se
160
ISO 1000 130 120
$
:s =0"
110
:!.l
"
0
100
Swi.ening Test Circuit Figure 12
~c
80
,.
70
.........
:T: ..
.....
~,:,,'
-.....
60
...,.
so IK
10K
lOOK
1M
10M
100M
Frequency (Hz)
SDSOOO Crosstalk and OFF-Isolation vs. Frequency Figure 11
The turn-off time (or the rise time of VD) is not as much limited by the velocity at which CGS can be discharged by the gate control pulse as it is, by the time it takes to charge up CDS and CDC via the load resistor RL. Table 1 shows typical performance obtained. It is important to realize that stray capacitance and parasitic inductances as well as scope probe capacitance can seriously affect the rise and fall times (switching speed). Table 1. Typical Switching Times
INSERTION WSS At low frequencies, the attenuation caused by the switch is a function of its ON-state resistance and the load impedance. They form a simple series voltage divider network. As an example, for a 600-n load impedance the insertion loss for. voice signals (1 Vrms at 3 kHz) is less than 0.3 dB. Thus, the SD5000 series make good telephone crosspoint switches.
7-96
VDD
fci(ON)
(V)
(ns)
tr (ns)
680
0.6
0.7
10
680
0.7
0.8
9.0
15
IK
0.9
1.0
14.0
* tOFF IS dependent on R L and does not depend on the device characteristtcs.
Siliconix
9.0
DRIVERS
(d)
+ISV
0
G
IOV
I I SD211
The SD5200 operates as an Ulverter capable of dnving up to 30 V. TIllS lugh voltage ratlllg, together with its high speed, make It all Ideal dnver for the othel members of the S05000 fanuly. hgUle 13 shows this and several other dnvll1g methods. The Sihcol11x 0169 IS a convelllent TTL compalible dnver.
-IOV
+15 V
(e) SlIlce sWllchmg tllnes depend on the CGS charge/discharge times, It is lInportant to note that the driver's current SOtlJ ccjsink capabIlity plays a very Important lOle in the plOcess.
=~
+lSV
(a)
t
I
The switch driver's functIOn is to translate logic control levels, (eIther TTL, CMOS or ECL) mto the appropriate voltages needed at the gate so that the switch can be turned ON or OFF.
• -sv
J-
1 ~
sv
(f) jiOV
I:ct.
(b)
G
ISVCMOS
Various DMOS Drivers
-SD210
Figure 13
B
.20 V
+20 V
(c)
0 IK
:'" lOY
IK
0
"Stisooo
TIL
or CMOS
-lOV
* used wIth open collector TTL (optIOnal)
Siliconix
7-97
DESIGN IDEA In a typical application, the circuit of Figure 14 is used to multiplex, sample, and hold two analog signals at a 5-MHz rate. Two of the switches in an S05000 are used as level shifter/drivers to provide the gate drive of the single-poledouble-throw arrangement formed by switches 3 and 4. Capacitors C1 and C2 provide charge injection compensation. +16V
Figure 16 illustrates the resultmg composite waveform present at the holding capacitor along with the gate 3 control signaL As can be seen, the switching times are about 15 ns, the acquisition time is 80 ns, and the holding time is about 90 ns. The total sample-and-hold cycle has taken 200 ns. Even though not maximized, this speed is faster than what any other presently available (50 ns) analog switch products can achieve_
Vout G3
Vout
t-_--QVOu, -8V +16V
G3
.ll20 Pf
.....
Composite Sample and Hold Output Along with Gate 3 Control Signal Figure 16
G2 -BV
5 MHz Multiplexer and Sample-and-Hold Circuit Figure 14 Signal 1 is a 6-V, 156 kHz square wave. Signa12 is a 2-Vpp, 78-kHz alternating waveform with a dc offset of -3.4 V (Figure 15).
r
i
r r
i
\ -
L- \ \ , - - 1~ '--- '--- '--'
G3
Gate Control Signals for the SPDT Switch Configuration Signal 1
Figure 17
-OV
Signal 2
The Two Analog Signals to be Sampled Figure 15
7-98
The timing and amplitude of gate 3 and gate 4 controlsignals can be examined in Figure 17. Figure 18 shows a single-pole-single-throw configuration used to select one of two AM modulated 10-MHz signals. Figure 19 illustrates the two waveforms available at the output. Table 2 contains typical values of crosstalk and offisolation attainable with this configuration.
Silicanix
1.;- - I
+SV
I I SIUElD I
+lSV
CHI ON
I CONlROL TIL
L
112 0169
I .,,-
-SV
INPUT 2
..J 047
I
~ SD210
OUTPUT
I I I
Y I l~f
047
-=-
~ I L·~ _ ..J
I
CH20N
High Frequency SPDT Switch Figure 18
Table 2. SPDT Switch Performance S I Vert: I V /div ca es - Horiz: 20 ILS /div FREQ
SIG LVL
INS LOSS
OFF ISOL
XTALK
100 kH~ 1 MHz
OdBm
L8 dB
80 dB
113 dB
OdBm
1.8 dB
70 dB
92 dB
5 MHz
OdBm
1.9 dB
69 dB
69 dB
10 MHz
OdBm
2.0 dB
61 dB
65 dB
10 MHz
6dBm
2.0 dB
61 dB
66 dB
10 MHz
12dBm
2.0 dB
61 dB
66 dB
Two 10 MHz AM Modulated Outputs for the SPDT Switch of Figure 14 Figure 19
REFERENCES
1. 2. 3.
"Signetics D-MOS Data," booklet (1982). Bob Zavel, ''A High Quality Audio Crosspoint Switch," Siliconix Application Note AN83-7 (October 1983). Bob Zavrel, ''A High Performance Video Switch Using the SD5002," Siliconix Application Note AN83-IS (December 1983).
4.
R. R. Schellenbach, "Switched Capacitor Filters - An Economical Approach to Critical Filtering," In tegrated Circuits Magazine (October, 1984).
l1li
Siliconix
7-99
H
Siliconix
A High Performance Video Switch Using the SD5002
As the trend toward more advanced video systcms accelerates, designers will need improved switching tcclmiques_ High resolution video and advanced computer graphics are only two areas demanding better sWitch performance_ A high performance solution to this problem is presented here _ The desirable characteristics of a high performance video switch include: 1_ 2_ 3_ 4_ 5_ 6. 7_ 8_ 9_ 10. 11_
low cost flat response from DC to VHF minimal phase shift and group delay constant input and output impedances unity or variable switch gain direct control by digital gates mmimum parts count small size very high switching speed « 1 ns.) low channel crosstalk useof only DC coupling
INPUT
51
53
The physical size of a video SWitch may be reduced and the design simplified by using mtegrated CIrCUIt analog switches. With this reduced size, however, lllcreased crosstalk IS introduced because of increased switch-to-switch capacitance. A fundamental goal of video SWitch design is to take advantage of the IC switch while minimizing crosstalk. The two popular schemes that have been developed to realize this goal are shown in Figure 1. In the "T" switch, S 1 and S3 are used to route the signal to the load. S2 closes when the "T" configuration is "off' providing a near ground potential to the switch node and greatly reducing crosstalk. Unfortunately analog switches each have a channel capacitance which has an undesirable ~[r~cl on frequency response and phase imeanty. To minimize this capacitance, we can simply use fewer switches_ The "L" configuration uses two switches but requires a loading resistor R (Fig_ 1). R also serves as an isolation pad for the video source.
