6.002
CIRCUITS AND
ELECTRONICS
Introduction and Lumped Circuit Abstraction
6.002 Fall 2000
Lecture 1
1
ADMINISTRIVIA
Lecturer: Prof. Anant Agarwal Textbook: Agarwal and Lang (A&L)
Readings are important! Handout no. 3 Assignments —
Homework exercises Labs Quizzes Final exam
6.002 Fall 2000
Lecture 1
2
Two homework assignments can be missed (except HW11). Collaboration policy Homework You may collaborate with others, but do your own write-up. Lab You may work in a team of two, but do you own write-up. Info handout Reading for today —
Chapter 1 of the book
6.002 Fall 2000
Lecture 1
3
What is engineering? Purposeful use of science
What is 6.002 about? Gainful employment of Maxwell’s equations From electrons to digital gates and op-amps
6.002 Fall 2000
Lecture 1
4
Nature as observed in experiments V
3
6
9
12
…
I
0.1
0.2
0.3
0.4
…
6.002
Physics laws or “abstractions” Maxwell’s abstraction for Ohm’s tables of data V=RI Lumped circuit abstraction +– V C L R
M
S
Simple amplifier abstraction Operational amplifier abstraction abstraction
+ -
Filters Analog system components: Modulators, oscillators, RF amps, power supplies 6.061
Digital abstraction Combinational logic
f
Clocked digital abstraction Instruction set abstraction Pentium, MIPS 6.004 Programming languages Java, C++, Matlab 6.001 Software systems 6.033 Operating systems, Browsers
Mice, toasters, sonar, stereos, doom, space shuttle 6.455 6.170 5
6.002 Fall 2000 Lecture 1
Lumped Circuit Abstraction
Consider
The Big Jump from physics to EECS I
+
V
-
?
Suppose we wish to answer this question: What is the current through the bulb?
6.002 Fall 2000
Lecture 1
6
We could do it the Hard Way… Apply Maxwell’s Differential form ∂B Faraday’s ∇× E = − ∂t ∂ρ Continuity ∇ ⋅ J = − ∂t Others
ρ ∇⋅E = ε0
6.002 Fall 2000
Lecture 1
Integral form ∂φ B ∫ E ⋅ dl = − ∂t ∂q ∫ J ⋅ dS = − ∂t q E ⋅ dS = ∫
ε0
7
Instead, there is an Easy Way…
First, let us build some insight: Analogy F
a?
I ask you: What is the acceleration? You quickly ask me: What is the mass? I tell you:
m
F You respond: a = m Done !! !
6.002 Fall 2000
Lecture 1
8
Instead, there is an Easy Way…
First, let us build some insight: Analogy
F a? In doing so, you ignored the object’s shape its temperature its color point of force application Point-mass discretization
6.002 Fall 2000
Lecture 1
9
The Easy Way…
Consider the filament of the light bulb. A B We do not care about
how current flows inside the filament
its temperature, shape, orientation, etc.
Then, we can replace the bulb with a
discrete resistor
for the purpose of calculating the current.
6.002 Fall 2000
Lecture 1
10
The Easy Way…
A B Replace the bulb with a
discrete resistor
for the purpose of calculating the current. A + V –
I R
and
B
V I= R
In EE, we do things the easy way…
R represents the only property of interest! Like with point-mass: replace objects F with their mass m to find a = m
6.002 Fall 2000
Lecture 1
11
The Easy Way…
A + V –
I
R
and
B
I=
V
R
In EE, we do things the easy way…
R represents the only property of interest!
R relates element v and i
V
I= R
called element v-i relationship
6.002 Fall 2000
Lecture 1
12
R is a lumped element abstraction for the bulb.
6.002 Fall 2000
Lecture 1
13
R is a lumped element abstraction for the bulb. Not so fast, though … I A + S A
V B
–
SB
black box Although we will take the easy way using lumped abstractions for the rest of this course, we must make sure (at least the first time) that our abstraction is reasonable. In this case, ensuring that V I are defined for the element 6.002 Fall 2000
Lecture 1
14
A
+
I SA
V
V B
–
I
must be defined for the element
SB
black box
6.002 Fall 2000
Lecture 1
15
I
must be defined. True when
= I out of S B ∂q True only when = 0 in the filament! ∂t I into S A
∫ J ⋅ dS
SA
∫ J ⋅ dS
SB
∂q ∫ J ⋅ dS − ∫ J ⋅ dS = ∂t SA SB
from ell w x a M
IA
IB
∂q =0 I A = I B only if ∂t So let’s assume this
6.002 Fall 2000
Lecture 1
16
V
Must also be defined.
see A&L
So let’s assume this too
∂φ B =0 ∂t outside elements
VAB defined when
So
VAB = ∫AB E ⋅ dl
6.002 Fall 2000
Lecture 1
17
Lumped Matter Discipline (LMD) Or self imposed constraints:
More in Chapter 1 of A & L
∂φ B = 0 outside ∂t ∂q = 0 inside elements ∂t bulb, wire, battery
Lumped circuit abstraction applies when elements adhere to the lumped matter discipline.
6.002 Fall 2000
Lecture 1
18
Demo only for the sorts of questions we as EEs would like to ask!
Demo
6.002 Fall 2000
Lumped element examples whose behavior is completely captured by their V–I relationship.
Exploding resistor demo can’t predict that! Pickle demo can’t predict light, smell
Lecture 1
19
So, what does this buy us?
Replace the differential equations with simple algebra using lumped circuit abstraction (LCA). For example —
V + –
a b
R1 R2
R3
R4
d R5
c
What can we say about voltages in a loop under the lumped matter discipline?
6.002 Fall 2000
Lecture 1
20
What can we say about voltages in a loop under LMD?
a b
V + –
R1
R3
R4
d
R2
R5
c ∂φ B under DMD ∫ E ⋅ dl = − ∂t 0 ∫ E ⋅ dl + ∫ E ⋅ dl + ∫ E ⋅ dl = 0
ca
ab
bc
+ Vca + Vab + Vbc
= 0
Kirchhoff’s Voltage Law (KVL): The sum of the voltages in a loop is 0. 6.002 Fall 2000
Lecture 1
21
What can we say about currents?
Consider
I ca
S a
I da I ba
6.002 Fall 2000
Lecture 1
22
What can we say about currents?
I ca
S a
I da I ba
∂q ∫S J ⋅ dS = − ∂t
under LMD 0
I ca + I da + I ba = 0 Kirchhoff’s Current Law (KCL): The sum of the currents into a node is 0. simply conservation of charge
6.002 Fall 2000
Lecture 1
23
KVL and KCL Summary
KVL:
∑ jν j = 0 loop
KCL:
∑jij = 0 node
6.002 Fall 2000
Lecture 1
24
6.002
CIRCUITS AND
ELECTRONICS
Amplifiers -Small Signal Model
6.002 Fall 2000
Lecture 10
1
Review
MOSFET amp VS RL
vO vI
iDS
Saturation discipline — operate MOSFET only in saturation region
Large signal analysis 1. Find vO vs vI under saturation discipline.
2. Valid vI , vO ranges under saturation discipline.
Reading: Small signal model -- Chapter 8
6.002 Fall 2000
Lecture 10
2
Large Signal Review 1
vO vs vI K (vI −1)2 RL
2
valid for vI ≥ VT and vO ≥ vI – VT K 2 (same as iDS ≤ vO ) 2
vO = VS −
6.002 Fall 2000
Lecture 10
3
Large Signal Review
2
Valid operating ranges
V S
v O
5V
corresponding interesting region for vO
vO > vI −VT
vO = vI −VT vO < vI −VT
1V
vI
VT
1V
2V
“interesting” region for vI . Saturation discipline satisfied.
6.002 Fall 2000
Lecture 10
4
But… VS 5V
vO
vO = vI −VT
vO 1V
vI VT
1V
Demo
vI
2V
Amplifies alright, but distorts
vI
vO
t
Amp is nonlinear … / 6.002 Fall 2000
Lecture 10
5
Small Signal Model vO
~ 5V VS
Focus on this line segment
(VI , VO )
~ 1V vI
VT 1V
~ 2V 2 K (vI − VT ) vO = VS − RL 2 Amp all right, but nonlinear! Hmmm … So what about our linear amplifier ???
Insight: But, observe vI vs vO about some point (VI , VO) … looks quite linear ! 6.002 Fall 2000
Lecture 10
6
Trick ∆vO
vo VO
vi
(VI ,VO )
looks linear
VI ∆vI
Operate amp at VI , VO Æ DC “bias” (good choice: midpoint of input operating range)
Superimpose small signal on top of VI
Response to small signal seems to be approximately linear
6.002 Fall 2000
Lecture 10
7
Trick ∆vO
vo VO
vi
(VI ,VO )
looks linear
VI ∆vI
Operate amp at VI , VO Æ DC “bias” (good choice: midpoint of input operating range)
Superimpose small signal on top of VI Response to small signal seems to be approximately linear Let’s look at this in more detail — I graphically II mathematically III from a circuit viewpoint 6.002 Fall 2000
Lecture 10
next week 8
I Graphically
We use a DC bias VI to “boost” interesting input signal above VT, and in fact, well above VT .
VS RL
interesting input signal
∆vI + – VI + –
vO
Offset voltage or bias
6.002 Fall 2000
Lecture 10
9
Graphically
VS RL
interesting input signal
vO
∆vI + – VI + –
VS
vO
operating point
VO
0
VI , VO
VT
Good choice for operating point:
midpoint of input operating range
6.002 Fall 2000
vO = vI −VT
vI
Lecture 10
VI
10
Small Signal Model
aka incremental model aka linearized model
Notation — Input:
vI = VI + vi
total DC small variable bias signal (like ∆vI) bias voltage aka operating point voltage Output: vO = VO + vo Graphically, vI
vO
vi
vo
VI
VO
0
6.002 Fall 2000
t
0
Lecture 10
t
11
II Mathematically
(… watch my fingers)
RL K 2 vO = VS − (vI −VT ) VO = VS − RL K (VI −VT )2
2
2
substituting vI = VI + vi vi << VI
RL K vO = VS − 2
( [VI + vi ] − vT )2
RL K 2
( [VI −VT ] + vi )2
= VS −
(
RL K [VI −VT ]2 + 2 [VI − vT ]vi + vi 2 = VS − 2
RL K VO + vo = VS − (VI − VT )2 − RL K (VI −VT ) vi
2 From ,
)
vo = −RL K (VI −VT ) vi
gm
6.002 Fall 2000
related to
Lecture 10
VI
12
Mathematically vo = −RL K (VI −VT ) vi
gm
related to
VI
vo = −g m RL vi
For a given DC operating point voltage VI,
VI – VT is constant. So,
vo = − A vi
constant w.r.t. vi
In other words, our circuit behaves like a linear amplifier for small signals
6.002 Fall 2000
Lecture 10
13
Another way RL K vO = VS − (vI −VT )2
2
(
)
R K
2 L v −V VS − I T 2 d vo = dv I
⋅ vi
v = V
I I
slope at VI
vo = −RL K (VI −VT ) ⋅ vi
g m = K (VI −VT ) A = −g m RL
amp gain
Also, see Figure 8.9 in the course notes for a graphical interpretation of this result 6.002 Fall 2000
Lecture 10
14
More next lecture … Demo
iDS load line
input signal response operating point VI
VO
vO
How to choose the bias point: 1. Gain component g m ∝ VI 2. vi gets big Æ distortion. So bias carefully 3. Input valid operating range. Bias at midpoint of input operating range for maximum swing. 6.002 Fall 2000
Lecture 10
15
6.002
CIRCUITS AND ELECTRONICS
Small Signal Circuits
6.002 Fall 2000
Lecture 11
1
Review:
Small signal notation vA = VA + va total operating point
small signal
vOUT = f (vI ) d f (vI ) ⋅ vi vout = dv I v I =VI VS
vI = VI + vi vi VI
RL
vO = VO + vo
+ – + –
6.002 Fall 2000
Lecture 11
2
Review: I Graphical view (using transfer function)
vO behaves linear for small perturbations
vI
6.002 Fall 2000
Lecture 11
3
Review: II Mathematical view
K (vI − VT ) vO = VS − RL 2 2
V − K (v − V )2 R T L d S 2 I vo = dv I
⋅ vi v I =VI
vo = − K (VI − VT ) RL ⋅ vi gm
6.002 Fall 2000
related to VI constant for fixed DC bias
Lecture 11
4
How to choose the bias point, using yet another graphical view based on the load line i DS
i DS <
Demo
K 2 vO 2
V S vO i = load line DS R − R L L
input signal response VI
VO
− 1 + 1 + 2 KR LV S v I = VT + KR L
vO v I = VT
Choosing a bias point: 1. Gain
g m RL ∝ VI
2. Input valid operating range for amp. 3. Bias to select gain and input swing. 6.002 Fall 2000
Lecture 11
5
III The Small Signal Circuit View We can derive small circuit equivalent models for our devices, and thereby conduct small signal analysis directly on circuits e.g. large signal circuit model for amp
vI + –
R
VS
vOUT K 2 iD = (vI − VT ) 2
+ – 1
We can replace large signal models with small signal circuit models. Foundations: Section 8.2.1 and also in the last slide in this lecture.
6.002 Fall 2000
Lecture 11
6
Small Signal Circuit Analysis 1
Find operating point using DC bias inputs using large signal model.
2
Develop small signal (linearized) models for elements.
3
Replace original elements with small signal models.
Analyze resulting linearized circuit… Key: Can use superposition and other linear circuit tools with linearized circuit!
6.002 Fall 2000
Lecture 11
7
Small Signal Models A
MOSFET
large signal
vGS
Small signal?
6.002 Fall 2000
D iDS =
K (vGS − VT )2 2
S
Lecture 11
8
Small Signal Models A
MOSFET
large signal
D
vGS
iDS =
Small signal: K 2 iDS = (vGS − VT ) 2
∂ ids = ∂vGS
K (vGS − VT )2 2
S
K (v − V )2 ⋅ v gs T 2 GS vGS =VGS
ids = K (VGS − VT ) ⋅ v gs
ids is linear in vgs !
gm small signal
v gs
D ids = K (VGS − VT ) v gs S
6.002 Fall 2000
ids = g m v gs
Lecture 11
9
B
DC Supply VS
large signal
iS + vS = VS –
Small signal
∂VS vs = ∂iS is + vs –
6.002 Fall 2000
vS = VS
⋅ is iS = I S
vs = 0 DC source behaves as short to small signals.
Lecture 11
10
C
Similarly, R
large signal
iR + vR R –
v R = R iR
vr =
∂ ( RiR ) ⋅ ir ∂iR iR = I R
vr = R ⋅ ir
small signal
6.002 Fall 2000
ir + vr R –
Lecture 11
11
Amplifier example: Large signal RL vO
+ v – I
iDS
Small signal
+ vi –
iDS
K 2 = (vI − VT ) 2
vO = VS −
RL vo
+ V – S
ids
ids = K (VI − VT ) ⋅ vi
K (vI − VT )2 RL 2
ids RL + vo = 0 vo = −ids RL vo = − K (VI − VT )RL ⋅ vi = − g m RL ⋅ vi
Notice, first we need to find operating point voltages/currents. Get these from a large signal analysis. 6.002 Fall 2000
Lecture 11
12
III The Small Signal Circuit View
To find the relationship between the small signal parameters of a circuit, we can replace large signal device models with corresponding small signal device models, and then analyze the resulting small signal circuit.
