Zadaci Za Vjezbu

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Zadaci Za Vjezbu as PDF for free.

More details

  • Words: 819
  • Pages: 5
ZADACI ZA VJEŽBU 1. 1 2  0 1 3 A = 2 0 B =  1 1 1  1 1  Izračunajte: a) 2 A ⋅ B b) ( A + 2 B T ) ⋅ B c) (A T - B) ⋅ BT 2. 0 − 1 1 3 1 2 − 1 − 3 0  1   A= i B= 5 1 − 1 0  0    1 7 − 1 0 1 Izračunajte: a) A ⋅ B i B ⋅ A

0 1 0 1 1 1  0 0 0  0 0 2

b) A ⋅ B −1 c) ( A − I ) + 2 B d) A−1 ⋅ B 3. Odredite a, b, c tako da vrijedi aA + bB = C 0 1  2 1 0 1  c a b     A= b c 4  B= c 2 b  C =  − 9 8 − c  − a 0 − c  − a − c 0 − a b a 

4. 2 − 1 2 1 3   1 4 0 5 0 3  1        A = 2 0 − 1  B =  3 5 1  C = 0 0 0  D =  0 − 1 1  4 1 − 2 − 3 0 4 2 0 − 1 − 1 0 1  Izračunajte: a) A + BC b) AB + CD-AC c) ( 3 A + 2 B) ⋅ C d) (C + D) ⋅ (C-D)

5. Riješite matričnu jednadžbu xA3 = 4 x + A2 ako je 1 2 A= . 0 1  6. 1 3 1 2 0  1 1 A= B= C=    3 4  0 1 3 0 1 Izračunajte x ako je A(Bx)-1 = C . 7. Riješite matričnu jednadžbu Ax = B T ako je  1 −2 1  − 1 1 4   A= B = [ 0 13 22 3] .  3 −1 7    1 − 1 4 8. Riješite matričnu jednadžbu AxA-1 = B  0 0 −1 0  0 1 0  0 −1 0 0  1 0 0   A= B= − 1 0 0 0  0 0 0     0 0 0 − 1 0 0 1

ako je 0 0 . 1  0

9. Riješite matričnu jednadžbu xA = 2 x + I ako je 0 1  A= . 1 0 10. Riješite sustav: x1 + x2 = 1 x1 + x2 + x3 = 4 x2 + x3 + x4 = −3 x3 + x4 + x5 = 2 x4 + x5 = -1

Riješite sustav jednadžbi u zadacima 11, 12, 13, 14 i 15. 11. x1 + x 2 + x3 = 6 2 x1 + x 2 + x3 = 7 x1 + 2 x 2 − x3 = 2 12. 2 x1 + 3x 2 + x3 − 2 x 4 = 3 3 x1 − 4 x 2 − 2 x3 − x 4 = −15 -x1 + x 2 + 2 x 4 = 9 2 x1 − x 2 + x3 = 3 13. 2 x1-2 x 2 = -2 3 x1 + 3 x 2 = 9 -5 x1-4 x 2 = -13 x1 + 2 x 2 = 5 14. x1-2 x 2 + x3 -x 4 = 1 2 x1-3 x 2 + 2 x3 + x 4 = 2 15. 5 x1 + x 2 + 4 x3 = 0 3 x1-x 2 -2 x3 = 0 x1 + x3 = 0 16. Odredite parametar p tako da sustav nema rješenja. 2 x-py + 3 z = 5 3 x + 3 y-z = 2 -6 x-6 y-9 z = -15 17. U ovisnosti o parametru k ∈ R riješite sustav: kx + y-z = 1 x + ky-z = 1 x-y-kz = 1

Izračunajte determinantu u zadacima 18, 19 i 20: 18. 3 1 2 4 −1 2 1 −1 1 4 −1 1

3 4 1 5

19. 1 1 1 a b c bc ac ab 20. a b c d a -b -c -d a b -c -d a b c -d Riješite jednadžbu u zadacima 21 i 22: 21. z 1 2 3 z −1 = 0 z −1 3 22. a -1 1 2 a − 1 = 3a a -1 2

Izračunajte vrijednosti determinante u zadacima 23 i 24. 23. 2 -5 3 1 0 4 -1 2 3 0 -2 4 0 1 -2 − 3 24. 1 1 1 1 1 −1 1 1 1 1 −1 1 1 1 1 −1

Related Documents

Zadaci Za Vjezbu
December 2019 4
Zadaci Za Oe
November 2019 8
Zadaci
May 2020 10
Za
June 2020 47
Za
June 2020 38