OUTPUT
INPUT
(0) T-5WITCH
52
R
(b) L-5WITCH
FIGURE 1 Equivalent circuits lor a T-swltch, a, and L-swltch, b_
7-100
Siliconix
OUTPUT
r---I- -- ..
1.OK
I
Rl
4 I
I I
I
I R4
I II
61I _____ ~: I
1
~
I
':'
I
I
S05002
I
14 I
-----, I
1.OK
n
2
R6
75
I
Rl
75
2.5K
~--~I--~~
75
I I I 9
RO
R5 R3
4700
200
I
loop
... - .1. __ ..I 10V
200
--,
r-I I I
Q
Q
I I I
RFC
+15V
200
RFC
I
400pF
-15V
....L.
....L.
FLIP FLOP
10V
C
FIGURE 2 Actual circuit 01 a video switch with an L-configuratlon.
Figure 2. shows the completed circuit, a one-of-two switch with a summing amplifier. The video source's line can be terminated either externally or internally to the switch (RO). With this termination resistor, a load change of less than 1 ohm will be "seen" by the source when the switch changes state. For this reason input isolation amplifiers are not necessary. Siliconix S05002 analog switches were chosen because of low "on" resistance, very low switch capacitance, and high switching speed. Also, the S05002 can be directly controlled by standard CMOS logic gates or from TTL gates through standard interface techniques. The Siliconix
S0213 is the discrete equivalent to the S05002 IC. Use of these discrete devices can reduce crosstalk at the expense of increased switch size and greater circuit complexity. The Signetics NE5539 was chosen as a summing amplifier because of its very high slew rate and gain bandwidth product. R4 (Fig. 2) can be varied to control circuit gain but should never be less than a value of 1400 ohms since the NE5539 is internally compensated for gain values greater than 7. A value of approximately 2500 ohms for 4R will set circuit gain to near unity. Additionally, the circuit output impedance is set by R6 while R5 sets the output DC offset to near-zero.
Siliconix
7-101
-
Use of high quality components alone will not guarantee top performance. Circuit board layout and shielding are critical for meeting the desired specifications. The switch should be considered a subassembly with its own chassis even if included in a larger system. The designer should be ever mindful of stray capacitances and inductances. 1 pf of lead capacitance represents about 5K ohms of reac· tance at 30 MHz, which can ruin the crosstalk performance. The input and output BNC connectors should be mounted directly above or below the appropriate points on the cir· cuit board ,FIg. 3). Double sided PC board should be used with signal route leads etched as short as possible. The pin configurations of the SD5002 and NE5539 plastic DIP
Figure 4 shows the response of the circuit from mput to output with the applicable channel turned "on." Very good response linearity has been realized from DC to VHF which should prove to be quite adequate for the most demanding applications. Figure 5 shows channel· to·channel crosstalk isolation with equal input level signals and with channel 1 "on" and channel 2 "off." It can be seen that crosstalk isolation is better than 60 db. at 10 MHz. The switch was tested with a staircase test signal for various video response parameters. The photo· graphs (Figs. 6 to 10) show the results while Chart I shows the test set-up used during this test. The photographs indicate imperceptible switch influences on the test signal.
BNC CONNECTOR ATTACHED TO CHASSIS
CIRCUIT BOARD CHASSIS SEPARATION EQUAL TO BODY LENGTH OF 'I.-WATT RESISTOR
(b)
Ij)
FIGURE 3 Suggested method lor mounting BNC connectors, a; printed-circuit pattern 01 the prototype board, b.
packages are very helpful to this end, which is evident on inspection. Gate voltage control can be implemented by a very wide range of techniques including mechanical switches or logic gates. Since the two switches for each channel mput in effect form a SPDT s\vitch, a flip-flop logic circuit is a good choice for circuit control. Figure 2 shows the special case of a one-of·two channel switching circuit. The gate of the grounding switch of channel I is tied to the gate of the series switch of channel 2 and vice-versa. Thus in this unique case, one flip-flop may be used to control all four switches.
The switch specifications exceeded the resolution of the test eqUipment used. Chart 2 shows the test set-up used for the crosstalk and response tests.
100
90 80 70
iii"
:!!. Z 0
+10
~
.:!! w -10
. ..Iii'"
60 50
-' 0
!!!
iii en Z
o
"en
w II:
40
-'
0
-20
II:
30 20
0
-30
10
~o ~--L-~~--'----'--~1~00--~---L---L---L--2-'00
o
FREQUENCY (MHz)
FIGURE 4
FIGURE 5
Frequency response lor the circuit 01 Figure 2.
7-102
100 FREQUENCY (MHz)
Channel-to-channel crosstalk Isolation lor the L-swltch configuration.
Silicanix
200
FIGURE 8 Risers (derivative) 01 the staircase Input signal.
FIGURE 9 Vector scope 01 the color bars.
-
FIGURE 10 Phasa shill test: parallel lines Indicate no phase shill.
Siliconix
7-103
CHART 2
CHART 1
Instrumentation set-up for the video parameter tests.
7-104
Instrumentation set-up for the video crosstalk and frequencyresponse tests.
Siliconix
H Silicanix
A High Quality Audio Crosspoint Switch
INTRODUCTION Recent advances in analog switch integrated circuits have made superior audio switch specifications possible. A crosspoint switch for the most demanding audio applications is described here. Although this switch may be used in recording studio and radio broadcast mixers where little compromise is acceptable, the low cost and small size makes this switch ideal for a much more diverse range of applications. Such applications can include audio follow switches found in video systems, audio synthesizers, high quality multiplexers, and home entertainment systems. A high quality audio frequency switch should have the following features: 1. 2. 3. 4. 5. 6.
7. 8. 9. 10.
11. 12.
Reasonable cost Unity or variable gain Very low harmonic distortion «.01%) Flat response (DC to > 1 MHz.) Low crosstalk High "Off" Isolation Excellent phase linearity High speed switching « 1 ns.) freedom from switch "popping" Small size Direct control by digital gates Use of DC coupling only
The size of a complex audio switching array can be greatly reduced by using IC analog switches. The prototype array is an 8x2 stereo crosspoint switch mounted on a 4x7 inch board. Other switch configurations may be fabricated with little effect on the switch characteristics. This single board can replace a score of rotary switches and the bundles of audio cable often found in audio mixers. Furthermore, ground loop problems are reduced by eliminating the cable bundles. Siliconix SD5002s were chosen because of low "on" resistance, low switch capacitance, and very fast switching times. The National Semiconductor LF347 quad op-amp was chosen for its excellent audio characteristics in a quad package. 'I\vo LF347s are used in this switch providing a summing and output amplifier for each of four channels. The SD5002s are held "normally open" by biasing the switch gates to ground potential through 10K ohm resistors. For any switch configuration, the appropriate switch( es) are closed by biasing the appropriate gate(s) to the positive voltage supply. In this circuit pairs of switches are controlled together to affect the left and right channels of a stereo input simultaneously. This is accomplished simply by tying the applicable switch gates together and using a common bias resistor. The ability to directly interface the SD5002 gates to digital integrated circuits opens up immense opportunities to the design engineer for switch control.