Foundations: (Also see section 8.2.1 of A&L) KVL, KCL applied to some circuit C yields:
" + v A + " + vOUT + " + vB + "
1
Replace total variables with operating point variables plus small signal variables
" + VA + v a " + VOUT + vout + VB + vb + " Operating point variables themselves satisfy the same KVL, KCL equations
" + VA
" + VOUT
+ VB
+"
so, we can cancel them out Leaving
"
+ va "
+ vout
+ vb + "
2
But 2 is the same equation as 1 with small signal variables replacing total variables, so 2 must reflect same topology as in C, except that small signal models are used. Since small signal models are linear, our linear tools will now apply…
6.002 Fall 2000
Lecture 11
13
6.002
CIRCUITS AND ELECTRONICS
Capacitors and First-Order Systems
6.002 Fall 2000
Lecture 12
1
Motivation Demo
5V
5V
B
C
A
5V 0V
5 A 0 5
Expect this, right? But observe this!
B 0 5
Expected Observed
C 0 Delay! 6.002 Fall 2000
Lecture 12
Reading: Chapters 9 & 10 2
The Capacitor D n-channel MOSFET symbol
G S drain gate
m+ e+ t + a+ l + +
n
o x i d e
source
s i l n-channel p i MOSFET n-channel c o n n D G CGS
6.002 Fall 2000
S
Lecture 12
3
Ideal Linear Capacitor + + A ++++ -----
E
d EA d obeys DMD! total charge on capacitor = +q − q = 0 C=
i C
q
+ v –
q = C v coulombs farads volts
6.002 Fall 2000
Lecture 12
4
Ideal Linear Capacitor i q
C
q = C v
+ v –
dq i= dt d (Cv ) = dt dv =C dt E = 1 Cv 2 2
A capacitor is an energy storage device Æ memory device Æ history matters! 6.002 Fall 2000
Lecture 12
5
Analyzing an RC circuit Thévenin Equivalent:
vI (t ) + –
R
C
+ vC (t ) –
Apply node method: vC − vI dvC +C =0 R dt dvC RC + vC = vI dt
t ≥ t0
vC (t0 ) given
units of time 6.002 Fall 2000
Lecture 12
6
Let’s do an example: +
v I (t )
R
+ –
C
vC (t ) –
vI (t ) = VI
vC (0 ) = V0 given
dvC RC + vC = VI dt
6.002 Fall 2000
Lecture 12
X
7
Example… vI (t ) = VI
vC (0 ) = V0 given dvC RC + vC = VI dt
X
vC (t ) = vCH (t ) + vCP (t ) total homogeneous
particular
Method of homogeneous and particular solutions: 1
Find the particular solution.
2 Find the homogeneous solution. 3 The total solution is the sum of the particular and homogeneous solutions. Use the initial conditions to solve for the remaining constants. 6.002 Fall 2000
Lecture 12
8
1 Particular solution
dvCP + vCP = VI dt
RC
vCP = VI RC
works
dVI + VI = VI dt
0 In general, use trial and error.
vCP : any solution that satisfies the original equation X
6.002 Fall 2000
Lecture 12
9
2 Homogeneous solution
dvCH RC + vCH = 0 dt
Y
vCH : solution to the homogeneous equation Y (set drive to zero) vCH = A e st
assume solution of this form. A,
s?
dA e st RC + A e st = 0 dt R CA s e st + A e st = 0
Discard trivial A = 0 solution, Characteristic equation
R C s +1 = 0 s= − or
1 RC
vCH = Ae
6.002 Fall 2000
−t RC
RC called time constant
Lecture 12
τ
10
3 Total solution
vC = vCP + vCH vC = VI + A e
−t RC
Find remaining unknown from initial conditions: at t = 0
Given,
vC = V0
so,
V0 = VI + A
or
A = V0 − VI
thus
vC = VI + (V0 − VI ) e
also
6.002 Fall 2000
iC = C
−t RC
dvC (V − VI ) =− 0 e R dt
Lecture 12
−t RC
11
vC = VI + (V0 − VI ) e
−t RC
vC VI
V0 0
t
RC
6.002 Fall 2000
Lecture 12
12
Examples vC
vC
5V
5V
5 + 5e
−t RC
5e
t
0V VO = 0V VI = 5V
5 0
−t RC
t
0V VO = 5V VI = 0V
5 0
τ = RC
Remember B demo
6.002 Fall 2000
Lecture 12
13
6.002
CIRCUITS AND ELECTRONICS
Digital Circuit
6.002 Fall 2000
Lecture
13
1
Review vI
R
vI + –
VI
+ vC –
C
t
0
vC (0 ) = VO vC = VI + (VO − VI ) e
−t RC
1
vC VI
VO RC
6.002 Fall 2000
time constant RC t
Lecture
13
2
Let’s apply the result to an inverter. B
A X
First, rising delay tr at B
VS
VS
A vA 5V
0 1 Æ 0 at A
6.002 Fall 2000
B CGS
X t
Lecture
13
3
First, rising delay tr at B VS
A
VS
B vA 5V
CGS
X
0 1 Æ 0 at A
t
vB
5V
ideal observed
t
0
6.002 Fall 2000
Lecture
13
4
First, rising delay tr at B VS
A vA 5V
VS
B CGS
X
0 1 Æ 0 at A
t 5V VOH
rising delay of X
6.002 Fall 2000
Lecture
vB
0
tr
13
t
5
Equivalent circuit for 0Æ1 at B
vI = VS
RL
+ –
vI = VS vB (0 ) = 0
From
CGS
+ vB –
for t ≥ 0
1 vB = VS + (0 − VS ) e
−t RL CGS
Now, we need to find t for which vB = VOH .
6.002 Fall 2000
Lecture
13
6
Or vOH = VS − VS e
Find tr : VS e
−t r RL CGS
−t RL CGS
= VS − VOH
VS − VOH − tr = ln RL CGS VS
VS − VOH t r = − RL CGS ln VS
6.002 Fall 2000
Lecture
13
7
Or vOH = VS − VS e
Find tr : VS e
−t r RL CGS
−t RL CGS
= VS − VOH
VS − VOH − tr = ln RLCGS VS VS − VOH t r = − RL CGS ln VS e.g.
RL = 1K
VS = 5V
CGS = 0.1 pF
VOH = 4V
t r = −1 × 10 × 0.1 × 10 3
= 0.16 ns
−12
5−4 ln 5
RC = 0.1 ns ! 6.002 Fall 2000
Lecture
13
8
Falling Delay tf Falling delay tf is the t for which vB falls to VOL
Equivalent circuit for 1 Æ 0 at B vB (0 ) = VS (5V )
RL
VS + –
CGS
RON
+ vB –
X
6.002 Fall 2000
Lecture
13
9
Falling Delay tf
Equivalent circuit for 1 Æ 0 at B vB (0 ) = VS (5V )
RL
VS + – RON
CGS
+ vB –
CGS
+ vB –
X Thévenin replacement … RTH
VTH + –
RTH = RL || RON VTH 6.002 Fall 2000
RON = VS RON + RL Lecture
13
10
From
1 vB = VTH + (VS − VTH ) e
−t RTH CGS
Falling decay tf is the t for which vB falls to VOL −t f
VOL = VTH + (VS − VTH ) e RTH CGS or
VOL − VTH t f = − RTH CGS ln VS − VTH
6.002 Fall 2000
Lecture
13
11
t f = − RTH CGS ln
e.g.
RL = 1K
VS = 5V
CGS = 0.1 pF RTH ≈ 10Ω,
VOL − VTH VS − VTH RON = 10Ω
VOL = 1V
VTH ≈ 0V
t f = −10 ⋅ 0.1 ⋅10 = 1.6 ps
−12
1 ln 5
RC = 1 ps !
6.002 Fall 2000
Lecture
13
12
For recitation: Slow may be better
Problem
chip
pin 2 pin 1
v CL
v:
ideal
observed
slow!
So the engineers decided to speed it up…
RL RON
6.002 Fall 2000
made RL small made RON small
Lecture
13
13
For recitation: Slow may be better
Problem
chip
pin 2 pin 1
v CL
v:
ideal
…
observed
slow!
but, disaster!
v:
observed expected
6.002 Fall 2000
VIL
Lecture
13
14
Why? Consider Case
1
…
Demo
R1
pin1
R0 ok
6.002 Fall 2000
Lecture
13
15
Why? Consider Case 2
…
Demo
CP
R1
pin1
pin2
R0
R2
crosstalk! CP
R model for crosstalk:
+ v
+ –
–
6.002 Fall 2000
Lecture
13
16
Case 3
…
6.002 expert saw the solution R1
CP
R0
R2
+ –
slower transitions!
Detailed analysis in recitation.
6.002 Fall 2000
Lecture
13
17
6.002
CIRCUITS AND ELECTRONICS
State and Memory
6.002 Fall 2000
Lecture 14
1
Review Recall
vI + – v I = VI
for
R
C
+ vC – vC (0 )
t ≥0 −t
vC = VI + (vC (0)− VI ) e RC
1
Reading: Sections 10.3, 10.5, and 10.7
6.002 Fall 2000
Lecture 14
2
This lecture will dwell on the memory property of capacitors. For the RC circuit in the previous slide
vI
VI
t ≥0
vI
t
0
vC VI −t
vC = VI + (vC (0)− VI ) e RC
vC (0 ) 0
t
Notice that the capacitor voltage for t ≥ 0 is independent of the form of the input voltage before t = 0 . Instead, it depends only on the capacitor voltage at t = 0 , and the input voltage for t ≥ 0 .
6.002 Fall 2000
Lecture 14
3
State State : summary of past inputs relevant to predicting the future
q=CV for linear capacitors, capacitor voltage V is also state variable state variable, actually
6.002 Fall 2000
Lecture 14
4
State Back to our simple RC circuit 1
vC = f (vC (0 ), vI (t )) vC = VI + (vC (0 ) − VI ) e
−t RC
Summarizes the past input relevant to predicting future behavior
6.002 Fall 2000
Lecture 14
5
State
We are often interested in circuit response for zero state vC (0) = 0 zero input
vI (t) = 0
Correspondingly, zero state response or ZSR vC = VI − VI e
−t RC
2
zero input response or ZIR vC = vC (0 ) e
6.002 Fall 2000
−t RC
Lecture 14
3
6
One application of STATE
DIGITAL MEMORY Why memory? Or, why is combinational logic insufficient?
Examples Consider adding 6 numbers on your calculator 2+9+6+5+3+8 M+ “Remembering” transient inputs
6.002 Fall 2000
Lecture 14
7
Memory Abstraction A 1-bit memory element
d IN store M d OUT
The 6.004 view
The NEC View
$
¥
☺
Remembers input when store goes high. Like a camera that records input (dIN) when the user presses the shutter release button. The recorded value is visible at dOUT .
d IN store d OUT 6.002 Fall 2000
remembers the 1 Lecture 14
8
Building a memory element … A First attempt
dIN
*
dOUT C
storage node
store
6.002 Fall 2000
Lecture 14
9
Building a memory element … A
vC d OUT
dIN
*
store = 1
C vC d OUT
dIN
*
store = 0
C vC
Stored value leaks away
vC = 5 ⋅ e
−t RL C
T = − RLC ln
VOH 5
RL
5V VOH
from 2
T
t
store pulse width >> RON C 6.002 Fall 2000
Lecture 14
10
Building a memory element … B Second attempt
dIN
buffer
dOUT
* C
RIN
buffer
store Input resistance RIN VOH T = − RIN C ln 5 RIN >> RL Better, but still not perfect.
Demo
6.002 Fall 2000
Lecture 14
11
Building a memory element … C Third attempt
buffer + refresh
store dIN
dOUT
* store
C Does this work?
No. External value can influence storage node.
6.002 Fall 2000
Lecture 14
12
Building a memory element … D Fourth attempt
buffer + decoupled refresh
store dIN
dOUT
* store
C Works!
6.002 Fall 2000
Lecture 14
13
A Memory Array 4-bit memory
Decoder 00
01
10
11
OUT
A
d IN S M d OUT
B
d IN S M d OUT
A
C
d IN S M d OUT
B
D
d IN S M d OUT
C
a0 a1
2 Address
IN
store Address
IN store D
6.002 Fall 2000
Lecture 14
OUT
14
Truth table for decoder
a0 0 0 1 1
a1 0 1 0 1
6.002 Fall 2000
A 1 0 0 0
B 0 1 0 0
Lecture 14
C 0 0 1 0
D 0 0 0 1
15
Agarwal’s top 10 list on memory 10 9 8 7 6 5
I have no recollection, Senator. I forgot the homework was due today. Adlibbing ≡ ZSR I think, therefore I am. I think that was right. I forgot the rest …
6.002 Fall 2000
Lecture 14
16
6.002
CIRCUITS AND ELECTRONICS
Second-Order Systems
6.002 Fall 2000
Lecture
15
1
Second-Order Systems 5V
5V
Demo 2KΩ
50Ω
2KΩ
S
A + –
C
B large loop
CGS
Our old friend, the inverter, driving another. The parasitic inductance of the wire and the gate-to-source capacitance of the MOSFET are shown
[Review complex algebra appendix for next class] 6.002 Fall 2000
Lecture
15
2
Second-Order Systems 5V
5V
Demo
50Ω
2KΩ
2KΩ
S
C A + –
Relevant circuit:
B large loop
2KΩ
CGS
L
5V + –
6.002 Fall 2000
B CGS
Lecture
15
3
Observed Output
2kΩ
5 vA 0
vB 0
t
2kΩ
t
vC 0
t
Now, let’s try to speed up our inverter by closing the switch S to lower the effective resistance 6.002 Fall 2000
Lecture
15
4
Observed Output
~50Ω
5 vA 0
t
vB 0
50Ω
t
vC 0
t Huh!
6.002 Fall 2000
Lecture
15
5
First, let’s analyze the LC network
vI (t )
i (t )
L
+ –
C
+ v(t ) –
Node method:
i (t ) = C
dv dt
Recall
vI − v = L
t
dv 1 (vI − v) dt = C ∫ L −∞ dt
1 (v I − v ) L
di dt
1 t (vI − v) dt = i ∫ L −∞
d 2v =C 2 dt
d 2v LC 2 + v = vI dt time2 6.002 Fall 2000
v, i state variables Lecture
15
6
Solving Recall, the method of homogeneous and particular solutions: 1
Find the particular solution.
2
Find the homogeneous solution. L 4 steps
3
The total solution is the sum of the particular and homogeneous. Use initial conditions to solve for the remaining constants.
v = vP (t ) + vH (t )
6.002 Fall 2000
Lecture
15
7
Let’s solve d 2v LC 2 + v = vI dt For input
V0
vI
t
0 And for initial conditions v(0) = 0 i(0) = 0 [ZSR]
6.002 Fall 2000
Lecture
15
8
1
Particular solution
d 2 vP LC 2 + vP = V0 dt is a solution.
vP = V0
6.002 Fall 2000
Lecture
15
9
2
Homogeneous solution Solution to
d 2 vH LC 2 + vH = 0 dt
Recall, vH :
solution to homogeneous equation (drive set to zero)
Four-step method:
A Assume solution of the form* vH = Ae st , A, s = ? so,
LCAs 2 e st + Ae st = 0 1 s =− LC
B
characteristic equation
2
1 s=±j LC C Roots
j = −1
ωo =
s = ± jω o
1 LC
General solution,
D
vH = A1e jωot + A2 e − jωot
6.002 Fall 2000
Lecture
Differential equations are commonly solved by guessing solutions
*
15
10
3
Total solution v(t ) = vP (t ) + vH (t )
v( t ) = V0 + A1e jωot + A2 e − jωot Find unknowns from initial conditions. v(0) = 0 0 = V0 + A1 + A2 i ( 0) = 0 dv i (t ) = C dt
i( t ) = CA1 jωo e jωot − CA2 jωo e − jωot so,
0 = CA1 jωo − CA2 jωo
or,
A1 = A2
− V0 = 2 A V0 A1 = − 2 so,
V0 jωot v( t ) = V0 − (e + e − jωot ) 2
6.002 Fall 2000
Lecture
15
11
3
Total solution
Remember Euler relation e jx = cos x + j sin x
(verify using Taylor’s expansion)
e jx + e − jx = cos x 2 so,
v( t ) = V0 − V0 cos ωot
where
i( t ) = CV0ωo sin ωot
1 ωo = LC
The output looks sinusoidal
6.002 Fall 2000
Lecture
15
12
v(t )
Plotting the Total Solution
2V0
V0
0
π
π
3π 2
2 CV0ωo
0
2π
ωo t
i (t )
π
π
2
3π 2
2π
ωo t
− CV0ωo 6.002 Fall 2000
Lecture
15
13
Summary of Method 1
Write DE for circuit by applying node method.
