Xii Differentiation Assignment

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Xii Differentiation Assignment as PDF for free.

More details

  • Words: 957
  • Pages: 2
ASSIGNMENT CLASS XII DIFFERENTIATION 1. Find

dy for the following: dx 1 (a) y  a2  x2

2. Show that

(e) y  log( x  1  x 2 )

(c) y 

cos x  sin x cos x  sin x

(f) y 

1  sin 2 x 1  sin 2 x

d  x 2 2 a2  x  a  x  sin 1     a 2  x 2 .  dx  2 2  a 



4. If y  x  x 2  a 2

6. Find

1 x 2

 sin 2 (2 x  3)

1 x dy , prove that (1  x 2 )  y  0 . 1 x dx

3. If y 

5. Find

3

1  cos 2 x 1  e2 x

(d) y  log

5x

(b) y 

n

 , prove that dydx 

ny x 2  a2

.

dy for the following: dx  cos x  sin x  (c) tan 1    cos x  sin x 

(a) sin 1 (cos x )  cos 1 (sin x )

 1  cos x  (b) tan 1    sin x 

 1  sin x  (d) tan 1    1  sin x 

 1  sin x  1  sin x  (e) tan 1   1  sin x  1  sin x   

dy for the following: dx

 1 x2  1  x 2 (d) tan 1   1  x 2  1 x2 

   

7. If 1  x 2  1  y 2  a  x  y  , prove that

8. If y  x 

 5 x  12 1  x 2 (e) sin 1   13 

dy 1 y 2  . dx 1 x2

1 dy , prove that 2 x  y  2 x . dx x

9. If y x 2  1  log



 1  x 2 1   (c) tan 1    x  

 1 x  (b) cot 1    1 x 

(a) cos 1 (4 x 3  3 x)



x 2  1  x , show that  x 2  1

10. If y log x  x  y , prove that

dy log x  . dx 1  log x 2

dy  xy  1  0 . dx

   

11. If log

12. If y 





x 2  y 2  tan 1

sin 1 x 1 x2

y dy x  y , prove that  . x dx x  y

, prove that 1  x 2 

13. If y  x cos x  cos x sin x , find

14. If x a y b   x  y 

 a b 

 3 x  15. If f ( x )     1 x 

dy  xy  1 . dx

dy . dx

, prove that

dy y  . dx x

2  3x

, find f '  0  .

 2x   2x  16. Differentiate tan 1  . w.r.t. sin 1  2  2   1 x   1 x 

b  dy  17. If x  a sin 2t 1  cos 2t  , y  b cos 2t 1  cos 2t  , show that    .  dx  at t   a 4

 1 t 2  dy 1  t 2 2t 18. If x  a  , show that  . , y  2  1 t 2 dx 2at  1 t 

 d2y  19. If x  2cos   cos 2 and y  2sin   sin 2 , find  2  .  dx    2

20. If y  A cos nx  B sin nx , prove that

21. If y  e x  sin x  cos x  , prove that

22. If y  tan 1 x , show that 1  x 2 

d2y 2 n y0. dx 2

d2y dy 2 2y 0 . 2 dx dx

d2y dy  2x  0 . 2 dx dx

ANSWERS x 15  5 x 2   sin x cos x e2 x 2 1.(a) 2 2 3 2 (b)  2 sin(4 x  6) (c) sec ( x  ) (d)  4 (a  x ) 3(1  x 2 ) 4 3 1  cos 2 x 1  e 2 x

 (f)  sec 2 (  x ) 4 (d)

x 1 x 4

(e)

15. 27 log 3 12

5. (a) 2 1 1 x 2

(b)

1 1 1 (c) 1 (d) (e)  6.(a) 2 2 2

3 1 x 2

(b)

1 1 x2

(e)

1 x 2 1 (c) 2(1  x 2 )

 cos x  13. x cos x    log x  sin x   cos x sin x  sin x tan x  cos x log  cos x   x 

16. 1

19.

3 2

1

Related Documents