Silicanix
7-105
-
SUMMING NODE FROM 7 OTHER SWITCHES
LF347 CHANNEL 1 LEFT INPUT BUS
SUMMING AMP Rio 7SK
OUTPUT AMP
RL
CHANNEL 1 RIGHT INPUT BUS
0--1
...1_NP-1U... T_N_O_D_E_-'\R"SIlr--;;r._ _O 51 S
~;~
TSK
INPUT NODE
D
t I I
"··.--::1::-21r.S;--o
D 9
."'.
7RSK S
O)--Ir----~
RA75K
I
I+V)-o-::::' CHANNEL 2
I I
'~::i: ~= I!.
CHANNEL 2 LEFT INPUT 8US
RIGHT INPUT BUS
D
I
RL
RL
11 G
I L~~
-
S~~~Ec:. ~~~;C~~~M
RO Goon
I SUBSTRATE I_V) __ J2 FIGURE 1
INPUTS
RSS SWITCH ""'::-t---l~ --;-"IM.--1-INPUTS
INPUT BUSSES
S05002S
SUMMING ~-I,--_---i~1 NODES
LEFT
RIGHT
LEFT
CHANNEL A OUTPUTS
FIGURE 2
7-106
RIGHT
CHANNEL B OUTPUTS
Silicanix
Figure 1 shows how a single SD5002 is configured as a 2xl stereo switch. Figure 2 shows how the circuit can be expanded into a switch matrix. Eight SD5002s are required to construct the 8x2 stereo matrix array. One RL is required for each channel input for termination while separate RSs are employed to feed the signal from the inputs to the various switches. An input bus is consequently formed at the junction of these resistors. The summing nodes are located at the inverting inputs of the summing amplifiers. The SD 5002 drains are connected to these summing nodes. A larger array will cause reduced system performance due to longer lead lengths and increased circuit capacitance. Nevertheless, large matricies can be configured with little performance compromise because of the low initial switch capacitance. RL's value should reflect the value of the source impedance. Deletion of RL will seriously degrade crosstalk and off isolation performance while lower values of RL will improve these specifications. RC may be adjusted for a wide range of system gain while a value of about 150K ohms will set the circuit to unity gain. RD sets the value of the output impedance and if the switch is to feed a high impedance load, RO should be included to maintain system performance. Electrolytic and mica capacitors are used on the circuit board for bypassing the two power supply voltages. Supply voltage bypassing will reduce both high and low frequency noise and help stabilize the system. The entire circuit should be well shielded particularly if it will be exposed to strong RF or power line fields. Conductors carrying high currents should be kept away from the circuit. Double
sided PC board should be used creating a ground plain on the component side as an additional precautionary measure. Table 1 shows the switch performance of the 8x2 crosspoint configuration. RL was set to 10K ohms, reflecting the high impedance of the test oscillator's output. Regulated power supply voltages of plus and minus 9 to 15 volts may be used. The signal voltages should be kept under about 3.5 volts PTP to maintain switch performance.
TABLE 1 Frequency
Crosstalk
"Off" Isolation
%THD
(Hz.)
50 100 200 500 IK 2K 5K 10K 20K 50K lOOK
-74db. -74 -74 -74 -74 -73 -70 -67 -62 -55 -50
-75db. -75 -75 -75 -75 -74
-71 -68 -62 -55 -49
.006 .005 .004 .003 .003 .003 .003 .004 .006 .020 .045
Signal voltages: 3 volts P.T.P. supply voltages: + and - 12 volts
-Siliconix
7-107
NOTES
Siliconix
Worldwide Sales Offices _
I
Siliconix
Worldwide Sales Offices United States CENTRAL Siliconix Incorporated
1327 Butterfield Rd., Suite 616 Downers Grove, IL 60515 (312) 960-0106 TWX: 910-695-3232
Siliconix Incorporated
Two King James South, Suite 143 24650 Center Ridge Road Westlake, OH 44145 (216) 835-4470 TWX: 810-427-9258
Siliconix Incorporated
3310 Keller Springs Road Suite 120A Carrollton, TX 75006 (214) 385-4046/4047 TWX": 910-860-9262
EASTERN Sillconix Incorporated 31 Bailey Avenue Ridgefield, CT 06877 (203) 431-3535 TWX: 710-467-0660
Siliconlx Incorporated 395 Totten Pond Road Waltham, MA 02154 (617) 890-7180 tWX: 710-324-1783
Sillconlx Incorporated
Cranes Roost Office Park 311 Whooping Loop Altamonte Springs, FL 3270' (305) 831-3644 tWX: 810-853-0320
NORTHWESTERN Siliconix Incorporated 2201 Laurelwood Road Santa Clara, CA 95054 (408) 988-8000 tWX": 910-338-0227
Sillconix Incorporated
309 Inverness Way, South SUite J Englewood, CO 80112 (303) 799-1575 tWX": 45-0228
SOUTHWESTERN Sillconlx Incorporated 17821 E. 17th Street Suite 240 Tustin, CA 92680 (714) 544-8378/7275 TWX: 910-595-2643
International European FRANCE Sillconix S.A_R.L.
Centre Commercial de L'Echat Place de l'Europe 94019 Creteil Cedex Tel: (1) 43.77.07.87 TLX: Siliconix 230389F FAX: (1) 43.39.11.71
WEST GERMANY Sillconlx GmbH
Johannesstrasse 27 0-7024 Filderstadt-l Postiach 1340 Tel: (0711) 702066 FAX: (0711) 7061 50 TLX: 7-2555533
FAR EAST HONG KONG Sillconix (H.K,) Ltd. 5th Floor Liven House 61-63 King Yip Street Kwun Tong, Kowloon TEL: 3-427151 TLX: 44449S1 LXHX
JAPAN Nippon Sillconix Incorporated
1-1 Uchlsalwai-Cho 2-Chome Chiyoda-Ku, TokYO 100 TE[: (03) 506-3470 TLX: 23~2739 NSIXJ
Siliconlx GmbH
Klrchfeldstr. 4 0-8025 Unterhaching Munich Tel: 089-611-4091 TLX: 528305
SCANDINAVIA Siliconix. Sweden Ltd. Box 569 S17526 Jlirfalla Sweden TEL: (0) 758 12610 TLX: 16404
UNITED KINGDOM Sillconix Ltd.