2
Find particular solution vP by guessing and trial & error.
3
Find homogeneous solution vH A Assume solution of the form Aest . B Obtain characteristic equation. C Solve characteristic equation for roots si . D Form vH by summing Ai esit terms.
4
Total solution is vP + vH , solve for remaining constants using initial conditions.
6.002 Fall 2000
Lecture
15
14
Example What if we have:
L
iC
+ C vC –
vC (0) = V iC (0) = 0
We can obtain the answer directly from the homogeneous solution (V0 = 0).
6.002 Fall 2000
Lecture
15
15
Example iC
L
+ C vC –
vC (0) = V iC (0) = 0
We can obtain the answer directly from the homogeneous solution (V0 = 0).
vC ( t ) = A1e jωot + A2 e − jωot vC (0) = V
V = A1 + A2
iC (0) = 0
0 = CA1 jωo − CA2 jωo or A1 = A2 = or
vC =
V 2
V jω o t ( e + e − jω o t ) 2
vC = V cos ωot iC = −CV ωo sin ωot 6.002 Fall 2000
Lecture
15
16
Example vC
V
2π
ωo t
CVωo iC 2π
ωo t
− CVωo
6.002 Fall 2000
Lecture
15
17
Energy EC C:
1 CV 2 2
1 2 CvC 2
2π
ωo t
EL
1 2 L : LiC 2
1 CV 2 2 2π
Notice
ωo t
1 1 1 2 2 CvC + LiC = CV 2 2 2 2
Total energy in the system is a constant, but it sloshes back and forth between the Capacitor and the inductor
6.002 Fall 2000
Lecture
15
18
RLC Circuits R
L
vI (t ) + –
i (t ) C
+ v(t ) –
v(t ) no R add R
t Damped sinusoids with R – remember demo!
See A&L Section 12.2 6.002 Fall 2000
Lecture
15
19
6.002
CIRCUITS AND
ELECTRONICS
Sinusoidal Steady State
6.002 Fall 2000
Lecture
16
1
Review
We now understand the why of: 5V
v
R L C
Today, look at response of networks to sinusoidal drive. Sinusoids important because signals can be represented as a sum of sinusoids. Response to sinusoids of various frequencies -- aka frequency response -- tells us a lot about the system
6.002 Fall 2000
Lecture
16
2
Motivation
For motivation, consider our old friend, the amplifier: V S
+ –
vi VBIAS
+ –
vO
vC
R
Demo
CGS
Observe vo amplitude as the frequency of the input vi changes. Notice it decreases with frequency. Also observe vo shift as frequency changes (phase). Need to study behavior of networks for sinusoidal drive. 6.002 Fall 2000
Lecture
16
3
Sinusoidal Response of RC Network
Example:
vI + –
iC
R
vI (t ) = Vi cos ω t =0 vC (0) = 0
+ vC –
for t ≥ 0 (Vi real) for t < 0 for t = 0
vI t
0
6.002 Fall 2000
Lecture
16
4
Our Approach Example:
vI + –
iC
+
vC
–
R
Effort
Determine vC(t)
agony
Usual approach
sneaky approach very sneaky
t
Th is
lec tu re 11 : 0
0 11 : 2 0
1 2 N :0 ex 0 t
le ct ur e
easy
!
e m e g l u d In
6.002 Fall 2000
Lecture
16
5
Let’s use the usual approach…
1
Set up DE.
2
Find vp.
3
Find vH.
4
vC = vP + vH,
6.002 Fall 2000
solve for unknowns using initial conditions
Lecture
16
6
Usual approach…
1
Set up DE
RC
dvC + vC = vI dt = Vi cos ω t
That was easy!
6.002 Fall 2000
Lecture
16
7
2
Find vp dvP + vP = Vi cos ωt RC dt
First try:
Æ nope
vP = A
Second try:
vP = A cos ωt
Third try:
vP = A cos(ωt + φ ) frequency amplitude phase
Æ nope
− RCAω sin(ωt + φ ) + A cos(ωt + φ ) = Vi cos ωt − RCAω sin ωt cos φ − RCAω cos ωt sin φ + A cos ωt cos φ − A sin ωt sin φ = Vi cos ωt
.. .
gasp !
works, but trig nightmare!
6.002 Fall 2000
Lecture
16
8
Let’s get sneaky! Find particular solution to another input…
dvPS + vPS = vIS RC dt = Vi e st st v = V e Try solution PS p RC
dV p e st
(S: sneaky :-))
+ V p e st = Vi e st
dt sRCV p e st + V p e st = Vi e st
Nice property of exponentials
( sRC + 1 )V p = Vi Vi Vp = 1 + sRC Vi ⋅ e st 1 + sRC is particular solution to Vi e st Thus, vPS =
ly
Vi ⋅ e jω t 1 + jωRC
jω t V e solution for i where we replace s = jω
complex amplitude
Vp 6.002 Fall 2000
easy!
Lecture
16
9
2
Fourth try to find vP… using the sneaky approach
Fact 1: Finding the response to Vi e jω t was easy. Fact 2: vI = Vi cos ωt
= real[Vi e jω t ] = real[vIS ]
from Euler relation, e jω t = cos ωt + j sin ωt
real part
vI response vP
vIS response vPS
real part
an inverse superposition argument, assuming system is real, linear. 6.002 Fall 2000
Lecture
16
10
2 Fourth try to find vP… so,
complex vP = Re[vPS ] = Re[V p e jωt ]
Vi = Re ⋅ e jω t 1+ jωRC
Vi (1 − jωRC ) jω t = Re ⋅e 1 + ω 2 R 2C 2 Vi j φ jω t = Re ⋅ e e , tan φ = −ωRC 2 2 2 1+ω R C Vi j( ωt +φ ) = Re ⋅ e 1 + ω 2 R 2C 2
vP =
Vi 1+ω R C 2
2
2
⋅ cos( ωt + φ )
Recall, vP is particular response to Vi cos ωt . 6.002 Fall 2000
Lecture
16
11
3
Find vH
Recall,
6.002 Fall 2000
vH = Ae
−t RC
Lecture
16
12
4
Find total solution
vC = vP + vH vC =
Vi 1+ω R C 2
2
2
cos( ωt + φ ) + Ae
−
t RC
where φ = tan −1 ( −ωRC )
Given vC(0) = 0 for t = 0 so, Vi A=− cos(φ ) 2 2 2 1+ ω R C Done!
6.002 Fall 2000
Phew !
Lecture
16
13
Sinusoidal Steady State
We are usually interested only in the particular solution for sinusoids, i.e. after transients have died. Notice when t → ∞, vC → vP as e vC =
Vi 1+ω R C 2
2
2
−
t RC
cos( ωt + φ ) + Ae
−
→0 t RC
0
where φ = tan −1 ( −ωRC ) Vi A=− cos(φ ) 2 2 2 1+ ω R C
Vp
∠Vp
Described as SSS: Sinusoidal Steady State
6.002 Fall 2000
Lecture
16
14
Sinusoidal Steady State
All information about SSS is contained in Vp , the complex amplitude! Steps 3 , 4 were a waste of time!
Vi Vp = 1 + jωRC
Recall
Vp
1 = Vi 1+ jωRC Vp Vi
magnitude
=
Vp
phase φ : ∠
Vi Vp Vi
6.002 Fall 2000
1 1 + ω 2 R 2C 2
=
e jφ where
φ = tan −1 − ωRC
1 1 + ω 2 R 2C 2
= − tan −1 ωRC
Lecture
16
15
Sinusoidal Steady State
Visualizing the process of finding the particular solution vP
Vi cos ωt drive
D.E. + nightmare trig.
V p cos[ωt + ∠V p ] particular solution
algebraic take equation real + part complex algebra V p e jω t
sneak in Vi e jωt drive
the sneaky path! 6.002 Fall 2000
Lecture
16
16
Magnitude Plot
transfer function Vp H ( jω ) = Vi
Vp Vi
Vp Vi
=
1 1 + ω 2 R 2C 2
1
log scale log scale
1 ω= RC
ω
From demo: explains vo fall off for high frequencies!
6.002 Fall 2000
Lecture
16
17
Phase Plot
φ = tan −1 − ωRC φ =∠
Vp Vi
ω= 0
− −
1 RC
ω
log scale
π 4
π
2
6.002 Fall 2000
Lecture
16
18
6.002
CIRCUITS AND ELECTRONICS
The Impedance Model
6.002 Fall 2000
Lecture 17
1
Review
Sinusoidal Steady State (SSS) Reading 13.1, 13.2
vI = Vi cos ωt + –
C
+ vO –
Focus on steady state, only care about vP as vH dies away.
Focus on sinusoids.
SSS
R
Sinusoidal Steady State (SSS) Reading 13.1, 13.2
Reading: Section 13.3 from course notes. 6.002 Fall 2000
Lecture 17
2
Review
vP
Vi cos ωt
1 usual circuit model
sneak in Vi e jωt drive
set up DE
complex algebra
V p cos[ωt + ∠V p ] nightmare trig.
Vp 2
The Sneaky Path
3 vH take 4 real total part
V p e jω t Vi 1 + jωRC
Vp contains all the information we need:
Vp ∠V p 6.002 Fall 2000
Amplitude of output cosine phase Lecture 17
3
Review
vO = V p cos(ωt + ∠V p ) Vp Vi
Vp
=
1 = H ( jω ) transfer function 1 + jωRC remember demo
1
Vi
1 2
1
1 ωRC
1 + ω 2 R 2C 2
Bode plot ∠
Vp
ω=
Vi
ω
1 ω= RC break frequency
0
1 RC
ω
⎛ − ωRC ⎞ π tan −1 ⎜ ⎟ − ⎝ 1 ⎠ 4 −
π 2
The Frequency View 6.002 Fall 2000
Lecture 17
4
Is there an even simpler way to get Vp ? Vi Vp = 1 + jωRC
Divide numerator and denominator by jωC.
1 V p = Vi
jω C 1 +R jω C
Hmmm… looks like a voltage divider relationship.
ZC V p = Vi ZC + R Let’s explore further…
6.002 Fall 2000
Lecture 17
5
The Impedance Model Is there an even simpler way to get Vp ? Consider: + vR –
+ vC –
iR
i R = I r e jω t
vR = RiR
R
vR = Vr e jω t
Vr e jω t = RI r e jω t
Resistor
iC
C
iC = I C e
jω t
vC = VC e jω t
Vr = RI r
dvC iC = C dt I C e jω t = CVC jωe jω t
Capacitor
+ vL –
VC =
diL vL = L dt
jω t
iL
iL = I l e
L
vL = Vl e jω t
Vl e jω t = LI l jωe jω t
Inductor 6.002 Fall 2000
1 IC j ωC ZC
Lecture 17
Vl = jωL I l ZL
6
The Impedance Model In other words, capacitor
Ic + Vc –
ZC
Vc = Z C I c 1 ZC = j ωC impedance
inductor
resistor
Il + Vl –
+ Vr –
ZL
Ir ZR
Vl = Z l I l Z l = j ωL
Vr = Z r I r Zr = R
For a drive of the form Vc e jωt , complex amplitude Vc is related to the complex amplitude Ic algebraically, by a generalization of Ohm’s Law. 6.002 Fall 2000
Lecture 17
7
Back to RC example… R + C vC –
vI + –
Impedance model: ZR = R
Ic + Vc –
Vi + –
1 ZC = jωC
1 ZC jωC Vc = Vi = Vi 1 ZC + Z R +R jωC Vc =
1 Vi 1 + jωRC
Done!
All our old friends apply! KVL, KCL, superposition… 6.002 Fall 2000
Lecture 17
8
Another example, recall series RLC: Remember, we want only the steady-state response to sinusoid
Ir
L Vi e jω t
Vi + –
C R
Vi cos ωt Vr =
Vi Z R Z L + ZC + Z R
+ Vr –
Vr e jω t
Vr cos(ωt + ∠Vr )
Vi R Vr = 1 j ωL + +R jωC Vr =
Vi jωCR − ω 2 LC + 1 + jωCR
We will study this and other functions in more detail in the next lecture. 6.002 Fall 2000
Lecture 17
9
The Big Picture… V p cos[ωt + ∠V p ]
Vi cos ωt usual circuit model
6.002 Fall 2000
set up DE
Lecture 17
nightmare trig.
10
The Big Picture… V p cos[ωt + ∠V p ]
Vi cos ωt usual circuit model
Vi e jωt drive
6.002 Fall 2000
set up DE
nightmare trig.
complex algebra
Lecture 17
take real part
11
The Big Picture… V p cos[ωt + ∠V p ]
Vi cos ωt usual circuit model
Vi e jωt drive
set up DE
nightmare trig.
complex algebra
impedance-based circuit model
take real part
complex algebra
No D.E.s, no trig! 6.002 Fall 2000
Lecture 17
12
Back to
Ir
Vr jωRC = Vi 1 + jωRC − ω 2 LC
Vi
L + –
C R
+ Vr –
Let’s study this transfer function Vr jωRC = Vi 1 + jωRC − ω 2 LC
( jωRC 1 − ω 2 LC ) − jωRC = ⋅ 2 (1 − ω LC ) + jωRC (1 − ω 2 LC ) − jωRC
Vr = Vi
(1 − ω
ωRC
2
LC ) + (ωRC ) 2
2
Observe
Low ω : ≈ ωRC R High ω : ≈ ωL ω LC = 1 : ≈ 1
6.002 Fall 2000
Lecture 17
13
Graphically Vr = Vi
ωRC
(1 − ω
2
LC ) + (ωRC ) 2
2
Low ω : ≈ ωRC R High ω : ≈ ωL ω LC = 1 : ≈ 1
Vr Vi
“Band Pass”
1
R ωL
ωRC 1 LC
ω
Remember this trick to sketch the form of transfer functions quickly. More next week… 6.002 Fall 2000
Lecture 17
14
6.002
CIRCUITS AND ELECTRONICS
Filters
6.002 Fall 2000
Lecture
18
1
Review R vI
+ –
C
+ vC –
ZR
Vi + –
+ Vc –
ZC
ZC Vc = ⋅ Vi ZC + Z R 1 Vc 1 j ωC = = 1 Vi + R 1 + jωRC j ωC Reading: Section 14.5, 14.6, 15.3 from A & L. 6.002 Fall 2000
Lecture
18
2
A Filter ZR
Vi + –
+ Vc –
ZC
ZC 1 ⋅ Vi = Vc = ZC + Z R 1 + jωRC Vc H (ω ) = Vi
1
“Low Pass Filter”
ω
Demo with audio 6.002 Fall 2000
Lecture
18
3
Quick Review of ImpedancesJust as
I ab
A
R1
+
Vab
RAB
Vab = = R1 + R2 I ab
Z AB
Vab = = R1 + jωL I ab
R2
B
I ab
A
R1
–
+
Vab
j ωL B
–
6.002 Fall 2000
Lecture
18
4
Quick Review of Impedances Similarly
A
Z AB = R1 + Z C || R2 + Z L
R1 R2
C L
= R1 +
Z C R2 + ZL Z C + R2
= R1 +
R2 + jωL 1 + jωCR2
B
6.002 Fall 2000
Lecture
18
5
We can build other filters by combining impedances Z (ω )
L Z
R C
6.002 Fall 2000
Lecture
18
ω
6
We can build other filters by combining impedances Z (ω)
L Z
R C
ω
H (ω )
HPF High Pass Filter
+ –
ω H (ω )
LPF Low Pass Filter ω
+ –
H (ω )
HPF
+ –
ω
6.002 Fall 2000
Lecture
18
7
Check out:
C
L
+ R Vr –
Vi + – Intuitively:
Vr 1 Vi C
k bloc
q fre w s lo
L bloc
ωo =
1
(1 − ω
6.002 Fall 2000
ω RC
2
freq
ω
LC
R Vr = 1 Vi jω L + +R jω C j ω RC = 1 − ω 2 LC + j ω RC Vr = Vi
ks hig h
LC ) + (ω RC ) 2
Lecture
2
18
At resonance, ω = ωo and ZL + ZC = 0, so Vi sees only R! More later… 8
What about:
Vi + –
Vlc Vi 1
Vlc
+
L
–
C
R
Band Stop Filter
C open
L open
ω
Check out Vl and Vc in the lab.
