Xii Definite Integrals Assignment

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Xii Definite Integrals Assignment as PDF for free.

More details

  • Words: 1,054
  • Pages: 2
ASSIGNMENT CLASS XII DEFINITE INTEGRALS

Evaluate the following:  2

1.

 4 3



2.

cos x dx



0

 2

 0

6.

 2



1 13.  dx 5  4cos x 0

14.

1

ex 17.  dx 1  e2 x 0 2

21.

18.

2

dx 22.

26.

0



 2

 0

0

30.



sin n x dx 34. sin n x  cos n x

2 32

1 x 

1 dx 2 cos x  4 sin x

tan 1 x dx 1 x 2

11.

 2

x 0

cos 2 x dx

  2

15.

 0

 2

cos 4 x dx

12.

19.



cos x dx

16.

sec 4 x dx

20.

0

1

e

x

24.

dx

1



 2

sin x dx sin x  cos x

28.



35.

 2

32.

 1 x 2  42.  cos  dx 2   1 x  0

1 46.  dx 2  9  x

4

x sin x dx

 2 x  1 log  2  x  dx  2

43.

 0

1 dx 1  cot x

36.

ax dx a x



a

1  2x  40.  sin 1  dx 2   1 x  0



44.



x  tan 1 x 

0

 2

1

1 x2 47.  x dx 1 x 2 0

Downloaed from www.amitbajajmaths.blogspot.com

sin 2 x dx sin x  cos x

a

3

1

39.

 0

 4

0

1



  sin x  cos x  dx

 2

 4

 sin 2 x log  tan x  dx

x0 x0

 2

2 x  1 dx

0

 2

sin 2 x dx x  cos 4 x

1  2 x f ( x)   1  2 x

 f ( x) dx, where

1

31.

4

1 x dx 1 x

 0

1

x dx 3 x  x

 sin 1

1

27.



tan x  cot x dx

 2

cos x dx 3cos x  sin x

0

23.

 0

 4

1



2

 x 1  8.   2  e x dx  1 x

0

1

log 1  x  41.  dx 1 x2 0

2

1

x tan x 1 2 0 sec x cos ecx dx 38. 0 cot 1  x  x  dx 1

0

cos 2 x log sin x dx



2x dx 2 1

 5x

 2

dx

2   x  dx

1



45.



2

sin x dx

 4

37.



sin 1 x

0

 4

33.

2

2

  x  dx

x2  2x  3

4.

 4

0

3

29.

1

7.



1

25.

 0

1

 x 1  log x 

 0

1



dx

 2

1 1 x 1  x 2  dx

cos  dx 10. 1  sin   2  sin  

1

1

0

2

log x 1 x2 dx

9.

3.

1  sin 2x dx

0

2

5.

4

48.

2 32

1 x  1

 1  tan 0

2

3

x

dx

a

1

49.

 x 1 x 

5

50.

dx

 x

2

a x

0

0



1 2

dx

51.

54. If

5

a

2

 x

2

b

2



dx

52.

0

x

 x  cos    dx  4 2

a 1

x dx  2a  sin 3 x dx , find the value of



e 0

 2

a

  x  x  2  x  5  dx

2

0

0

53.

 x

2

1

0



x dx .

a

Evaluate the following integrals as limit of sums: 2

55.

  2 x  1 dx

56.

2

  2 x 1 dx

x

57.

2

0

3

60.

4

3 2

 3 dx

  2x

 1 dx

61.

2

  2x

 5 dx

59.

1

0

3

2

58.

3 2

x

2

 x  dx

1

b

  2x

2

 3x  5  dx

62.  e x dx

0

a

ANSWERS 1.

2 3

2.

2 1

7.

1  1 log 2   4 8 4

8.

13.

 3

14.

18.

1 32  12

19.

4 3

20.

1 log 2





2 1

33.

  log 2 2

43.

 4

44.   2

50.

 4

51.

4.

4 9. log   3

 3 5  1 log   5  2 

38.

56. 10

e2 e 2

 1 2

26. 5  2  3

25. 3

32. 

 5 3 3  3. log    1 3 

27.

 4

10.

40.

 4

5.

1 e log   2 2

 1  log 2 4 2

11.

6.

3 16

3 1  log 3 20 10

16.

21.

log 2 1  log 2

22. 2

23. 2e  2

29. 2  2

30.

5 2

28. 4

 2

2

17. tan 1 e 

 4 24. 4

1 2

36. a

35. 0

3 1 log 2  log 5 2 2

12.

15.

34. 0

39. 0

45. 

1 log 6 5

37.

31.

 4

1 42

2 4

  log 2 2

41.

 log 2 8

42.

  log 2 2

 3

47.

 1  4 2

48.

 4

49.

54.

1  or 2 2

55. 6

46.

3 2 2  52.  e 1 2ab  a  b  5 26 82 38 57. 58. 59. 3 3 3

Downloaed from www.amitbajajmaths.blogspot.com

53. 60.

41 3

63 2

61.

93 2

62. eb  e a

Related Documents