3 London Road Newbury, Berks RG131JL TEL: ~0635130905 FAX: 0635 34805 TLX: 49357
ITALY Sillconix (Italy) Ltd. Via Vincenzo Monti 8 20123 Milano TEL: (02) 345 22 11 TLX: 331837
Silicanix
8-1
u.s. and Canadian Sales Representatives U.S. Sales Representatives ALABAMA Huntsville (35815) Rep Inc. P.O. Box 4889 11535 Gilleland Rd. (205) 881-9270 TWX: 810-776-2102
ARIZONA Tempe (85282)
Quatra Associates, Inc. 4645 S. Lakeshore Drive Suite 1 (602) 820-7050 TWX: 910-950-1153
CONNECTICUT Cheshire (06410-0160) Scientific Components 1185 South Main Street (203) 272-2963 TWX: 710-455-2078
FLORIDA Altamonte Springs (32701) llemtronic Associates 657 Maitland Ave. (305) 831-8233 tWX: 810-854-0321
Ft. Lauderdale (33309) Semtronlc Associates 3471 Northwest 55th SI. (305) 731-2484
Clearwater (33516-2248) Semtronic Associates 1467 S. Missouri Ave. (813) 461-4675
GEORGIA lIIcker (30084)
Rep Inc. 1944 Cooledge Road Suite 1 (404) 938-4358 TWX: 810-766-0822
ILLINOIS Des Plaines (60018)
Electron Markeling Corp. 3158 Des Plaines Ave. Suite 109 (312) 298-2330 TWX: 910-233-0183
INDIANA Indianapolis (46240) Wilson Technical Sales, Inc. P.O. Box 40699 4021 W. 71st Street (317) 298-3345 tWX: 910-997-8120
IOWA Cedar Rapids (52403) Electromec Sales, Inc. 1500 2nd Ave. S.E. Suite 205 (319) 362-6413 tWX' 910-525-1342
KANSAS Overland Park (66207) PMR, Inc. 5760 W. 95th St. Suite 140 913) 381-0004 316) 684-4141
NEW YORK Endwell (13760)
Tri-Tech ElectroniCS, Inc. 3215 E. Main Street (607) 754-1094 TWX: 510-252-0891
FayeHevllle (13066)
Tri-Tech Electronics, Inc. 6836 E. Genesee Street (315) 446-2881 tWX: 710-541-0604
Fishkill (12524)
Tn-Tech ~Iectromcs, Inc. 14 Westview Drive (914) 897-5611
1
MARYLAND Columbia (21046)
E. Rochester (14445)
Tri-Tech Electronics, Inc. 300 Main Street (716) 385-6500 tWX: 510-253-6356
Pro Rep 8310 GuiHord Rd. (301) 992-7460 TWX: 710-862-0862
Melville (11747)
MASSACHUSETTS Melrose (02176) Pro Comp Sales One West Foster Street Suite 10 (617) 665-2340 TLX: 910-380-9030
MICHIGAN Brighton (48116)
A. P. ASSOCIates 9903 Webber (313) 229-6550 TLX: 287310 (APAIUR)
MINNESOTA Bumsville (55337)
Electromec Sales Inc. 101 W. Burnsville Pkwy. (612) 894-8200 TWX: 910-576-0232
MISSOURI Si. i.ouis jii3i4iij
PMR, Inc. 11710 Administration Dr. Suite 2 P.O. Box 28708 (314) 569-1220 TWX: 910-764-0881
NEW JERSEY Marlton (08053) B.G.R. Associates Evesham Commons 525 RI. 73 Suite 100 (609) 983-0200 TWX: 710-990-5086
Teaneck (07666) R. T. Reid Associates 705 Cedar Lane (201) 692-0200 twX: 71 0-990-5086
R. T. Reid Associates 20 Broadhollow Rd. Suite 3001 (516) 351-8833 TWX: 990-997-3030
NORTH CAROLINA Raleigh (27607)
Rep Inc. 7406 F Chapel Hill Road (919) 851-3007 tWX: 810-726-2102
CharloHe (28212) Rep Inc. Independence Office Park 6407 Idlewild Rd., Ste. 226 (704) 563-5554 TWX: 810-726-2102 TLX: 821765
OHIO Cleveland (44143)
Arthur H. Baler Company 16 Alpha Par k (216) 461-6161 tWX: 810-427-9278
Dayton (454141
Art~ur H. Baier Company
4940 Profit Way (513) 276-4128 twX: 810-459-1624
OKLAHOMA Tulsa (74145) MREP tompany 7966 East 41 st Street Suite 7E (918) 665-3562
OREGON Beaverton (97005) Blair Hirsh Co., Inc. 4855 SW Ridgecrest #211 (503) 641-1875
TENNESSEE JeHerson City (37760)
Rep Inc. P.O. Box 728 113 So. Branner Ave. (615) 475-4105/9012/9013 TWX: 810-570-4203
TEXAS Dallas (75243)
MREP Company 13405 Floyd Circle Suite 110 (214) 669-9706
Grapevine (76051)
MREP Company P.O. Box 487 403 E. Wall (817) 481-7502/7503 & (817) 488-6583/6584 TWX: 910-350-5298
Missouri City (77459) MREP Company 1306 FM 1092 Suite 208 (713) 216-0798
Houston (77055) MREP Company 9440 Old Katy Road Suite 106 (713) 461-4197
Round Rock (78681)
MREP Company 850 S. Great Oaks Blvd. Suite 120M (512) 244-6755
UTAH Sail Lake City (84115) Sage Sales 3349 South Main Street (801) 467-5451 TWX: 910-925-5153
w''!S!!!N!:TOP! Lynnwood (98036)
Blair Hirsh Co., Inc. P.O. Box 2250 19410 36th Avenue West SUite 106 (206) 774-8151 tWX' 910-977-0131
WISCONSIN Wauwatosa (53226) Larsen Associates 10855 West Potter Road (414) 258-0529 TWX: 910-262-3160
canadian Sales Representatives Islington, Ontario IM9B6E3)
!>ipe Thompson, Ltd. 5468 Dundas SI. W. Ste.206 (416) 236-2355 tWX: 610-492-4367
North Gower, Ontario Pipe Thomspon, Ltd. (613) 258-4067
8-2
Siliconix
U.S. Distributors ALABAMA Huntsville (358051 Hamilton/Avnet #23 4940 Research Drive (205) 837-72tO TWX: 810-726-2162
Huntsville (35801) Marshall Industries 3313 Memorial Pkwy. (205) 881-9200
Huntsville (35805)
Pioneer/Huntsville 4825 University Square (205) 837-9300 tWX: 810-726-2197
ARIZONA Phoenix (85023)
Wyle laboratories-EMG 17855 N. Black Canyon Hwy. (602) 249-2232 tWX: 910-951-4282