6.002 Fall 2000
Lecture
18
9
Another example:
R +
Vi + –
L
C
Vo –
Vo Vi ort h s L
BPF Cs
ωo
ho rt
ω
Application: see AM radio coming up shortly
6.002 Fall 2000
Lecture
18
10
AM Radio Receiver
antenna
R Vi + –
L
C
demodulator amplifier
Thévenin antenna model crystal radio demo
6.002 Fall 2000
Lecture
18
11
AM Receiver R Vi + –
L
C
signal strength
demodulator amplifier
filter 10 KHz
WBZ News Radio
f 540 …1000 1010 1020 1030 … 1600 KHz
“Selectivity” important — relates to a parameter “Q” for the filter. Next… 6.002 Fall 2000
Lecture
18
12
Selectivity: Look at series RLC in more detail C
L
Vi + – Recall,
Vr Vi
+ Vr –
R Vr R = Vi R + jω L + 1 jω C
1
higher Q
1 2
Δω
bandwidth
ω
ωo ωo Define Q = Δω
quality factor
high Q ⇒ more selective 6.002 Fall 2000
Lecture
18
13
Quality Factor Q Q=
ωo Δω
ωο: Vr R = Vi R + jω L +
1 = 1 L 1 ⎞ ⎛ 1 + j⎜ ω − ⎟ jω C ω R CR ⎝ ⎠
at ωο =0 1 ωo = LC Δω ?
6.002 Fall 2000
Lecture
18
14
Quality Factor Q ωo Q= Δω Δω : Note that abs magnitude is when
Vr = Vi
i.e. when
1 2
1 1 = ⎛ L 1 ⎞ 1 ± j1 1 + j⎜ ω − ⎟ ⎝ R ω CR ⎠ ωL 1 − = ±1 R ω CR
ω2 m
ωR L
−
1 =0 LC
Looking at the roots of both equations, R 1 R2 4 ω1 = + + 2 L 2 L2 LC
R 1 ω2 = − + 2L 2
R2 4 + L2 LC
R Δω = ω1 − ω2 = L
6.002 Fall 2000
Lecture
18
15
Quality Factor Q ωo Q= Δω Q=
ωo R L
=
ωo L
1 ωo = LC
R
The lower the R (for series R), the sharper the peak
6.002 Fall 2000
Lecture
18
16
Quality Factor Q Another way of looking at Q : energy stored Q = 2π energy lost per cycle = 2π
1 L Ir 2
2
1 2 2π Ir R ω0 2 ωo L Q= R
6.002 Fall 2000
Lecture
18
17
6.002
CIRCUITS AND ELECTRONICS
The Operational Amplifier Abstraction
6.002 Fall 2000
Lecture 19
1
Review
MOSFET amplifier — 3 ports +
+ vO output port –
+ input vI port –
VS
power port
–
Amplifier abstraction VS
+
+ vI –
–
6.002 Fall 2000
+ v – O
vI
Lecture 19
vO Function of vI
2
Review vI
vO Function of vI
Can use as an abstract building block for more complex circuits (of course, need to be careful about input and output).
Today Introduce a more powerful amplifier abstraction and use it to build more complex circuits.
Reading: Chapter 15 from A & L.
6.002 Fall 2000
Lecture 19
3
Operational Amplifier Op Amp VS
input port
power port
+
+ – output port
–
+ –
−VS More abstract representation: + vIN –
6.002 Fall 2000
+ –
Lecture 19
vOUT
4
Circuit model (ideal): vO
+ i=0
v+
+ v –
v–
– i=0
+ –
Av A→∞
i.e. ∞ input resistance 0 output resistance “A” virtually ∞ No saturation
6.002 Fall 2000
Lecture 19
5
Using it… 12V
+ –
VS = 12V
vO
+
vIN
– 12V
RL
− VS = −12V
– +
Demo 12V
− 10 μV
vO active region saturation
10μV
− 12V
vIN
A ~ 106 but unreliable, temp. dependent
(Note: possible confusion with MOSFET saturation!) 6.002 Fall 2000
Lecture 19
6
Let us build a circuit… Circuit: noninverting amplifier v+ v−
vIN + –
+
vO
–
R1 R2
Equivalent circuit model + i=0
vIN + –
op amp
v+ v
−
vO + A(v + − v − ) –
R1
– i=0 R2 6.002 Fall 2000
Lecture 19
7
Let us analyze the circuit: Find vO in terms of vIN, etc.
vO = A(v + − v − ) R2 ⎞ ⎛ = A⎜ vIN − vO ⎟ R1 + R2 ⎠ ⎝ ⎛ AR2 ⎞ vO ⎜ 1 + ⎟ = AvIN ⎝ R1 + R2 ⎠
AvIN vO = AR2 1+ R1 + R2 What happens when “A” is very large?
6.002 Fall 2000
Lecture 19
8
Let’s see… When A is large AvIN AvIN ≈ vO = AR2 AR2 1+ R1 + R2 R1 + R2 ≈ vIN Suppose
(R1 + R2 )
A = 10 6 R1 = 9 R R2 = R
R2 gain
10 6 ⋅ vIN vO = 10 6 R 1+ 9R + R
10 6 ⋅ vIN = 1 6 1 + 10 ⋅ 10 vO ≈ vIN ⋅ 10
Demo
Gain: determined by resistor ratio insensitive to A, temperature, fab variations 6.002 Fall 2000
Lecture 19
9
Why did this happen? Insight: 5V v+
vIN + –
5V
v−
+ –
10V A 6V
6V
negative feedback
– i =0
12V
vO = 2vIN
R vO 2 R
e.g. vIN = 5V Suppose I perturb the circuit…
(e.g., force vO momentarily to 12V somehow). Stable point is when v+ ≈ v- .
Key: negative feedback Æ portion of output fed to –ve input. e.g. Car antilock brakes Æ small corrections. 6.002 Fall 2000
Lecture 19
10
Question: How to control a high-strung device? Antilock brakes is it turning?
no
di s
yes release apply
Michelin
it’s all about control
c
yes/no k c a db e e f
v. v. powerful brakes
6.002 Fall 2000
Lecture 19
11
More op amp insights: Observe, under negative feedback, ⎛ R1 + R2 ⎞ ⎜ ⎟vIN R1 ⎠ v v+ − v− = O = ⎝ →0 A A
v+ ≈ v− We also know i+ ≈ 0 i -≈ 0 Æyields an easier analysis method (under negative feedback).
6.002 Fall 2000
Lecture 19
12
Insightful analysis method under negative feedback v+ ≈ v− i+ ≈ 0 i− ≈ 0 a vIN
vIN + –
g vO = vIN +
vO
b vIN – c vIN
R1 f
e i=0
vIN d R2
6.002 Fall 2000
R1 + R2 R2
Lecture 19
vIN R2
R2
13
Question: a vIN v +
vIN + –
b vIN
v
−
+ –
c vIN
vO
?
vO ≈ vIN
or
R1 + R2 vO = vIN R2 with R1 = 0 R2 = ∞
6.002 Fall 2000
Lecture 19
14
Why is this circuit useful? +
vIN + –
–
vO
vO ≈ vIN
Buffer
voltage gain = 1 input impedance = ∞ output impedance = 0 current gain = ∞ power gain = ∞
6.002 Fall 2000
Lecture 19
15
6.002
CIRCUITS AND ELECTRONICS
Basic Circuit Analysis Method (KVL and KCL method)
6.002 Fall 2000
Lecture 2
1
Review Lumped Matter Discipline LMD:
Constraints we impose on ourselves to simplify our analysis
∂φ B =0 ∂t ∂q =0 ∂t
Outside elements Inside elements wires resistors sources
Allows us to create the lumped circuit abstraction
6.002 Fall 2000
Lecture 2
2
Review
LMD allows us to create the lumped circuit abstraction i
+
v
Lumped circuit element
power consumed by element = vi
6.002 Fall 2000
Lecture 2
3
Review Review Maxwell’s equations simplify to algebraic KVL and KCL under LMD! KVL:
∑ jν j = 0 loop
KCL:
∑jij = 0 node
6.002 Fall 2000
Lecture 2
4
Review a R1
+ –
b
R4
R3
R2
d R5
c
DEMO
6.002 Fall 2000
vca + vab + vbc = 0
KVL
ica + ida + iba = 0
KCL
Lecture 2
5
Method 1: Basic KVL, KCL method of Circuit analysis Goal: Find all element v’s and i’s 1. write element v-i relationships (from lumped circuit abstraction) 2. write KCL for all nodes 3. write KVL for all loops
lots of unknowns lots of equations lots of fun solve
6.002 Fall 2000
Lecture 2
6
Method 1: Basic KVL, KCL method of Circuit analysis
Element Relationships For R,
V = IR
For voltage source, V = V0
R +–
V0 For current source, I = I 0 J Io 3 lumped circuit elements
6.002 Fall 2000
Lecture 2
7
KVL, KCL Example a +
ν1 +
ν 0 = V0 –
–
+ –
+
ν2 –
+
R1
R3
b
+ν 3 – R2
ν4 –
R4
d +
ν5 –
R5
c The Demo Circuit
6.002 Fall 2000
Lecture 2
8
Associated variables discipline i
+ ν
Element e
Current is taken to be positive going into the positive voltage terminal
Then power consumed by element e
6.002 Fall 2000
Lecture 2
= νi is positive
9
KVL, KCL Example a +
+
ν 0 = V0 –
+ –
ν1
i0
L1
–
+
ν2 –
i4 i1 L 2 + R1 ν 4 R4 – R3 b i3 d +ν 3 – i2 i5 + R2 ν 5 R5 L3 –
c The Demo Circuit
6.002 Fall 2000
Lecture 2
L4
10
Analyze ν 0 …ν 5 ,ι0 …ι5 1. Element relationships (v, i ) given v3 = i3 R3 v0 = V0 v4 = i4 R4 v1 = i1 R1 v5 = i5 R5 v2 = i2 R2
12 unknowns 6 equations
2. KCL at the nodes a: i0 + i1 + i4 = 0 3 independent b: i2 + i3 − i1 = 0 equations d: i5 − i3 − i4 = 0 e: − i0 − i2 − i5 = 0 redundant 3. KVL for loops L1: − v0 + v1 + v2 = 0 3 independent equations L2: v1 + v3 − v4 = 0 L3: v3 + v5 − v2 = 0 s L4: − v0 + v4 + v5 = 0 redundant n o i t ns a w u o n k eq n u 1 2 12
/
ugh @#! 6.002 Fall 2000
Lecture 2
11
Other Analysis Methods Method 2— Apply element combination rules
A B
C
D
R1
R2 R3
G1
G2
V1
V2
+–
+–
GN
⇔
⇔
⇔
⇔
R1 + R2 +
G1 + G2
1 Gi = Ri
+ RN
+ GN
V1 + V2 +–
J
I2
J
J
I1
…
RN
I1 + I 2
Surprisingly, these rules (along with superposition, which you will learn about later) can solve the circuit on page 8
6.002 Fall 2000
Lecture 2
12
Other Analysis Methods Method 2— Apply element combination rules
I =?
Example
R1
V + –
R3
R2
I
I V + –
R1
R2 R3 R2 + R3
V + –
R = R1 +
R R2 R3 R2 + R3
V I= R 6.002 Fall 2000
Lecture 2
13
Method 3—Node analysis Particular application of KVL, KCL method 1. Select reference node ( ground) from which voltages are measured. 2. Label voltages of remaining nodes with respect to ground. These are the primary unknowns. 3. Write KCL for all but the ground node, substituting device laws and KVL. 4. Solve for node voltages. 5. Back solve for branch voltages and currents (i.e., the secondary unknowns)
6.002 Fall 2000
Lecture 2
14
Example: Old Faithful plus current source
V0
Step 1
6.002 Fall 2000
e2
R2
R5
J
+ V e1 – 0
R4
R1 R 3
I1
Step 2
Lecture 2
15
Example: Old Faithful plus current source
V0
R2
R4 e2
R5
J
+ V e1 – 0
R1 R 3
for I1 convenience, write 1 Gi = Ri
KCL at e1 (e1 − V0 )G1 + (e1 − e2 )G3 + (e1 )G2 = 0
KCL at e2 (e2 − e1 )G3 + (e2 − V0 )G4 + (e2 )G5 − I1 = 0 Step 3
6.002 Fall 2000
Lecture 2
16
Example: Old Faithful plus current source
V0 e2
R2
R5
J
+ V e1 – 0
R4
R1 R 3
I1
Gi =
KCL at e1 (e1 − V0 )G1 + (e1 − e2 )G3 + (e1 )G2 = 0
1 Ri
KCL at l2 (e2 − e1 )G3 + (e2 − V0 )G4 + (e2 )G5 − I1 = 0 move constant terms to RHS & collect unknowns
e1 (G1 + G2 + G3 ) + e2 (−G3 ) = V0 (G1 ) e1 (−G3 ) + e2 (G3 + G4 + G5 ) = V0 (G4 ) + I1 2 equations, 2 unknowns (compare units) 6.002 Fall 2000
Lecture 2
Solve for e’s Step 4 17
In matrix form: G1 + G2 + G3 − G3
− G3 e1 G1V0 = G V + I G3 + G4 + G5 e2 4 0 1
conductivity matrix
sources
unknown node voltages
Solve G3 G3 + G4 + G5 G1V0 G3 G1 + G2 + G3 G4V0 + I1 e1 e = (G1 + G2 + G3 )(G3 + G4 + G5 ) − G3 2 2
(
)(
) ( )(
)
G +G +G G V + G G V + I 3 4 5 1 0 3 4 0 1 e = 1 G G +G G +G G +G G +G G +G G +G 2 +G G +G G 1 3 1 4 1 5 2 3 2 4 2 5 3 3 4 3 5 e2 =
(G3 )(G1V0 ) + (G1 + G2 + G3 )(G4V0 + I 1 ) 2
G1G3 + G1G4 + G1G5 + G2G3 + G2G4 + G2 G5 + G3 + G3G4 + G3G5
(same denominator)
Notice: linear in V0 , I1 , no negatives in denominator 6.002 Fall 2000
Lecture 2
18
Solve, given G1 1 = G5 8.2 K
G2 1 = G4 3.9 K
1 G3 = 1.5 K
I1 = 0
(
)(
)
G G V + G +G +G G V + I e = 3 10 1 2 3 40 1 2 G + G + G + G + G + G −G 2 1 2 3 3 4 5 3 1 1 1 G +G +G = + + =1 1 2 3 8.2 3.9 1.5
(
G3 + G4 + G5 =
)(
)
1 1 1 + + =1 1.5 3.9 8.2
1 1 1 × + 1× 3.9 V e2 = 8.2 1.5 0 1 1− 2 1.5
Check out the DEMO
e2 = 0.6V0
If V0 = 3V , then e2 = 1.8V0 6.002 Fall 2000
Lecture 2
19
6.002
CIRCUITS AND ELECTRONICS
Operational Amplifier Circuits
6.002 Fall 2000
Lecture 20
1
Review
Operational amplifier abstraction + –
∞ input resistance 0 output resistance Gain “A” very large
Building block for analog systems
We will see these examples: Digital-to-analog converters Filters Clock generators Amplifiers Adders Integrators & Differentiators
Reading: Chapter 15.5 & 15.6 of A & L.
6.002 Fall 2000
Lecture 20
2
Consider this circuit: i i
R1
v2 + – v1 + –
R2 v = v1 R1 + R2 ≈ v− +
v2 − v − i= R1
R1
R2
v− – v+ +
+ vOUT –
R2
vOUT = v − − iR2 − v − v = v− − 2 ⋅ R2 R1
R ⎡ R ⎤ = v − ⎢1 + 2 ⎥ − v2 2 R1 ⎣ R1 ⎦ = v1
R2 R + R2 R ⋅ 1 − v2 2 R1 + R2 R1 R1
R2 = (v1 − v2 ) R1 6.002 Fall 2000
subtracts!
Lecture 20
3
Another way of solving — use superposition v1 → 0
v2 → 0 R1
R2 R1 v2 +
–
v1 +
–
–
v+ + R2
–
vOUT2
+
vOUT2
vOUT1
R1 + R2 =v ⋅ R1 +
v1 ⋅ R2 R1 + R2 = ⋅ R1 + R2 R1 = v1
vOUT = vOUT1 + vOUT2 R2 = (v1 − v2 ) R1 6.002 Fall 2000
R2
R1
R1 || R2
R2 = − v2 R1
vOUT1
Lecture 20
R2 R1
Still subtracts! 4
Let’s build an intergrator… vI + –
+ vO –
∫ dt
Let’s start with the following insight: i
+ i + –
C
vO –
t
1 vO = ∫ i dt C −∞ vO is related to ∫ i dt But we need to somehow convert voltage vI to current. 6.002 Fall 2000
Lecture 20
5
First try… use resistor + vR –
vI + –
i
+
R C
vO
vI →i R
– But, vO must be very small compared to vR, or else v i≠ I R When is vO small compared to vR ? dv larger the RC, RC O + vO = vI dt smaller the vO vR dvO when RC >> vO for good dt integrator dvO RC ≈ vI ωRC >> 1 dt t 1 or vO ≈ vI dt ∫ RC −∞ Demo 6.002 Fall 2000
Lecture 20
6
There’s a better way… i
Notice i
– +
v − ≈ 0V under negative feedback vI i = so, R – R vI + – +
vI R
+
vC
–
– vI
+ –
R
+
vO = −vC
+ t vO 1 vI – vO = − ∫ dt C −∞ R
We have our integrator. 6.002 Fall 2000
Lecture 20
7
Now, let’s build a differentiator… + vO –
d dt
vI + –
Let’s start with the following insights: i vI
+ –
C
dvI i=C dt
dvI i is related to dt But we need to somehow convert current to voltage.
6.002 Fall 2000
Lecture 20
8
Differentiator… Recall
i i
– + R
i
– + vO –
+ 0V
i
C vI + –
+ vC –
Demo 6.002 Fall 2000
R – +
vO = −iR
current to voltage
vO vI = vC dvI i=C dt
dvI vO = − RC dt Lecture 20
9
6.002
CIRCUITS AND ELECTRONICS
Op Amps Positive Feedback
6.002 Fall 2000
Lecture
21
1
Negative vs Positive Feedback Consider this circuit — negative feedback vIN R1 R2 – R1 vIN + + R – + vOUT = − 2 vIN – R1 is s e y l g a a an t p e ex e s n on + R2 vOUT = − vIN ” “ – R1
and this — positive feedback
vIN + –
R1
+
R2
–
What’s the difference? Consider what happens when there is a pertubation… Positive feedback drives op amp into saturation:
vOUT → ±VS
6.002 Fall 2000
Lecture
21
2
Static Analysis of Positive Feedback Ckt v IN
v IN + –
+ –
R1
+ –
R2
vOUT
v + R2
R1
v
−
vOUT
+ –
A(v + − v − )
vOUT = A(v + − v − ) = Av +
v − vIN = A OUT ⋅ R1 + vIN R1 + R2 =
AR1vIN AR1 vOUT − + AvIN R1 + R2 R1 + R2
AR1 R1 vOUT 1 − v A 1 = − IN R + R R1 + R2 1 2
vOUT
6.002 Fall 2000
1 − R1 R +R R2 1 2 Av vIN ⋅ = − = IN AR R1 1 − R1 + R2
Lecture
21
3
Representing dynamics of op amp…
v+ + – v−
6.002 Fall 2000
+ v*
R
C (v + − v − )
Lecture
vo + –
Av*
–
21
4
Representing dynamics of op amp… Consider this circuit and let’s analyze its dynamics to build insight. R2 R1 +
vo
– R4
R3 Circuit model R1
v+ v−
R3
vo A
R2
+ –
R
C (v + − v − )
+ v*
+ –
–
+ vo –
R4
Let’s develop equation representing time behavior of vo . 6.002 Fall 2000
Lecture
21
5
Dynamics of op amp… vo = Av
*
vo or v = A *
dv* * RC + v = v+ − v_ dt
vo R1 + = γ vo R1 + R2 vo R3 − v = =− γ vo R3 + R4
v+ =
RC dvo vo + = v+ − v_ A dt A + = ( γ − −γ ) vo neglect
or
dvo 1 A − + + + ( γ − γ ) vo = 0 dt RC RC dvo A − + + ( γ − γ ) vo = 0 dt RC time −1
or
dvo vo RC + = 0 where T = − + A( γ − γ ) dt T
vo ( 0 ) = 0 6.002 Fall 2000
Lecture
21
6
Consider a small disturbance to vo (noise). + − if γ > γ
T is positive vo = K e
if
+ γ > γ−
−
+ − γ = γ
vo
K
stable
T is negative vo = K e
if
t T
t T
unstable
T is very large vo = K neutral unstable
neutral stable
t
disturbance
Now, let’s build some useful circuits with positive feedback. 6.002 Fall 2000 Lecture 21
7
One use for instability: Build on the basic op amp as a comparator + VS
v+
+
v−
–
vo
− VS
+ VS
vo
v+ − v−
0
− VS
vo −
v →0
6.002 Fall 2000
v
+
t Lecture
21
8
Now, use positive feedback vi
–
vo
+
R2
vo R1 v = R1 + R2 +
+
v = 7.5
R1
vo = 15
vi
( vi = v − ) > 7.5
v− < v+ v − < −7.5
v − > 7.5 vo = −15
6.002 Fall 2000
e.g. R1 = R2 VS = 15
Lecture
v − = −7.5
21
9
Now, use positive feedback vi
–
vo
+
R2
vo R1 v = R1 + R2 +
VS R1 v = R1 + R2 +
R1
vo = +VS
15
vi
( vi = v − ) > v +
e.g. R1 = R2 VS = 15
v− < v+ v − < −7.5
v − > 7.5
vo = −VS − 15 v − =
6.002 Fall 2000
Lecture
21
− VS R1 R1 + R2
10
vo
15
VS
hysteresis − 7 .5
Demo
0
vi
7 .5
− 15
− VS
Why is hysteresis useful? vi v o
e.g., analog to digital
7.5
t − 7.5
Demo 6.002 Fall 2000
Lecture
21
11
Without hysteresis
vi 7.5
analog to digital
vo
vi
t − 7.5
6.002 Fall 2000
Lecture
21
12
Oscillator — can create a clock R
vC
–
C
vo
+
R1
vo 2
R1
vo VS VS 2
v+ v− vC
VS − 2 − VS
Demo 6.002 Fall 2000
v
t
−
v+
Assume Lecture
vo = VS vC = 0 21
at t = 0 13
Clocks in Digital Systems We built an oscillator using an op amp.
t can use as a clock Why do we use a clock in a digital system?
(See page 735 of A & L)
1
1
0
sender
receiver
clock a
1,1,0?
b
When is the signal valid? common timebase -- when to “look” at a signal (e.g. whenever the clock is high)
Æ Discretization of time one bit of information associated with an interval of time (cycle) 6.002 Fall 2000
Lecture
21
14
6.002
CIRCUITS AND ELECTRONICS
Energy and Power
6.002 Fall 2000
Lecture
22
1
Why worry about energy?
-
small batteries Æ good
Today: How long will the battery last? in standby mode in active use Will the chip overheat and self-destruct?
6.002 Fall 2000
Lecture
22
2
Look at energy dissipation in MOSFET gates VS R + + vI –
C
vO –
C: wiring capacitance and CGS of following gate Let us determine standby power active use power Let’s work out a few related examples first. 6.002 Fall 2000
Lecture
22
3
Example 1:
I
V + –
Power
R
+ V –
V2 P = VI = R
Energy dissipated in time T
E = VIT
6.002 Fall 2000
Lecture
22
4
Example 1: for our gate
VS
VS RL
RL
vO
vI high
vI low
RON
RON
2
VS P= RL + RON
6.002 Fall 2000
Lecture
vO
P=0
22
5
Example 2: Consider R1 S1
VS + –
S2 R2
C
T T1
T2
S1 closed S1 open S 2 open
S 2 closed t
Find energy dissipated in each cycle. Find average power P. 6.002 Fall 2000
Lecture
22
6
T1 : S1 closed, S2 open i VS + –
R1
+ vC –
C
vC
i
VS R1
VS
t
6.002 Fall 2000
assume vC = 0 at t = 0
Lecture
VS e R1
−t R1C
t
22
7
Total energy provided by source during T1 T1
E = ∫ VS i dt 0
T1
2
VS e R1 0
=∫
−t R1C
dt
2
=−
VS R1C e R1
−t T1 R1C 0
−T1 2 R C 1 = C VS 1 − e 2
≈ C VS if T1 >> R1C
I.e., if we wait long enough
1 2 C VS stored on C , 2 1 2 E1 = C VS dissipated in R1 2 6.002 Fall 2000
Lecture
22
Independent of R!
8
T2 : S2 closed, S1 open + vC –
C
R2
Initially, vC = VS
(recall T1 >> R1C)
So, initially,
1 2 energy stored in capacitor = CVS 2 Assume T2 >> R2C So, capacitor discharges ~fully in T2 So, energy dissipated in R2 during T2
1 2 E2 = CVS 2 E1, E2 independent of R2 ! 6.002 Fall 2000
Lecture
22
9
Putting the two together: Energy dissipated in each cycle E = E1 + E2 1 1 2 2 = CVS + CVS 2 2
E = CVS
2
energy dissipated in charging & discharging C
Assumes C charges and discharges fully. Average power
P=
E T
CVS = T
2
2
= CVS f
frequency f = 6.002 Fall 2000
Lecture
22
1 T 10
Back to our inverter — VS RL
vO vIN
RON
C
What is P for the following input?
vIN T 2
T 2 T
6.002 Fall 2000
t 1 T= f
Lecture
22
11
Equivalent Circuit RL
VS + –
C RON
What is P for the following input? vIN
T 2
T 2 T
6.002 Fall 2000
t 1 T= f
Lecture
22
12
What is P for gate? We can show (see section 12.2 of A & L) 2
P=
2
VS RL 2 + CVS f 2( RL + RON ) (RL + RON )2
when RL >> RON 2
VS 2 P= + CVS f 2 RL
r e b m e m re
P STATIC independent of f. MOSFET ON half the time.
6.002 Fall 2000
e b m e rem
r
P DYNAMIC related to switching capacitor
Lecture
22
13
What is P for gate? when RL >> RON 2
VS 2 P= + CVS f 2 RL In standby mode, half the gates in a chip can be assumed to be on. So P STATIC per gate is still VS2 .
In standby mode, fÆ0, so dynamic power is 0
2RL Relates to standby power.
6.002 Fall 2000
Lecture
22
14
Some numbers… a chip with 106 gates clocking C =1f F at 100 MHZ RL = 10 kΩ f = 100 × 10 6 VS = 5 V 25 −15 6 P = 10 6 10 25 100 10 + × × × 4 2 × 10 = 10 6 [1.25 milliwatts + 2.5 microwatts ]
problem !
1.25KW!
must get rid of this
α VS 2 α f reduce VS
next lecture 6.002 Fall 2000
2.5W not bad
5 V → 1V 2.5 W → 150 mW Lecture
22
15
6.002
CIRCUITS AND ELECTRONICS
Energy, CMOS
6.002 Fall 2000
Lecture
23
1
Review
VS RL
2
VS P= RL + RON
vO
vI
RON
T1: closed T2: open R
open closed
1
VS + –
S1
S2
C
R2
1 T = T1 + T2 = f 2
P = CVS f
Reading: Section 11.5 of A & L. 6.002 Fall 2000
Lecture
23
2
Review
VS RL
Inverter —
vO
vI
RON
C
1 Square wave input T= f 2 VS 2 P= + CVS f 2 RL
Demo
P STATIC
independent of f. MOSFET ON half the time.
P DYNAMIC
RL >> RON T >>" RC" 2 time constant
related to switching capacitor. In standby mode, fÆ0, so dynamic power is 0
In standby mode, half the gates in a chip can be assumed to be on. So P STATIC per gate is still VS2 . 2RL
6.002 Fall 2000
Lecture
23
3
Review
2
P=
VS 2 + CVS f 2 RL
Chip with 106 gates clocking at 100 MHz
C = 1 f F, RL = 10 KΩ , f = 100 × 10 6 , VS = 5 V 2 ⎡ 5 6 −15 2 6⎤ P = 10 ⎢ + 10 × 5 × 100 × 10 ⎥ 3 gates ⎣ 2 × 10 × 10 ⎦
= 10 6 [1.25 milliwatts + 2.5 μ watts ]
1.25KWatts problem ! • independent of f • also standby power (assume ½ MOSFETs ON if f Æ 0) • must get rid of this!
6.002 Fall 2000
Lecture
2.5Watts not bad
+
• αf • αVS2
reduce VS 5VÆ1V 2.5VÆ150mW
23
4
How to get rid of static power Intuition: VS i
VS RL
RL
vO low
vI high
vI low
RON
vO high
MOSFET off
idea !
VS
vI high
6.002 Fall 2000
vO low
Lecture
23
5
New Device PFET • N-channel MOSFET (NFET)
D G S
on when vGS ≥ VTN off when vGS < VTN e.g. VTN = 1V
• P-channel MOSFET (PFET) S G
on when vGS ≤ VTP off when vGS > VTP e.g. VTP = -1V
D
5V ON when less than 4V
6.002 Fall 2000
Lecture
23
6
Consider this circuit: VS
vI
+ –
G
S D
G
D S
PU = pull up
vO PD = pull down
works like an inverter!
IN
6.002 Fall 2000
OUT
Lecture
23
7
Consider this circuit: works like an inverter!