Temp,e (85281)
Hamllton/Avnet, #04 505 South Madison Dr. (602) 231-5100 twX: 910-950-0077
CALIFORNIA Anaheim (92807)
Zeus West, Inc. 1130 Hawk Circle (714) 632-6880 TWX: 910-591-1696
Canoga Park (91304) Marshall Industries 8015 Deering Ave. (818) 999-5001 TWX: 910-494-4821
Chatsworth (91311) Hamllton/Avnet #48 9650 DeSoto Ave. (818) 700-6500 TWX: 910-321-3639
EI Segundo (90245)
Wyle DIStributIOn ~roup 451 E. 124th Avenue (303) 457-9953 TWX. 910-936-0770
Irvine (92714)
Wheatridge (80033)
Marshall Industries 17321 Murphy Ave. (714) 660-0951 TWX' 910-595-1969
Irvine (92714)
Wyle laboratorles-EMG 17872 Cowan Ave. (714) 863-9953 TWX. 910-595-1572
Milpitas (95035) Marshall Industries 336 los Caches (408) 943-4658 TWX: 910-339-9298
Ontario }91764)
Hamilton Avnet #49 3002 E. 'G' Street (714) 989-8309 twX 910-321-2806
Reseda (91335)
Jan Devices 6925 Canby, Bldg. 109 (213) 708-1100 TWX: 910-997-1130
Sacramento (95348) Hamilton/Avnet #35 4103 Northgate Blvd. (916) 920-3150
San Diego (921231 Hamilton/Avnet, #02 4545 Viewridge Ave. (619) 571-7510 TWX: 910-335-1216
San Diego (92123)
Chatsworth (91311)
Wyle Laboratories-EMG 9525 Chesapeake Drive (619) 565-9171 TWX: 910-335-1590
Costa Mesa (92626)
Wyle Distribution Group 3000 Bowers Avenue (408) 727-2500 tWX: 910-379-6480
Avnet Electronics # 71 20501 Plummer (818) 700-2600 Avnet ElectrOniCs 350 McCormick Ave. (714) 754-6111 TWX: 910-595-1928
Costa Mesa (92626)
Hamilton Electro Sales, #29 3170 Pullman Street (714) 641-4100 TWX: 910-595-2638
Culver City (90230)
Hamilton Electro Sales, #01 10912 W. Washington Blvd. (213) 558-2121 or (714) 522-8200 TWX: 910-340-6364
Thornton (802411
Wyle laboratorles-EMG 124 Maryland Street (213) 322-8100 TWX: 910-348-7140
Santa Clara (95052)
Sunnyvale (94086) Bell Industries 1161 No. Fairoaks Ave. (408) 734-8570 TWX. 910-339-9378
Sunnyvale (94086) Hamilton/Avnet #03 1175 Bordeaux Avenue (408) 743-3300 tWX: 910-339-9332
COLORADO Englewood (80111)
Bell Industries 8155 W. 48th Avenue (303) 424-1985 tWX' 910-938-0393
CONNECTICUT Danbury (06810) Hamilton/Avnet, #21 Commerce Drive Commerce Park (203) 797-2800 TWX: 710-456-9974
Milford (06460) Falcon Electronics 5 Higgins Drive (203) 878-5272 TWX: 710-462-8407
Wallingford (06492) Marshall Industries 20 Sterling Drive Barnes Industrial Park (203) 265-3822 TWX: 910-997-5197
FLORIDA Altamonte Springs (32701) Pioneer Electronics 221 North Lake Blvd. (305) 834-9090 tWX: 810-850-0177
Deerfield Beach (33444)
GEORGIA Norcross (30092)
Hamilton/ Avnet, # 15 5825 Peachtree Corners E-D (404) 447-7500 TWX: 810-766-0432
Norcross (30093) Marshall Industries 4364B Shakelford Road (404) 923-5750 TWX: 810-766-3969
Norcross (30093)
Pioneer Electronics 5835 "B" Peachtree Corner (404) 448-1711
ILLINOIS Bensenville (60106) Hamilton/Avnet, #10 1130 Thorndale Ave. (312) 860-7780 tWX: 910-227-0060
Elk Grove Village (60007) GBl/Goold Electronics 610 Bonnie lane (312) 593-3222
Elk Grove Village (60007) Pioneer/Chicago 1551 Carmen Orive (312) 437-9680 TWX: 910-222-1834
INDIANA Carmel (46032) HamiitonfAvnet, #28 485 Gradle Drive (317) 844-9333 TWX: 810-260-3966
Pioneer Electronics 674 S. Military Trail (305) 771-8377 twx: 510-955-9653
Indianapolis (46278)
Ft. Lauderdale (33309)
Indianapolis (46250)
Hamilton/ Avnet, # 17 6801 N.W. 15th Way (305) 971-2900 TWX: 510-956-3097
St. Petersburg (33702) Hamilton/Avnet, #25 3197 Tech Drive No. (813) 576-3930 TWX: 810-863-0374
Winter Park (32792) Hamilton/ Avnet 6947 UniverSity Blvd. (305) 628-3888 TWX: 810-853-0322
Winter Park (32789) Milgray Electronics 1850 lee Avenue (305) 647-5747
Hamilton/Avnet, #06 8765 E. Orchard Road Suite 708 (303) 740-1000 TWX: 910-931-0510
Siliconix
Marshall Industries 6990 Corporate Drive (317) 297-0483 Pioneer/Indiana 6408 Castleplace Drive (317) 849-7300 TWX: 810-260-1794
IOWA Cedar Rapids (52404) Hamilton/ Avnet 915 33rd Ave. SW (319) 362-4757
KANSAS Lenexa 166214)
Marshall ndustries 8321 Melrose Drive (913) 492-3121
Overland Park (66215) Hamilton/Avnet, #58 9219 Quivlra Road (913) 888-8900 TWX: 910-743-0005
8-3
u.s. MARYLAND Columbia (210451
Hamilton/Avnet, #i2 6822 Oak Hall Lane (30~ 995-3500 (MD) (301 621-5410 (DC) TW : 710-862-1861
GailhersburQ (20760) Pioneer/Washington 9100 Gaither Road (301) 921-0660 TWX: 710-828-0545
Gaithersburg (20760) Marshall Industries 16760 Oakmont Avenue (301) 840-9450 TWX: 710-828-9748
MASSACHUSETIS Burlington (01803) Milgray Electronics 79 Terrace Hall Avenue (617) 272-6800 tWX: 510-225-3673
Burlington (01803) Marshall Industries 1 Wilshire Road (617) 272-8200 TWX: 710-332-6359
Woburn (019601 Hamilton/ Avnet Efectronics 100 Centennial Drive (617j531-7430 (Sales) (617 532-3701 (Admin.)