OUT
IN
vI = 5V (input high)
vI = 0V (input low)
VS = 5V
VS = 5V RON p
+ vI = 5V –
vO RON n
= 0V
+ vI = 0V –
vO = 5V
Complementary MOS (our previous logic was called “NMOS”)
Called “CMOS logic”
6.002 Fall 2000
Lecture
23
8
Key: no path from VS to GND! no static power! Let’s compute P DYNAMIC VS
vI T
vI
vO
C
closed for vI high
closed for vI low
RON p
VS + – From
6.002 Fall 2000
t
1 f = T
RON n
C
2
P = CVS f
Lecture
23
9
For our previous example — C = 1 f F, VS = 5 V , f = 100 MHz , 1 2
P = CV S f = 10
− 15
× 5 2 × 100 × 10 6
= 2 . 5 μwatts per gate P = 2 . 5 μwatts for 10 6 gate chip Gates
f
P
106
100 ~2.5 MHz watts
Pentium?
2x106
300 ~15 MHz watts
PII?
2x106
600 ~30 MHz watts
PII?
8x106
~240 1.2 GHz watts
25x106
~1875 3 GHz watts
6.002 Fall 2000
Lecture
PIII?
“keep all else same”
! p s ga
PIV?
23
10
How to reduce power A VS 5V Æ 3V Æ 1.8V Æ 1.5V ~PIV Æ 170 watts Æ better, but high
and use big heatsink B Turn off clock when not in use. C Change VS depending on need. Æ Æ next time: power supply
6.002 Fall 2000
Lecture
23
11
CMOS Logic NAND: VS A
A B 0 0 0 1 1 0 1 1
B
Z 1 1 1 0
Z A B
5V 0V G
6.002 Fall 2000
S on D
Lecture
5V 5V G
23
S off D
12
In general, if we want to implement F e.g. F = A ⋅ B = A + B
VS
short when A = 0 or B = 0, open otherwise
short when F is true, else open
A B
Z short when F is true, else open
short when A · B is true, else open
r e b m reme gan’s law r o M e D
6.002 Fall 2000
Lecture
23
13
6.002
CIRCUITS AND ELECTRONICS
Power Conversion Circuits and Diodes
6.002 Fall 2000
Lecture 24
1
Power Conversion Circuits (PCC) PCC
+ – 5V DC
PCC
+ – 5V DC
110V 60Hz
solar cells, battery
3V DC
DC-to-DC UP converter Power efficiency of converter important, so use lots of devices: MOSFET switches, clock circuits, inductors, capacitors, op amps, diodes
R
Reading: Chapter 16 and 4.4 of A & L. 6.002 Fall 2000
Lecture 24
2
First, let’s look at the diode
⎛ VvD ⎞ T ⎜ iD = I S e − 1 ⎟ ⎜ ⎟ ⎠ ⎝ I S = 10 −12 A
iD
+ vD –
VT = 0.025V Boltzmann’s constant temperature in Kelvins charge of an electron
kT VT = q iD
iD
vD
− IS
vD V
mV
Can use this exponential model with analysis methods learned earlier
analytical
graphical
incremental
(Our fake expodweeb was modeled after this device!)
6.002 Fall 2000
Lecture 24
3
Another analysis method: piecewise–linear analysis P–L diode models: iD iD ≥ 0 Æ vD = 0
“short” or on
vD < 0 Æ iD = 0
0
vD
“open” or off
Ideal diode model
6.002 Fall 2000
Lecture 24
4
Another analysis method: piecewise–linear analysis “Practical” diode model ideal with offset
+–
0.6V
iD Short segment Open segment
iD = 0
6.002 Fall 2000
vD = 0
0.6V
Lecture 24
vD
5
Another analysis method: piecewise–linear analysis
Piecewise–linear analysis method
Replace nonlinear characteristic with linear segments. Perform linear analysis within each segment.
6.002 Fall 2000
Lecture 24
6
Example (We will build up towards an AC-to-DC converter)
0.6V +–
Consider + vI + –
R
vO –
vI
is a sine wave
6.002 Fall 2000
Lecture 24
7
Example 0 .6 V +–
Equivalent circuit
+
vI + –
vO
R
– “Short segment”: iD = (vI − 0.6 ) / R vI ≥ 0.6
+–
+
0.6V
+ vI –
R
vO = vI − 0.6
– “Open segment”: iD = 0
vI < 0.6
+ vI –
+– 0.6V
+
R
vO = 0
– 6.002 Fall 2000
Lecture 24
8
Example vI
vO 0.6 t
6.002 Fall 2000
Lecture 24
9
Now consider — a half-wave rectifier 0.6V
+– vI + –
C
+ R
vO
–
6.002 Fall 2000
Lecture 24
10
A half-wave rectifier
vI
diode on
diode off
vO
Demo
t
C current pulses charging capacitor
MIT’s supply shows “snipping” at the peaks (because current drawn at the peaks) 6.002 Fall 2000
Lecture 24
11
se Do not u resistive s! el em en t
DC-to-DC UP Converter i
+ VI + DC –
vS
C vO
switch
S
load
–
vS S
S
closed
T
open
t Tp
The circuit has 3 states: I. II. III.
S is on, diode is off i increases linearly S turns off, diode turns on C charges up, vO increases S is off, diode turns off C holds vO (discharges into load)
6.002 Fall 2000
Lecture 24
12
More detailed analysis I. Assume i(0) = 0, vO(0) > 0 S on at t = 0, diode off L i
VI + –
VI T i (T ) = L
vO C
i
di VI = L dt
VI slope = L
i is a ramp
t
T
1 ΔE = energy stored at t = T : Li( T )2 2 2
VI T 2 ΔE = 2L 6.002 Fall 2000
Lecture 24
13
II. S turns off at t = T
diode turns on (ignore diode voltage drop) L
vO
i
VI + –
S
State III starts here
i
VI T L
C
0 T T′
TP
t
1 ωO = LC
Diode turns off at T′ when i tries to go negative.
6.002 Fall 2000
Lecture 24
14
II. S turns off at t = T, diode turns on Let’s look at the voltage profile
i
VI T L
0 T T′
1 ωO = LC
Capacitor voltage ignore diode drop
ωO =
TP
vO
III.
vO (T ) 1 LC
t
ΔvO
0 T T′
TP
t
Diode turns off at T′ when I tries to go negative. 6.002 Fall 2000
Lecture 24
15
II. S turns off at t = T, diode turns on Let’s look at the voltage profile
i
VI T L
0 T T′
1 ωO = LC
Capacitor voltage ignore diode drop
ωO =
TP
vO
III.
vO (T ) 1 LC
t
ΔvO
0 T T′
TP
t
Diode turns off at T′ when I tries to go negative. 6.002 Fall 2000
Lecture 24
16
III. S is off, diode turns off Eg, no load
+ VI + –
S
C vO
– C holds vO after T′ i is zero Capacitor voltage
vO
0
6.002 Fall 2000
T′
Lecture 24
TP
t
17
III. S is off, diode turns off Eg, no load
+ VI + –
S
C vO
– C holds vO after T′ i is zero until S turns ON at TP, and cycle repeats I II III I II III … Thus, vO increases each cycle, if there is no load.
vO vO (n)
TP 2TP 3TP 6.002 Fall 2000
Lecture 24
t 18
What is vO after n cycles Æ vO(n) ? Use energy argument … (KVL tedious!) Each cycle deposits ∆E in capacitor. 1 2 Δ E = L i ( t = T ) 2 2 1 VI T 2 ΔE = 2 1 ⎛ VI T ⎞ 2 L = L⎜ ⎟ 2 ⎝ L ⎠ After n cycles, energy on capacitor 2
nVI T 2 nΔE = 2L 1 This energy must equal CvO ( n )2 2 so, or
2
2 1 nV T 2 CvO ( n ) = I 2 2L 2
nVI T 2 vO ( n ) = LC
1 ωO = LC
vO ( n ) = VI T ωO n 6.002 Fall 2000
Lecture 24
19
How to maintain vO at a given value? + VI
+ –
vO
load
–
vO
pwm
control change T
T
Tp recall
compare + vref –
2
VI T 2 ΔE = 2L
Another example of negative feedback: if if
(v (v
O O
− vref ) ↑
− vref ) ↓
6.002 Fall 2000
then T ↓ then T ↑
Lecture 24
20
6.002
CIRCUITS AND ELECTRONICS
Violating the Abstraction Barrier
6.002 Fall 2000
Lecture 25
1
Case 1: The Double Take
Problem
R
VO
“0” Æ “1” Vi
expected
observed
VO “1”
VO “1” huh?
“0”
6.002 Fall 2000
t
t “0” in forbidden region!
Lecture 25
2
(a) DC case R
VO
V1
Vi
Vi = 5V DC
VO = 5V DC V1 = 5V DC
6.002 Fall 2000
Lecture 25
very high impedance, like open circuit
OK
3
(b)
Step R
VO
V1
Vi
very high impedance, like open circuit
5V Vi b.1
0V b.3
5V
t
t=0 VO
not ok!
VO = 2.5V t=0 b.2
2T
t
5V V1 looks ok!
t=0 T 6.002 Fall 2000
Lecture 25
t 4
2.5
R
....
5
R→
Vi
characteristic impedance
instantaneous R divider finite propagation speed of signals
5V
5V
5V
2T
0
0
6.002 Fall 2000
Lecture 25
0 T
5
Question: So why did our circuits work?
5V V1 rce u o S “ tion” a n i Term
1. Look only at V1
0
O DEM
2. Keep wires short O M ire E w D l l ma s e us
3. Termination O DEM at the R add end
0
t
T
5V VO 0
0
le l Paral ation in term
5V VO 2.5V
t
0
t
More in 6.014 6.002 Fall 2000
Lecture 25
6
Case 2: The Double Dip
Problem Æ strange spikes on supply
V
0
1
1
0
OK driving a 50 Ω resistor!
0 V
driving a 50 Ω resistor!
6.002 Fall 2000
input
Why? Lecture 25
7
Drop across inductor Ldi dt
VS V
Inverter current
v inductor VS solution
1. short wires 2. low inductance wires 3. avoid big current swings
6.002 Fall 2000
Lecture 25
8
Case 3: The Double Team, or, Slower may be faster! Problem
a given chip worked, but was slow. ideal
C
actual
Let’s try speeding it up by using stronger drivers ideal
ω L
actual
Disaster! 6.002 Fall 2000
Lecture 25
9
Why?
DEMO
Consider
ok
C
R1
R0
DEMO
R2
dV α dt dV C dt
crosstalk! 6.002 Fall 2000
Lecture 25
10
How does this relate to chip?
Solution
DEMO
small
Load output!
6.002 Fall 2000
dV dt
— put cap on outputs of chip — jitter edges — slew edges Lecture 25
11
Case 4: The Double Jump
Careful abstraction violation for the better… Recall
Vo Vi
expect
Vo Vi but, observe
Vo Vi 6.002 Fall 2000
Lecture 25
12
Case 4: The Double Jump
Careful abstraction violation for the better…
5V
Vi
5V + 3V
5V 0V
6.002 Fall 2000
3V
Lecture 25
So, pullup has stronger drive as output rises
13
6.002
CIRCUITS AND ELECTRONICS
Superposition, Thévenin and Norton
6.002 Fall 2000
Lecture 3
1
Review Circuit Analysis Methods z KVL:
∑Vi = 0
loop
KCL: ∑ Ii = 0
VI
node
z Circuit composition rules z Node method – the workhorse of 6.002
KCL at nodes using V ’s referenced from ground (KVL implicit in “ (ei − e j ) G ”)
6.002 Fall 2000
Lecture 3
2
Linearity
V
+ –
R2
e J
R1
Consider
I
Write node equations –
e −V e + −I =0 R1 R2 Notice: linear in e,V , I No eV ,VI terms
6.002 Fall 2000
Lecture 3
3
Linearity
R1
Consider + –
J
V
R2
Write node equations -e −V e + −I =0 R1 R2 Rearrange -1 1 R + R e 1 2 conductance matrix
G
6.002 Fall 2000
=
I
linear in e,V , I
V + I R1
node linear sum voltages of sources
e
Lecture 3
=
S
4
Linearity Write node equations -e −V e + −I =0 R1 R2 Rearrange -1 1 R + R e 1 2 conductance matrix
G or
e=
=
linear in e,V , I
V + I R1
node linear sum voltages of sources
e
=
S
R2 RR V+ 1 2 I R1 + R2 R1 + R2
e = a1V1 + a2V2 + … + b1 I1 + b2 I 2 + …
Linear! 6.002 Fall 2000
Lecture 3
5
Linearity
6.002 Fall 2000
⇒
Homogeneity Superposition
Lecture 3
6
⇒
Linearity
Homogeneity Superposition
Homogeneity x1 x2 . .
y
.
⇓ αx1 αx2 .. .
6.002 Fall 2000
αy
Lecture 3
7
Linearity
⇒
Homogeneity Superposition
Superposition
x1a x2 a . ..
ya
x1b x2 b . ..
yb
⇓ x1a + x1b x2 a + x2 b . ..
6.002 Fall 2000
y a + yb
Lecture 3
8
Linearity
⇒
Homogeneity Superposition
Specific superposition example: V1 0
0 V2
y1
y2
⇓ V1 + 0 0 + V2
6.002 Fall 2000
y1 + y2
Lecture 3
9
Method 4: Superposition method The output of a circuit is determined by summing the responses to each source acting alone. s e c r u so t n e nd e p e ind only
6.002 Fall 2000
Lecture 3
10
i
V =0 + –
i + v
+ v
-
short
I =0
J
i
i + v
+ v
-
-
open
6.002 Fall 2000
Lecture 3
11
Back to the example Use superposition method
V
+ –
6.002 Fall 2000
e
R2
Lecture 3
J
R1
I
12
Back to the example Use superposition method V acting alone
e
R1
V
I = 0 eV =
R2
+ –
I acting alone
e
V =0
sum
J
R1 R2
R2 V R1 + R2
I
R1 R2 eI = I R1 + R2
superposition
R2 R1 R2 e = eV + eI = V+ I R1 + R2 R1 + R2 6.002 Fall 2000
Lecture 3
Voilà ! 13
Demo salt water
constant + –
?
+ –
output shows superposition
sinusoid
6.002 Fall 2000
Lecture 3
14
Yet another method…
Consider
By superposition v =
∑ α mVm + ∑ β n I n + Ri m
n
no resistance units units By setting ∀n I n = 0, ∀mVm = 0, i = 0 i = 0
i
+ v -
J
y network r a r t i N Arb resistors Vm In + – J
i
also independent of external excitement & behaves like a resistor
All ∀n I n = 0, ∀mVm = 0
independent of external excitation and behaves like a voltage “ vTH ” 6.002 Fall 2000
Lecture 3
15
Or
v = vTH + RTH i
As far as the external world is concerned (for the purpose of I-V relation), “Arbitrary network N” is indistinguishable from: RTH Thévenin equivalent network
vTH RTH
+ vTH –
+ v
J
N
i
-
open circuit voltage at terminal pair (a.k.a. port) resistance of network seen from port ( Vm ’s, I n ’s set to 0)
6.002 Fall 2000
Lecture 3
16
Method 4: The Thévenin Method J
i
N
+ v -
+ –
+ –
E
Thévenin equivalent RTH
+ vTH –
i + v
E
-
Replace network N with its Thévenin equivalent, then solve external network E. 6.002 Fall 2000
Lecture 3
17
Example: + V –
R2
J
i1 R1
I
i1 R1 RTH
+ V –
VTH
i1 =
6.002 Fall 2000
+ I –
V − VTH R1 + RTH
Lecture 3
18
VTH : VTH = IR2
RTH : RTH = R2
6.002 Fall 2000
+ VTH -
R2
+ RTH -
R2
Lecture 3
J
Example:
I
19
Graphically,
v = vTH + RTH i
i 1 RTH v vTH
“V ” OC
− I SC
Open circuit (i ≡ 0)
v = vTH
Short circuit (v ≡ 0)
− vTH i = RTH
6.002 Fall 2000
Lecture 3
VOC − I SC
20
in recitation, see text
Method 5:
The Norton Method
J + –
+ –
+ v -
IN
J
i
RTH = RN
Norton equivalent
IN =
6.002 Fall 2000
Lecture 3
VTH RTH
21
Summary Discretize matter LMD Physics
LCA EE
R, I, V
Linear networks
Analysis methods (linear) KVL, KCL, I — V Combination rules Node method Superposition Thévenin Norton
Next Nonlinear analysis Discretize voltage
… 6.002 Fall 2000
Lecture 3
101100
… 22
6.002
CIRCUITS AND ELECTRONICS
The Digital Abstraction
6.002 Fall 2000
Lecture 4
1
Review z Discretize matter by agreeing to
observe the lumped matter discipline
Lumped Circuit Abstraction zAnalysis tool kit: KVL/KCL, node method, superposition, Thévenin, Norton (remember superposition, Thévenin, Norton apply only for linear circuits)
6.002 Fall 2000
Lecture 4
2
Today
Discretize value
Digital abstraction
Interestingly, we will see shortly that the tools learned in the previous three lectures are sufficient to analyze simple digital circuits
Reading: Chapter 5 of Agarwal & Lang
6.002 Fall 2000
Lecture 4
3
But first, why digital? In the past … Analog signal processing R1 V0
R2
V1 + –
V1
and V2 might represent the outputs of two sensors, for example.