MICHIGAN Grand Rapids (49508) Hamilton/Avnet, #67 2215 29th St. S.E. A5 (616) 243-8805
Livonia (48150)
Hamilton/ Avnet, #66 32487 Schoolcraft (313) 522-4700 TWX: 910-997-5193
Livonia (48150)
Pioneer/Michigan 13485 Stamford (313) 525-1800 tWX: 810-242-3271
MINNESOTA Minneapolis (55435) Industrial Components 5000 W. 78th St. (612) 831-2666 TWX: 910-576-3153
Minnetonka (55343) Hamilton/Avnet, #63 10300 Bren Road, East (612) 932-0600 TWX: 910-576-2720
Minnetonka (55343) PIOneer/Twin Cities 10203 Bren Road, East (612) 935-5444 TWX: 910-576-2738
Distributors (Cont'd)
MISSOURI Earth City (63045) Hamilton/Avnet, #05 13743 Shoreline ct. (314) 344-1200 tWX: 910-762-0606
SI. Louis (63146)
Franklin Electronics 11638 Page Service Drive (314) 993-5333
NEW HAMPSHIRE Manchester (03103)
Hamilton/ Avnet 444 E. Industrial Park Dr. (603) 624-9400
NEW JERSEY Cherry Hill (08003) Hamllton/Avnet, #14 One Keystone Avenue (609) 424-0100 TWX: 710-940-0262
Fairfield (07006) Hamilton/ Avnet, # 19 10 Industrial Road (201) 575-3390 TWX: 710-734-4388
Fairfield (07006)
Marshall Industries 101 Fairfield Road (201) 882-0320 TWX: 710-989-7052 Marshall Industries 102 Gaither Dr., Unit 2 (609) 234-91 00 (NJ~ (215) 627-1920 (PA TWX: 710-897-136
NEW MEXICO Albuquerque (87123) Bell Industries 11728 Linn N.E. (505) 292-2700 TWX. 910-989-0625
A!!!!!!;!!erq!!e (871 ~~) Hamilton/Avnet #22 2524 Baylor Drive S.E. (505) 765-1500 TWX: 910-989-0614
NEW YORK Buffalo (14202)
Commack (11720)
Falcon Electronics 2171 Jericho Turnpike (516) 462-6350
East Syracuse (13057) Hamilton/Avnet, #08 1600 Corporate Circle (315) 437-2642 TWX: 710-541-1560
Endwell (13760)
Pioneer/Oayton 4433 Interpoint Blvd. (513) 236-9900 TWX: 810-459-1622
Haup,pauge (11788)
Solon (44139)
Hamllton/Avnet, #20 933 Motor Pkwy. (516) 231-9800 tWX: 510-224-6166
Hauppauge (11787) Marshall Industries 275 Oser Avenue (516) 273-2424 TWX: 510-220-1139
Port Chester Zeus Components, Inc. 100 Midland Ave. (914) 937-7400 tWX: 710-567-1248
Rochesler (14623)
Hamilton/ Avnet, # 61 333 Metro Park (716) 475-9130 TWX: 510-253-5470
Rochester (14623) Marshall Industries 1260 Scottsville Road (716) 235-7620 tWX: 510-253-5526 Hamilton/Avnet, #j9 1065 Old Country Road (516) 997-6868 TWX: 510-221-0676
Woodbury (11797) Pioneer/Long Island 60 Crossways Park W. (516) 921-8700 TWX: 510-221-2184
NORTH CAROLINA Charlotte (28210) Ploneer/NC 9801-A Southern Pine Blvd. (704) 527-8188 TWX: 810-620-0366
Raleigh (27604)
Hamilton/Avnet, #24 3510 Spring Forrest Road (919) 878-0819 TWX: 510-928-1836
OHIO Cleveland (44105)
Summit Inc. 916 Main Street (716) 884-3450 TWX: 710-522-1692
Dayton (45424)
Milgray Electronics, Inc. 77 Schmitt Blvd. (516) 420-9800 TWX: 510-225-3671
Westbury (115901
MI. Laurel (08057)
Marshall Industries 10 Hooper Road (607) 754-1570 TWX: 510-252-0194
8-4
Farmingdale (11735)
Pioneer/Cleveland 4800 E. 131s1 Street (216) 587-3600 TWX: 810-422-2210
Dayton (45459)
Hamillon/Avnet, #64 954 Senate Drive (513) 433-0610 tWX: 810-439-6700
Dayton (45424) Marshall Industries 6212 Executive Blvd. (513) 236-8088 TWX: 810-459-1935
Marshall Industries 5905B Harper Rd. (216) 248-1788 TWX: 810-427-2701
Warrensville Heights (44128) liamilton/Avnet, #62 4588 Emery Industrial Pkwy (216) 831-3500 . tWX: 810-427-9452
Westerville (43081) Hamilton/ Avnet, # 79 777 Brooks Edge Blvd. (614) 882-7004
OKLAHOMA Tulsa (74129) Quality Components 9934 E. 21st Street S. (918) 664-8812
Tulsa (74129) Hamilton/ Avnet
OREGON Hillsboro (971231 Wyle Laboratories-EMG 5289 N.E. Elam Young Parkway Bldg. E-l00 (503) 640-6000 tWX: 910-460-2203
Lake Oswego (97034) Hamillon/Avnet, #27 6024 S.W. Jean Road Bldg. C., Suite 10 (503) 635-8836 TWX: 910-455-8179
PENNSYLVANIA Horsham (19044) Pioneer Electronics
2f:ii1
r,ihr~lt~r Rn~ti
(215) 674:400ij-TWX: 510-665-6778
Pittsburg (15222) Hamilton/ Avnet 2800 Liberty Avenue (412) 281-4150
Pittsburg (15238) Pioneer/Pittsburgh 259 Kappa Drive (412) 782-2300 TWX: 710-795-3122
TEXAS Addison (75001)
Quality Components 4257 Kellway Circle (214) 733-4300 TWX: 910-860-5459
Austin (78758) Hamilton/Avnet, #26 1807A W. Braker Lane (512) 837-8911 TWX: 910-874-1319
Austin (78758)
Wyle Distribution 2120-F W. Braker Lane (512) 834-9957 TLX: 834-0779
Siliconix
U.S. Distributors (Cont'd) Austin (78758)
Pioneer Electronics 9901 Burnet Road (512) 835-4000 TWX: 910-874-1323
Austin (78758) Quality Components 2427 Rutland Drive (512) 835-0220 TLl<: 324930
Dallas (75234) Pioneer Electronics 13710 Omega Road (214) 263-3168 TWX: 910-860-5563
Dallas (75240)
Zeus Components 14001 Goldmark (214) 783-7010
Houston (77063) Hamilton/Avnet, #11 8750 Westpark (713) 975-3500 TWX: 910-881-5523
Houston (77036)
UTAH Salt Lake City (84119)
Pioneer 5853 Point West Dnve
Irving (75062)
Hamilton/ Avnet, # 16 2111 W. Walnut Hill Lane (214) 659-4151 TWX: 910-860-5929