+ –
V2
By superposition, V0 =
R2 R1 V1 + V2 R1 + R2 R1 + R2
If R1 = R 2 , V0 =
V1 + V2 2
The above is an “adder” circuit. 6.002 Fall 2000
Lecture 4
4
Noise Problem t
add noise on this wire
Receiver: huh?
…
noise hampers our ability to distinguish between small differences in value — e.g. between 3.1V and 3.2V.
6.002 Fall 2000
Lecture 4
5
Value Discretization Restrict values to be one of two HIGH
LOW
5V
0V
TRUE
FALSE
1
0
…like two digits
0 and 1
Why is this discretization useful? (Remember, numbers larger than 1 can be represented using multiple binary digits and coding, much like using multiple decimal digits to represent numbers greater than 9. E.g., the binary number 101 has decimal value 5.)
6.002 Fall 2000
Lecture 4
6
Digital System sender
noise VN
VS
VR
VN = 0V
receiver
VS
VR
5V “0” “1” “0” HIGH
“0” “1” “0” 5V
t
2.5V
0V
LOW
0V
t
2.5V
With noise
VS
VN = 0.2V
“0” “1” “0” 5V
“0” “1” “0”
0.2V
t
2.5V
VS
t
t
2.5V
0V 6.002 Fall 2000
Lecture 4
7
Digital System
Better noise immunity Lots of “noise margin” For “1”: noise margin 5V to 2.5V = 2.5V For “0”: noise margin 0V to 2.5V = 2.5V
6.002 Fall 2000
Lecture 4
8
Voltage Thresholds and Logic Values
5V
1
1
sender 0
1 2.5V receiver
0
0 0V
6.002 Fall 2000
Lecture 4
9
But, but, but … What about 2.5V? Hmmm… create “no man’s land” or forbidden region For example, 5V
1 sender
3V 2V
0
1
VH
forbidden region
receiver
VL
0
0V
“1”
V
“0”
0V
6.002 Fall 2000
H
Lecture 4
5V V
L 10
But, but, but …
Where’s the noise margin? What if the sender sent 1:
VH ?
Hold the sender to tougher standards! 5V 1
V 0H
1 V IH
sender
V IL
0
receiver 0
V 0L
0V
6.002 Fall 2000
Lecture 4
11
But, but, but …
Where’s the noise margin? What if the sender sent 1:
VH ?
Hold the sender to tougher standards! 5V 1
V 0H
1
sender
Noise margins
V IH
receiver
V IL
0
0
V 0L
0V “1” noise margin: V
- V
“0” noise margin:
-
6.002 Fall 2000
Lecture 4
IH V IL
0H V 0L 12
5V V 0H V IH V IL V 0L 0V
5V V 0H V IH V IL V 0L 0V
0
1
0
1
sender
t
0
1
0
1
receiver
t
Digital systems follow static discipline: if inputs to the digital system meet valid input thresholds, then the system guarantees its outputs will meet valid output thresholds. 6.002 Fall 2000
Lecture 4
13
Processing digital signals Recall, we have only two values —
1,0
Map naturally to logic: T, F Can also represent numbers
6.002 Fall 2000
Lecture 4
14
Processing digital signals Boolean Logic If X is true and Y is true Then Z is true else Z is false. Z = X AND Y
X, Y, Z are digital signals “0” , “1”
Z = X • Y Boolean equation X Y
AND gate
Z
Truth table representation: X Y Z 0 0 1 1
0 1 0 1
0 0 0 1
Enumerate all input combinations 6.002 Fall 2000
Lecture 4
15
Combinational gate abstraction Adheres to static discipline Outputs are a function of
inputs alone.
Digital logic designers do not have to care about what is inside a gate.
6.002 Fall 2000
Lecture 4
16
Demo
X
Y
Z Noise X Y
Z
Z = X • Y 6.002 Fall 2000
Lecture 4
17
Examples for recitation X
t Y
t Z
t Z = X • Y 6.002 Fall 2000
Lecture 4
18
In recitation… Another example of a gate If (A is true) OR (B is true) then C is true else C is false C = A + B A B
Boolean equation OR C
OR gate
More gates B
B Inverter
X Y
Z NAND
Z = X • Y
6.002 Fall 2000
Lecture 4
19
Boolean Identities X X X X
• 1 = X • 0 = X + 1 = 1 +0 = X
1 = 0 0 = 1 AB + AC = A • (B + C)
Digital Circuits Implement: B C
output = A + B • C B•C output
A
6.002 Fall 2000
Lecture 4
20
6.002
CIRCUITS AND ELECTRONICS
Inside the Digital Gate
6.002 Fall 2000
Lecture 5
1
Review The Digital Abstraction z Discretize value 0, 1 z Static discipline
meet voltage thresholds sender VOH VOL
receiver VIH VIL
forbidden region
Specifies how gates must be designed
6.002 Fall 2000
Lecture 5
2
Review Combinational gate abstraction outputs function of input alone satisfies static discipline
A B
C NAND
6.002 Fall 2000
Lecture 5
A 0 0 1 1
B 0 1 0 1
C 1 1 1 0
3
For example: a digital circuit A B
Demo
A⋅ B D
C D = (C ⋅ (A ⋅ B )) 3 gates here
A Pentium III class microprocessor is a circuit with over 4 million gates !! The RAW chip being built at the Lab for Computer Science at MIT has about 3 million gates. 6.002 Fall 2000
Lecture 5
4
How to build a digital gate Analogy l ik e power supply
A
(li taps
s) e h c t i ke sw
B C
if A=ON AND B=ON C has H20 else C has no H20 Use this insight to build an AND gate.
6.002 Fall 2000
Lecture 5
5
How to build a digital gate
OR gate
A C B
6.002 Fall 2000
Lecture 5
6
Electrical Analogy B
A
V + –
C
Bulb C is ON if A AND B are ON, else C is off Key: “switch” device
6.002 Fall 2000
Lecture 5
7
Electrical Analogy equivalent ckt
Key: “switch” device
in
control
C =0
in
out
C
in
out
C=1
3-Terminal device if C = 0 else
out
short circuit between in and out open circuit between in and out
For mechanical switch, control mechanical pressure 6.002 Fall 2000
Lecture 5
8
Consider RL
VOUT
IN
C
+ VS – VS =
OUT
VS RL
VOUT C
“1”
VS
VOUT C =0
Truth table for C VOUT 0 1 1 0
VS
VOUT C =1
6.002 Fall 2000
Lecture 5
9
What about? VS
Truth table for c1 c2 VO 0 0 1 0 1 1 1 0 1 1 1 0
VOUT
c1 c2
Truth table for
VS
VOUT c1
6.002 Fall 2000
c2
Lecture 5
c1 c2 VO 0 0 1 0 1 0 1 0 0 1 1 0
10
What about? can also build compound gates
VS D A
C
D = (A ⋅ B) + C
B
6.002 Fall 2000
Lecture 5
11
The MOSFET Device Metal-Oxide Semiconductor Field-Effect Transistor
drain D
G gate
≡ S source
3 terminal lumped element behaves like a switch
G : control terminal D, S : behave in a symmetric manner (for our needs) 6.002 Fall 2000
Lecture 5
12
The MOSFET Device Understand its operation by viewing it as a two-port element —
out k k c e Ch extboo l the t s interna for it ture. iG c u r t s
G
+ vGS –
D
iDS
vDS S
–
D off
G vGS < VT
G vGS ≥ VT
S
+
D iDS on S
VT ≈ 1V typically
“Switch” model (S model) of the MOSFET
6.002 Fall 2000
Lecture 5
13
Demo
Check the MOS device on a scope. i DS
+ vDS
+ vGS –
–
iDS vGS ≥ VT
vGS < VT iDS vs vDS 6.002 Fall 2000
Lecture 5
vDS
14
A MOSFET Inverter VS = 5V RL
vOUT
A
B
IN
A
B
Note the power of abstraction. The abstract inverter gate representation hides the internal details such as power supply connections, RL, GND, etc. (When we build digital circuits, the and are common across all gates!) 6.002 Fall 2000
Lecture 5
15
Example
vOUT
5V
vOUT
vIN
0V V T =1V
5V
v IN
The T1000 model laptop desires gates that satisfy the static discipline with voltage thresholds. Does out inverter qualify?
1:
0:
VOL = 0.5V
VIL = 0.9V
VOH = 4.5V
VIH = 4.1V
sender 5 4.5 V OH
0.5 0
VOL
receiver
5 4.1 0.9
0 Our inverter satisfies this. 6.002 Fall 2000
Lecture 5
1 VIH VIL
0
16
E.g.: Does our inverter satisfy the static discipline for these thresholds: VOL = 0.2V
VIL = 0.5V
VOH = 4.8V
VIH = 4.5V
yes
x VOL = 0.5V
VIL = 1.5V
VOH = 4.5V
VIH = 3.5V
6.002 Fall 2000
Lecture 5
no
17
Switch resistor (SR) model of MOSFET …more accurate MOS model D
D G
G
G S
D
vGS < VT
S
RON
vGS ≥ VT S e.g. RON = 5 KΩ
6.002 Fall 2000
Lecture 5
18
SR Model of MOSFET D
D G
G
G S
vGS < VT
S
MOSFET S model
iDS
vGS ≥ VT
RON
vGS ≥ VT S
MOSFET SR model
vGS ≥ VT iDS
vGS < VT
1 RON
vGS < VT
vDS
6.002 Fall 2000
D
vDS
Lecture 5
19
Using the SR model RL
vOUT
IN
C
+ VS – VS =
OUT
VS RL
vOUT C
“1”
Truth table for
VS RL
vOUT
C VOUT 0 1 1 0
RON C =0
VS
RL C =1
vGS ≥ VT
vOUT
RON
6.002 Fall 2000
Choose RL, RON, VS such that: V R v = S ON ≤ V OL OUT R +R L ON
Lecture 5
20
6.002
CIRCUITS AND ELECTRONICS
Nonlinear Analysis
6.002 Fall 2000
Lecture 6
1
Review Discretize matter t LCA m1 X KVL, KCL, i-v m2 X Composition rules m3 X Node method m4 X Superposition m5 X Thévenin, Norton
6.002 Fall 2000
Lecture 6
any circuit linear circuits
2
Review Discretize value t Digital abstraction X Subcircuits for given “switch” setting are linear! So, all 5 methods (m1 – m5) can be applied
VS
VS
A =1 B =1
RL
RL
C A
C RON
B
RON
SR MOSFET Model
6.002 Fall 2000
Lecture 6
3
Today Nonlinear Analysis X Analytical method based on m1, m2, m3 X Graphical method X Introduction to incremental analysis
6.002 Fall 2000
Lecture 6
4
How do we analyze nonlinear circuits, for example:
V
+ vD -
+ –
Hypothetical nonlinear D device (Expo Dweeb ☺) iD
+ vD -
D
iD
iD
iD = aebvD
a vD
0,0
(Curiously, the device supplies power when vD is negative)
6.002 Fall 2000
Lecture 6
5
Method 1: Analytical Method Using the node method,
(remember the node method applies for linear or nonlinear circuits)
vD − V + iD = 0 R iD = aebvD
2 unknowns
1 2
2 equations
Solve the equation by trial and error numerical methods
6.002 Fall 2000
Lecture 6
6
Method 2: Graphical Method Notice: the solution satisfies equations 1 and 2 iD
2
iD = aebvD
a vD
iD
V vD 1 iD = − R R
V R
1 slope = − R
V 6.002 Fall 2000
Lecture 6
vD
7
Combine the two constraints iD
V 1 R ~ 0 .4 a ¼
called “loadline” for reasons you will see later
~ 0.5
e.g.
V =1 R =1
V 1
vD
vD = 0.5V iD = 0.4 A
1 4 b =1 a=
6.002 Fall 2000
Lecture 6
8
Method 3: Incremental Analysis Motivation: music over a light beam Can we pull this off? iD
+ vD LED light intensity I D ∝ iD vI music signal
vI (t ) + –
iR
t
vI (t )
iD (t )
light
AMP iR ∝ I R light intensity IR in photoreceiver LED: Light Emitting expoDweep ☺
iR (t )
sound
nonlinear
linear problem! will result in distortion
6.002 Fall 2000
Lecture 6
9
Problem:
The LED is nonlinear
distortion iD
iD vD vD = vI
t vD t
iD
6.002 Fall 2000
vD
Lecture 6
t
10
If only it were linear … iD
iD
vD
vD t
it would’ve been ok.
What do we do? Zen is the answer … next lecture! 6.002 Fall 2000
Lecture 6
11
6.002
CIRCUITS AND ELECTRONICS
Incremental Analysis
6.002 Fall 2000
Lecture 7
1
Review
Nonlinear Analysis X Analytical method X Graphical method Today X Incremental analysis Reading: Section 4.5
6.002 Fall 2000
Lecture 7
2
Method 3: Incremental Analysis Motivation: music over a light beam Can we pull this off? iD
+ vD LED light intensity I D ∝ iD vI music signal
vI (t ) + –
iR
t
vI (t )
iD (t )
light
AMP iR ∝ I R light intensity IR in photoreceiver LED: Light Emitting expoDweep ☺
iR (t )
sound
nonlinear
linear problem! will result in distortion
6.002 Fall 2000
Lecture 7
3
Problem:
The LED is nonlinear
distortion iD
iD vD vD = vI
t vD t
iD
6.002 Fall 2000
vD
Lecture 7
t
4
Insight:
iD
small region looks linear (about VD , ID)
ID
VD
vD
DC offset or DC bias
Trick:
vI
vi (t ) + – VI
+ –
iD = I D + id + vD LED vD = VD + vd VI
6.002 Fall 2000
Lecture 7
vi 5
Result iD
id ID
vD
VD
6.002 Fall 2000
Lecture 7
vd
very small
6
Result vD = vI
vd
vD
VD
t
iD
id
iD
~linear!