Richardson (75083) Wyle DistributIOn 1810 N. Greenville Ave. (214) 235-9953 TWX: 310-378-7663
Richardson (75081) Zeus Components 1800 N. Glenville (214) 783-7010 TWX: 910-867-9422
Sugarland (77478) Quality Components 1005 Industrial Blvd. At Bournewood (713) 240-2255 TWX: 910-880-4893
WISCONSIN Milwaukee (53214)
Hamilton/Avnet, #09 1585 West 2100 South (801) 972-2800 TWX. 910-925-4018
Marsh Electronics, Inc. 1563 South 101 st Street (414) 475-6000 TWX: 910-262-3321
Sail Lake City (84104)
New Berlin (53151)
Wyle Laboratones-EMG 1959 South 4130 West (801) 974-9953
WASHINGTON Bellevue (98005) Hamilton/Avnet, #07 14212 N.E. 21st Street (206) 453-5844 TWX: 910-443-2469
Bellevue (98005) Wyle Distribution Group 1750 132nd Avenue N.E. (206) 453-8300 TWX: 910-443-252G
Hamilton/ Avnet, # 57 2975 Moorland Road (414) 784-4510 TWX: 910-262-1182
CHIP DISTRIBUTOR FLORIDA Orlando (32807) Chip Supply, Inc. 1607 Forsyth Road (305) 275-3810 TWX: 810-850-0103
Orlando (32817) Chip Supply, Inc. 7725 N. Orange Blossom Trail (305) 298-7100
Siliconix
8-5
canadian Distributors BRITISH COLUMBIA Burnaby (V5G 4J7t
RAE Inaustrial Elec. td. 3455 Gardner Court (604) 291-8866 tWX: 610-929-3065 Tll(: 04-356533
ONTARIO Downsview (M3J 123) Future Electronics 82 51. Regis Crescent N. (416) 638-4771 tWX: 610-491-1470
8-6
Mississauga (L4V 1M5) Hamilton/Avnet, #59 6845 Redwood Drive (416) 677-7432 twx: 610-492-8867
Nepean CK2E 7L5)
ALBERTA Calgary CT2E 6Z2)
Hamilton/Avnet 2816 21st Street N.E. (403) 230-3586
Hamilton/Avnet, #60 2110 Colonade Road (613) 226-1700 tWX: 0534971
QUEBEC Pointe Claire (H9R 4C7) Future Elec. 237 Hymus Blvd. (514) 694-7710 TWX: 610-421-3251
SI. Laurent (H4S 1M2) Hamilton/Avnet, #65 2795 Rue Halpern (514) 335-1000 tWX: 610-421-3731
Ottawa (K2C 3P2) Future Elec. Baxter Centre 1050 Baxter Road (613) 820-8313
Siliconix
European Representatives/Distributors AUSTRIA Ing. Ernst Sieiner Hummelgasse 14 A-1130 Vienna TEL: 0222/827474/0 TLX 135026
BELGIUM J P. Lemaire S A. Av. Limburg Stlrum 243 B-1810 Wemmel TEL: (02) 460-05-60 TLX: 24610
DENMARK Dltz Schweitzer A.S Vallensbaekvej 41, Postboks 5 DK-2600 Glostrup TEL: (02) 45-30-44 TLX 33527
FINLAND Instrumentarium Electronics PO. Box 64 SF 02631 Espoo 63 TEL (358)-0-5281 TLX 124426 HAVUL SF FAX (358) 524-986
FRANCE Almex 48 Rue de l.'Aubeplne B.P. 102 92164 Antony Cedex TEL' (1) 4 666-21-12 TLX: 250067 Alrodls 40 Rue Villion 69008 Lyon TEL: (7) 800-87-12 TLX: 380636 Baltzinger Sari B.P. 183 67042 Strasbourg Cedex TEL (88) 331852 TLX: 870952F
I.T.T. Multicomposant 38 Avenue Henn Barbusse B P 124 9223 Bagneux Cedex TEL: (1) 4 664-16-10 TLX. 270763
GREECE
SCAIB 80 Rue d'Arcuell 94523 Rungls Cedex TEL: (1) 4 687-12-13 TLX: 204-674F
ITALY
GERMANY Ditronic GmbH Julius-Hoelder Str. 42 7000 Stuttgart 70 TEL: (0711) 720010 TLX 7255638 EBV Elektronik GmbH Dberweg 6 0-8025 Unterhaching TEL' 089-61105-1 TLX: 524535 EBV Elektronlk GmbH Alexanderstrasse 42 7000 Stuttgart 1 TEL (0711) 247481 TLX 722271 EBV Elektronik GmbH Dstrasse 129 4000 Dusseldorf TEL' (0211) 84846/7 TLX' 8587267 EBV Elektronrk GmbH Kiebltzrain 18 3006 Burgwedel l/Hannover TEL: (05139) 5038 TLX: 923694 EBV Elektromk GmbH Schenckstr 99 6000 Frankfurt M 90 TEL: (069) 785037 TLX: 413590
Composants S A. Avenue Gustave Elffel B P. 81 33605 Pes sac Cedex TEL: (56) 36-4040 TLX: 550696F
Ing. BUro Rainer Konig Konigsbergerstrasse 16A 1000 Berlin 45 TEL: 030-772-8009 TLX: 184-707
Composants S A. 55 Avenue LoUIS Broguet 31400 Toulouse TEL: (61) 20-82-38 TLX. 530957
Ing. BUro K.H Dreyer Albert Schweitzer-Ring 36 2000 Hamburg 70 TEL: (040J 669027 TLX: 216 484
Composants S.A 183 Route de Paris 86000 POltlers TEL' (49) 88-60-50 TLX: 591525
Ing. Buro K.H. Dreyer Flensburger Strasse 3 2380 SchleSWig TEL. (04621) 24055 TLX' 02-21334
Composants S.A. 57 Rue Manoir de Servlgne 21, Route de Lorient B.P. 3209 35013 Rennes Cedex TEL. (99) 54-01-53 TLX: 740311
Ultratronik GmbH Munchner Strasse 6 8031 Seefeld TEL: (08152) 7090 TLX. 05-26459
General Electronics Ltd 209 Thlvon Street Nikala, Plreaus GR-184-54 TEL: (1) 4904934 TLX: 212949 GELT GR Dott Ing. Giuseppe De Mico S.PA. 20060 Cassin a de Pecchl Via Vlttono Veneto 8 Milano TEL: (02) 9520551 TLX: 330869 FAX. (02) 9522227
NETHERLANDS Koning en Hartman Elektrotechniek BV 1 Energreweg 2627 AP Delft PO. Box 125 2600 AC Delft TEL: 15609906 TLX: 38250 FAX: 15619194
NORWAY A.S. Klell Bakke
~vre Raellngsvei 20
.0. Box 27 N-2001 Lrllesstr0m TEL: (02) 83-02-20 TLX: 19407 FAX: (02) 831455
PORTUGAL Telectra S A.R.L. Praceta Av Dr. Mario Moutinho, Lote 1258 1400 Lisboa TEL: (1) 616221 TLX: 12598
SPAIN Comerclal Espanola de Componentes S.A. Arzobispo Morcilio 24 Oflclna 5 Madnd 28029 TEL: (1) 733-7054/55 TLX. 47010 Redls Logar SA Lopez de Hoyos 78 DPDD, Madnd 28002 TEL. (1) 4113561 TLX 23967 FAX: (1) 4117423 Redis Logar SA Aragon 208-210 Barcelona 11 TEL: (3) 2549048
SWITZERLAND Abalec A.G Landstrasse 78 CH-8116 Wurenlos TEL: 01-730-0455 TLX: 59834
UNITED KINGDDM Abercorn Electromcs Ltd SUite 1A 17 Waterloo Place Edinburgh, Scotland EH1 3BG TEL. 031-557-4700 TLX: 727229 Barlec-Richfleld Ltd. Foundry Road, Horsham West Sussex RH13 5PX TEL: 0403-51881 TLX. 877222 Farnell Electromc Components Ltd Canal Road Leeds LS12 2TU TEL: 0532-636311 TLX' 55147 Hartech Ltd. 7 West Pallant Chichester West Sussex PO 191 TO TEL' 0243-773511 TLX: 86230 HB Electromcs Ltd. Lever Street Bolton BL3 6BS TEL: (0204) 386361 TLX: 63478 FAX: (0204) Macro-Marketing Ltd. Burnham Lane Slough, Berks TEL (06286) 4422 TLX: 847945 Semiconductor Specialists (UK) Ltd. Carroll House 159 High Street West Drayton Middlesex UB7 7XB TEL: (08954)445522/446415 TLX. 21958
YUGOSLAVIA Contact: Belram S.A. 83 Avenue des Mimosas 1150 Brussels, Belgium TEL: 734-33-32/734-26-19 TLX: 21790
SWEDEN Komponentbolaget NAXAB Box 4115 S-171-04 So Ina TEL. 08-985140 TLX: 17912 KDMP FAX: 08-7645451
Siliconix
8-7
Worldwide Sales Offices International Representatives/Distributors AUSTRALIA NSD Australia (A Division of HardieTrading Ltd.) 205 Middleborough Road Box Hill Victoria 3128 TEL: (03) 890-0970 TLX: M37857
BRAZIL Cosele Commerclo e Serviclos Electronicos Ltda. Rua da Consolacaco, 867 01310 Sao Paulo TEL: 255-1733 TLX: 1130869-CSEL-BR
HONG KONG Array Electronics Ltd. Rm 2001 B Nam Fung Centre 264-298 Castle Peak Road Tseun Wan NT TEL: 0-424131 TLX: 37200 Array HK CABLE: ARRAYEL Atek Electronics Co. Ltd. RM.1302ArgyleCentre,Phasel 688 Nathan Road Mongkok Kowloon TEL: 3-916333/4 TWX: 37119 ATEK HX Century Electronic Products Co. Unitllll,ll/F,CenturyCentre 44-46 Hung To Rd. Kwun Tong Kowloon, Hong Kong TEL: 3-420101/2 TLX: 51226 CEPCO HX CABLE: CENTURYEPC CSD Central Systems Design Ltd. (for Gate Array Products) Onit 507-508 5/F Citicorp Glr. 18 Whitefield Rd. Causeway Bay Hong Kong TEL: 5-701181 TLX: 73990 CSDHX CABLE: 9994 HK FAX: 5-701354 Gibb, Livingston & Co. Ltd. Sungib Industrial Centre 53 Wong Chuk Hang Rd. Aberdeen, Hong Kong TEL: 5-558331 TLX: HX73470 CABLE: GIBB HONG KONG
INDIA
LATIN AMERICA
Zenith Electronics 106, Millal Chambers Nariman Point Bombay 400021 TEL: 2029464 TLX: 2NTH Authorized U.S. Agent Fegu Electronics Inc. 2584 Wyandotte SI. Mtn. View, CA 94043 TEL: (415) 961-2380 TLX: 345599
ISRAEL Telsys Ltd. 12 Kehilat Venetsia SI. Tel Aviv TEL: (3) 494891 TLX: 032392 FAX: (3) 497407
INDONESIA Sinar Electnk Glodok Baru Blok C/120BB JL. Hayam Wuruk Jakarta-Barat Indonesia TEL: 623243 CABLE: LlONGKINYAMKO
Intectra Inc. 2629 Terminal Blvd. Mt. View, CA 94043 TEL: (415) 967-8818 TLX: 345545 Intectra MNTV CABLE: INTECTRA
MALAYSIA Carter Semiconductor (M) SON Berhad Jalan Lapangan Terbang, Ipon, Malaysia TEL: 514-033 TLX: MA44050
NEW ZEALAND S.T.C. (NZ) Ltd. P.O. Box 26064 10 Margot Street Epsom, Auckland 3 TEL: 500-019 TLX: NZ21888
PHILIPPINES Alexan Commercial 812 Elcano Street Binando Manila, Philippines TEL: 405-952 TLX: 27484 CEI PH
SINGAPORE
JAPAN Tomen Electronics Corporation 1-1 Uchisaiwai-Cho, 2-Chome Chiyoda-Ku, Tokyo 100 TEL: 81-3-506-3490 TLX: J-23548
KOREA A-Mee Trading Co., Ltd. Rm. 302 New Hanil Bldg. 156-1 Yumri-Dong Mapo-Ku Seoul TEL: 716-6883 TLX: 7176728
Carter Semiconductor (s) PTE Ltd. 07-03 Cuppage Centre 55 Cuppage Road Singapore 0922 R.O.S. TEL: 235-6653 TLX: 36443 CARSIN FAX: 7342449
SOUTH AFRICA Electrolink (PTY) Ltd. P.O. Box 1020 Capetown 8000 TEL: 215-350 Tlx, 527-7320
lAlWAN Don Business Corp. '6F, No. 33, Alley 24 Lane 251 Nanking East Road Sec. 5 Taipei, Taiwan TEL: 766-4515, 760-7801-3 TLX: 25641 DONBC CABLE: "DONBC" TAIPEI
THAILAND Choakchai Electronic Supplies 128/22 Rhanon Atsadang BanQkok 2 Thailand TEL: 221-0432 TLX: 84809 CESLP T-H CABLE: SAHAPI PHAT Dynamic Supply Engineering R.O.P. 12 Soi Psana I Ekami Sukhumvit 63 Bangkok 10110 Thailand TEL: 392-8532 TLX: 8245 DYNASUP CABLE: DYNASUPPLY
TURKEY TUrkelek Electronic Co. Ltd. Hatay Sokak No.8 Ankara TEL: (41) 18983 TLX: 42120
VENEZUELA P. Benavides S.R.L. Avilanas a Rio Edificio Rio Caribe, Local 9 Caracas TEL: 52-92-97 TLX: 21801 PBTH
Buseok Electronics Rm. 423 Ga Yul Gm Dong Sewoon Sang GA Bldg. No. 116-4 Jangsa-Dong Chong Ro Ku Seoul R.O. Korea TEL: 265-5891 TLX: K28742 KPTRDCO
Manufacturing Facilities lAlWAN Siliconix (Taiwan) Ltd Manlle Export Processing Zone Kaohsiung TEL: 3615101-4 TLX: 78571235
8-8
HONG KONG
UNITED KINGDOM
Siliconix \H.K.) Ltd. 5/6/7th Foors Liven House 61-63 King Yip Street Kwun Tong, Kowloon TEL: 3-427151 TLX: 4444951 LXHX
Siliconix Ltd. Morriston, Swansea SA66NE TEL: (0792) 74681 TLX: 48191 FAX: (0792) 798401
Silicanix
UNITED SlATES 2201 Laurelwood Road Santa Clara, CA 95054 TEL: (408) 988-8000 TLX: ~1 0-338-0227