ID
t
Demo 6.002 Fall 2000
Lecture 7
7
The incremental method: (or small signal method)
1. Operate at some DC offset or bias point VD, ID . 2. Superimpose small signal vd (music) on top of VD . 3. Response id to small signal vd is approximately linear. Notation:
iD = I D + id
total DC small variable offset superimposed signal
6.002 Fall 2000
Lecture 7
8
What does this mean mathematically? Or, why is the small signal response linear? nonlinear iD = f (vD )
We replaced
vD = VD + ∆vD
large DC
vd
increment about VD
using Taylor’s Expansion to expand f(vD) near vD=VD :
iD = f (VD ) + +
df (vD ) ⋅ ∆vD dvD vD =VD 1 d 2 f (v D ) 2! dvD 2 v
2
⋅ ∆vD + " D =VD
neglect higher order terms because ∆vD is small 6.002 Fall 2000
Lecture 7
9
iD ≈ f (VD ) + constant w.r.t. ∆vD
d f (v D ) ⋅ ∆vD d vD vD =VD constant w.r.t. ∆vD slope at VD, ID
We can write X : I D + ∆iD ≈ f (VD ) +
d f (v D ) ⋅ ∆ vD d vD vD =VD
equating DC and time-varying parts, I D = f (VD )
operating point
d f (v D ) ∆iD = ⋅ ∆vD d vD vD =VD constant w.r.t. ∆vD so, ∆ iD ∝ ∆vD 6.002 Fall 2000
Lecture 7
By notation, ∆ iD = id ∆ v D = vd
10
In our example,
iD = a e
bv D
From X : I D + id ≈ a e bVD + a e bVD ⋅ b ⋅ vd Equate DC and incremental terms,
I D = a ebVD
operating point aka bias pt. aka DC offset
id = a ebVD ⋅ b ⋅ vd id = I D ⋅ b ⋅ vd constant
6.002 Fall 2000
Lecture 7
small signal behavior linear!
11
Graphical interpretation operating point
I D = a ebVD
id = I D ⋅ b ⋅ vd A
slope at VD, ID
iD ID
id
B
VD
operating point vd vD
we are approximating A with B
6.002 Fall 2000
Lecture 7
12
graphically mathematically now, circuit
We saw the small signal Large signal circuit: VI
ID
+ LED VD -
+ –
I D = a ebVD
Small signal response: id = I D b vd + vd -
behaves like:
id
R=
small signal circuit:
vi
+ –
+ vd -
1 ID b
id 1 I Db Linear!
6.002 Fall 2000
Lecture 7
13
6.002
CIRCUITS AND ELECTRONICS
Dependent Sources and Amplifiers
6.002 – Fall 2002: Lecture 8
1
Review
Nonlinear circuits — can use the node method
Small signal trick resulted in linear response
Today
Dependent sources
Amplifiers
Reading: Chapter 7.1, 7.2
6.002 – Fall 2002: Lecture 8
2
Dependent sources Seen previously Resistor Independent Current source
+ i + i
v
–
R v – I
v i= R
i=I
2-terminal 1-port devices New type of device: Dependent source iI i O
+ control port
f ( vI )
+
vI
vO
–
–
output port
2-port device E.g., Voltage Controlled Current Source Current at output port is a function of voltage at the input port 6.002 – Fall 2002: Lecture 8
3
Dependent Sources: Examples
Example 1: Find V + R V –
independent current source
I = I0
V = I0R
6.002 – Fall 2002: Lecture 8
4
Dependent Sources: Examples Example 2: Find V + R V –
voltage controled current source
+ R V –
K I = f (V ) = V
iI +
f (vI ) =
K vI
iO +
vI
vO
–
–
6.002 – Fall 2002: Lecture 8
5
Dependent Sources: Examples Example 2: Find V voltage controled current source
+ R V –
K I = f (V ) = V e.g. K = 10-3 Amp·Volt R = 1kΩ
K V = IR = R V or V 2 = KR or V = KR = 10 −3 ⋅ 10 3 = 1 Volt
6.002 – Fall 2002: Lecture 8
6
Another dependent source example
RL iIN
vI + –
iD
+
+
vIN
vO
–
–
e.g.
VS + –
iD = f (vIN ) iD = f (vIN ) K 2 = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise
Find vO as a function of vI .
6.002 – Fall 2002: Lecture 8
7
Another dependent source example VS RL iIN
vI + –
iD
+
+
vIN
vO
–
–
iD = f (vIN ) e.g.
iD = f (vIN ) K 2 = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise
Find vO as a function of vI .
6.002 – Fall 2002: Lecture 8
8
Another dependent source example VS RL vI vI
+ –
vO K 2 iD = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise
Find vO as a function of vI .
6.002 – Fall 2002: Lecture 8
9
Another dependent source example VS RL vI vI
+ –
vO K 2 iD = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise
KVL
− VS + iD RL + vO = 0 vO = VS − iD RL K 2 vO = VS − (vI − 1) RL 2 vO = VS
for vI ≥ 1 for vI < 1
Hold that thought
6.002 – Fall 2002: Lecture 8
10
Next, Amplifiers
6.002 – Fall 2002: Lecture 8
11
Why amplify? Signal amplification key to both analog and digital processing. Analog: AMP
IN
Input Port
OUT
Output Port
Besides the obvious advantages of being heard farther away, amplification is key to noise tolerance during communication
6.002 – Fall 2002: Lecture 8
12
Why amplify? Amplification is key to noise tolerance during communication No amplification
useful signal
1 mV
e nois
10 mV
huh?
6.002 – Fall 2002: Lecture 8
13
Try amplification e nois
AMP
not bad!
6.002 – Fall 2002: Lecture 8
14
Why amplify? Digital: Valid region 5V
5V
VIH IN VIL 0V
5V
OUT Digital System
IN
5V
VOL
OUT
V OH
VIH VIL
0V
0V
VOH
t
6.002 – Fall 2002: Lecture 8
V OL
t
0V
15
Why amplify? Digital:
Static discipline requires amplification! Minimum amplification needed: VIH VIL
6.002 – Fall 2002: Lecture 8
VOH VOL
VOH − VOL VIH − VIL
16
An amplifier is a 3-ported device, actually Power port Input port
iO
iI
+v – I
Amplifier
+ v Output – O port
We often don’t show the power port. Also, for convenience we commonly observe “the common ground discipline.” In other words, all ports often share a common reference point called “ground.”
POWER IN OUT
How do we build one? 6.002 – Fall 2002: Lecture 8
17
Remember? VS RL vI vI
+ –
vO K 2 iD = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise
KVL
− VS + iD RL + vO = 0 vO = VS − iD RL K 2 vO = VS − (vI − 1) RL 2 vO = VS
for vI ≥ 1 for vI < 1
Claim: This is an amplifier
6.002 – Fall 2002: Lecture 8
18
So, where’s the amplification? Let’s look at the vO versus vI curve. mA e.g. VS = 10V , K = 2 2 , RL = 5 kΩ V K 2 vO = VS − RL (vI − 1) 2 2 2 = 10 − ⋅10 −3 ⋅ 5 ⋅ 103 (vI − 1) 2 vO = 10 − 5 (vI − 1) vO VS
2
∆vO
1
∆vO >1 ∆v I 6.002 – Fall 2002: Lecture 8
∆vI
vI
amplification 19
Plot vO versus vI vO = 10 − 5 (vI − 1)
2
0.1 change in vI
Demo
vI
vO
0.0 1.0 1.5 2.0 2.1 2.2 2.3 2.4
10.00 10.00 8.75 5.00 4.00 2.80 1.50 ~ 0.00
1V change in vO
Gain!
Measure vO .
6.002 – Fall 2002: Lecture 8
20
One nit … vO
What happens here? 1
vI
Mathematically, K 2 vO = VS − RL (vI − 1) 2 So
is mathematically predicted behavior
6.002 – Fall 2002: Lecture 8
21
One nit … vO
K 2 vO = VS − RL (vI − 1) 2 What happens here? vI
1 However, from
iD =
K (vI − 1)2 2 VS
for vI ≥ 1
RL vO
VCCS
iD
For vO>0, VCCS consumes power: vO iD For vO<0, VCCS must supply power! 6.002 – Fall 2002: Lecture 8
22
If VCCS is a device that can source power, then the mathematically predicted behavior will be observed —
vO
K 2 i.e. vO = VS − RL (vI − 1) 2 vI
where vO goes -ve
6.002 – Fall 2002: Lecture 8
23
If VCCS is a passive device, then it cannot source power, so vO cannot go -ve. So, something must give! Turns out, our model breaks down.
K 2 iD = (vI − 1) 2 will no longer be valid when vO ≤ 0 . e.g. iD saturates (stops increasing) and we observe: Commonly
vO
1
6.002 – Fall 2002: Lecture 8
vI
24
6.002
CIRCUITS AND ELECTRONICS
MOSFET Amplifier Large Signal Analysis
6.002 Fall 2000
Lecture 9
1
Review
Amp constructed using dependent source control a a′ port
DS
b output b ′ port
Dependent source in a circuit + –
a +
b
v
i = f (v )
a′ –
b′
Superposition with dependent sources: one way tleave all dependent sources in; solve for one independent source at a time [section 3.5.1 of the text]
Next, quick review of amp …
Reading: Chapter 7.3–7.7 6.002 Fall 2000
Lecture 9
2
Amp review VS RL
vO VCCS
vI
K 2 iD = (vI − 1) 2
+ –
for vI ≥ 1V = 0 otherwise vO = VS − iD RL K (vI − 1)2 2
6.002 Fall 2000
Lecture 9
3
Key device Needed: v A
B i = f (v )
voltage controlled current source
C
Let’s look at our old friend, the MOSFET …
6.002 Fall 2000
Lecture 9
4
Key device Needed: Our old friend, the MOSFET … First, we sort of lied. The on-state behavior of the MOSFET is quite a bit more complex than either the ideal switch or the resistor model would have you believe.
D G vGS < VT
D
S
S
?
G vGS ≥ VT
6.002 Fall 2000
Lecture 9
5
Graphically
Demo
+ vGS –
iDS
egio n
iDS
vGS ≥ VT
vGS < VT
vGS < VT
vDS
S MODEL
vDS
SR MODEL
6.002 Fall 2000
vDS = vGS − VT vGS 1 Saturation region
vGS 2
vGS3 ...
vGS ≥ VT
T ri o de r
iDS
v+DS –
iDS
Lecture 9
vGS < VT Cutoff
vDS
region
6
Graphically + vGS –
iDS
iDS
egio n
S MODEL
vDS
SR MODEL
6.002 Fall 2000
vGS 2
vGS3 ...
vGS < VT
Saturation region
T ri o de r
vGS ≥ VT
vDS
vDS = vGS − VT vGS 1
iDS
vGS ≥ VT
vGS < VT
v+DS –
iDS
vGS < VT
Lecture 9
vDS
when
vDS ≥ vGS − VT Notice that MOSFET behaves like a current source 7
MOSFET SCS Model When
vDS ≥ vGS − VT
the MOSFET is in its saturation region, and the switch current source (SCS) model of the MOSFET is more accurate than the S or SR model
D G vGS < VT S
D
D
G S vGS
G ≥ VT
iDS = f (vGS ) K 2 = (vGS − VT ) 2 S
6.002 Fall 2000
Lecture 9
when
vDS ≥ vGS − VT
8
Reconciling the models… iDS
iDS
vGS ≥ VT
vGS < VT
vDS
S MODEL for fun!
vGS < VT
Saturation region
vGS 2
vGS3 ...
vGS ≥ VT
T ri o de r
egio n
iDS
vDS = vGS − VT vGS 1
vDS
SR MODEL for digital designs
vGS < VT
vDS
SCS MODEL for analog designs
When to use each model in 6.002? Note: alternatively (in more advanced courses)
vDS ≥ vGS − VT vDS < vGS − VT
use SCS model use SR model
or, use SU Model (Section 7.8 of A&L)
6.002 Fall 2000
Lecture 9
9
Back to Amplifier VS vI
AMP
vO
VS RL vI
G
D S
vO K 2 iDS = (vI − VT ) 2 in saturation region
To ensure the MOSFET operates as a VCCS, we must operate it in its saturation region only. To do so, we promise to adhere to the “saturation discipline”
6.002 Fall 2000
Lecture 9
10
MOSFET Amplifier VS RL vI
G
D S
vO K 2 iDS = (vI − VT ) 2 in saturation region
To ensure the MOSFET operates as a VCCS, we must operate it in its saturation region only. We promise to adhere to the “saturation discipline.” In other words, we will operate the amp circuit such that vGS ≥ VT and vDS ≥ vGS – VT vO ≥ vI – vT 6.002 Fall 2000
Lecture 9
at all times.
11
Let’s analyze the circuit First, replace the MOSFET with its SCS model.
VS RL
vO G
vGS = vI
+ –
+ vI –
6.002 Fall 2000
D
iDS
S
Lecture 9
K 2 = (vI − VT ) 2
A
for vO ≥ vI − VT
12
Let’s analyze the circuit VS
RL
vO G
vGS = vI
+ –
+ vI –
D
iDS =
K (vI − VT )2 2
A
for vO ≥ vI − VT
S
(vO = vDS in our example)
1
Analytical method: vO vs vI vO = VS − iDS RL B K 2 or vO = VS − (vI − VT ) RL for vI ≥ VT 2 vO ≥ vI − VT
vO = VS
6.002 Fall 2000
vI < VT (MOSFET turns off) for
Lecture 9
13
Graphical method vO vs vI K 2 From A : iDS = (vI − VT ) , 2 vO ≥ vI − VT 2
for
⇓ 2iDS vO ≥ K ⇓ K 2 iDS ≤ vO 2
B : iDS
6.002 Fall 2000
VS v0 = − RL RL
Lecture 9
14
2
Graphical method vO vs vI K 2 K 2 A : iDS = (vI − VT ) , for iDS ≤ vO 2 2 VS vO = − i B : DS RL RL
iDS VS RL
iDS B
Lo ad
K 2 ≤ vO 2 A
li n e
vI = vGS
VS Constraints 6.002 Fall 2000
A
and
B
Lecture 9
vO
must be met
15
2
Graphical method vO vs vI
iDS VS RL
iDS ≤
K 2 vO 2 A
B
vI
VI
I DS
VO
VS
vO
Constraints A and B must be met. Then, given VI, we can find VO, IDS .
6.002 Fall 2000
Lecture 9
16
Large Signal Analysis of Amplifier (under “saturation discipline”) 1
vO versus vI
2
Valid input operating range and valid output operating range
6.002 Fall 2000
Lecture 9
17
Large Signal Analysis vO versus vI
1
vO
K 2 VS − (vI − VT ) RL 2
VS
VT
6.002 Fall 2000
vO = vI − VT gets into triode region vI
Lecture 9
18
Large Signal Analysis What are valid operating ranges under the saturation discipline?
2
Our Constraints
vI ≥ VT
iDS ≤
vO ≥ vI − VT
iDS VS RL
iDS
K 2 vO 2
K 2 ≤ vO 2
K 2 iDS = (vI − VT ) 2 vI v V iDS = S − O RL RL
VS
? 6.002 Fall 2000
vO
vI = VT vO = VS and iDS = 0 Lecture 9
19
Large Signal Analysis 2
What are valid operating ranges under the saturation discipline?
iDS
iDS
K 2 ≤ vO 2
K 2 iDS = (vI − VT ) 2 vI VS vO iDS = − RL RL vO − 1 + 1 + 2 KRLVS vI = VT + KRL − 1 + 1 + 2 KRLVS vO = KRL VS vO iDS = − RL RL 6.002 Fall 2000
Lecture 9
vI = VT vO = VS and iDS = 0
20
Large Signal Analysis Summary 1
vO versus vI vO = VS −
2
K (vI − VT )2 RL 2
Valid operating ranges under the saturation discipline? Valid input range:
vI : VT
to
− 1 + 1 + 2 KRLVS VT + KRL
corresponding output range:
vO : VS to
6.002 Fall 2000
− 1 + 1 + 2 KRLVS KRL
Lecture 9
21