An
Educomp Initiative
Mock Test Paper – I Mathematics Class X
m o .r c u o H g n i n r a e .L w w w Solution
Section A
1.
17 has none of the 2, 3, 5 as its factors so given rational no. is in simplest form Also 90 = 2 × 32 × 5 2m ×5n.
2. 3.
17 is a non-terminating repeating. 90
The graph intersects the x-axis at one point the number of zero is one. 3x + y – 1 = 0
... (1)
2(3x + y – 1) = 0
… (2)
a1 b c 1 1 a2 b2 c2
The pair of linear equation is consistent with infinite solutions.
4.
Put x 3 in the equation
( 3) 2 3 3 3 6 0
3 – 9 + 6 0 0 = 0, which is true
x 3 is soln of the equation.
5.
tan = 1, AB2 = AC2 + BC2 AB = sin =
2
1 1 , cos = 2 2
2sin cos = 2
1 1 1 ; proved. 2 2
www.learninghour.com India's No. 1 Tutoring Company
1
[email protected] Ph: 011-26121440, 011-26897579
An
Educomp Initiative
A
6.
5 .6
cm
m o .r c u o H g n i n r a e .L w w w B
3.2 cm
C
6 cm
In ABC, AD is the bisector of A
BD AB 3.2 5.6 DC AC 6 3.2 AC
AC
7.
2.8 5.6 4.9 cm 3.2
POQ + PTQ = 180°
PTQ = 180° – 110° = 70° x =70°
8.
2r – 2r = 105 2r (– 1) = 105
22 105 7 1 105 r 24.5 cm 2 15 7
2r
9.
P (E) + P ( not E ) = 1
= P(E) = 1 – P (not E) = 1
10.
1 5 6 6
a
5 6
x 10 xi 10 5 50
new x
new x
x
i
5
xi 50 3 5 35
3 5 7 5
www.learninghour.com India's No. 1 Tutoring Company
2
[email protected] Ph: 011-26121440, 011-26897579
An
Educomp Initiative
Solution B 11.
Sum of zeros =
(coefficient of x ) (coefficient of x 2 )
c ab c ab 1
m o .r c u o H g n i n r a e .L w w w
Product of zeroes =
(constant term) coeff .of x 2
=
abc – abc 1
Or
3x 8 2x 5 6 x2 31x 47 6 x2 15x
–
+
16x 47 16x 40
+
12.
– 7
Quotient = 3x – 8 Remainder = 7
sin 5 A = cos 4A
sin 5A = sin (90° – 4A) 5 A = 90 – 4 A
5 A + 4A = 90 A =
13.
90 = 10° 9
In ABP and AQD, we have, BAQ = AQD (alt S) B = D
ABP ~ QDA (AA ~ Rule)
AB BP AB × AD = BP × DQ DQ AD
Hence AB × BC = BP × DQ = [ AD = BC]
www.learninghour.com India's No. 1 Tutoring Company
3
[email protected] Ph: 011-26121440, 011-26897579
An
14.
Let r be the radius of circle area of circle = r2
m o .r c u o H g n i n r a e .L w w w r2 2
Area of semicircle =
2
r 45 r 360 8
Area of sector ROQ =
Area of sector POR
2
r 2 r 2 3 r 2 2 8 8
P(E) of the spinner to land in region II =
15.
Educomp Initiative
3 r 2 / 8 3 = 8 r2
AB = BC
2
2
1 6 3 1
25 16 =
41 = K2 – 2K + 26
K2 –2K – 15 = 0
(K – 5) (K + 3) = 0
K = 5 or – 3
2
2
K 1 8 3
K 2 2 K 1 25
Section C
16.
Let the length of altitude be xcm length of hypotenuse = 2x + 1
length of base = 2x + 1 –2 = 2x – 1 Using pythogoras thm, we get x2 + (2x –1)2 = (2x + 1)2 x2 – 8x = 0
x(x – 8) = 0 0 or x = 8 rejecting x = 0 length of sides of are 8 cm, 17cm and 15 cm.
www.learninghour.com India's No. 1 Tutoring Company
4
[email protected] Ph: 011-26121440, 011-26897579
An
Educomp Initiative
Or
a 2 b2 0 17. x² + bx – 4
m o .r c u o H g n i n r a e .L w w w b a2 b2 x² + 2 2 x = 4 b x + 2 2x + 2
2
a2 b2 b b = + 4 2 2
2
2
b a2 x = 2 4
x
18.
b a = 2 2
x
b a 2 2
x
b a b a , 2 2
tn = 5 – 6 n
t1 = 5 – 6×1 = –1
a = –1 and l = 5 – 6n Sum of n terms, Sn
n a l n 1 5 6n 2 2 n 4 6n n 2 3n 2
www.learninghour.com India's No. 1 Tutoring Company
5
[email protected] Ph: 011-26121440, 011-26897579
An
19.
Educomp Initiative
Let a be any positive integer of the form 5q + 1 a = 5q + 1 a2 = (5q + 1)2
m o .r c u o H g n i n r a e .L w w w a2 = 25q2 + 10q + 1 = 5 (5q2 + 2q) + 1 =5m+1
where m = 5q2 + 2q Hence proved.
20.
To prove;
cos A sin A sinA cosA 1 tanA 1 cotA
L.H.S,
cos A sin A 1 sinA/cosA 1 cotA/sinA
=
cos 2 A sin 2 A cosA–sinA sinA–cosA
cosA sinA cosA sinA cos 2 A sin 2 A = cosA–sinA cosA–sinA cosA sinA = cos A + sin A = RHS Hence proved.
Or
4 cos70 cosec 90 70 3cos 55 7sin 90 55 7 tan5 tan85 tan25 tan65 tan45
=
3cos 55 4 cos70 sec70 7 cos55 7 tan5 tan 90 –5 tan 25 tan 90 25 1
www.learninghour.com India's No. 1 Tutoring Company
6
[email protected] Ph: 011-26121440, 011-26897579
An
22.
3 4 7 7 tan 5 cot 5 tan 25 cot 25
m o .r c u o H g n i n r a e .L w w w =
21.
Educomp Initiative
3 4 3 4 1 7 7 7 7
Solution for Q. 21 to be done by students.
Let A (4,6) , B (0, 4) andC(6,2) be the vertices of the triangle ABC. Let P(x, y) be the circumcentre of ABC. Then, PA= PB = PC
PA² = PB² = PC²
Now, PA² = PB²
(x – 4)2 + (y – 6)2 = (x – 0)2 + (y – 4)2 2x + y = 9
… (i)
Also PB2 = PC2
(x – 0)2 + (y – 4)2 = (x – 6)2 + (y – 2)2
12x – 4y = 24 3x – y = 6 Adding (i) & (ii), we get
… (ii)
5x = 15 x = 3
23.
y = 9 – 2x (from i)
y=9–6=3
x = 3, y = 3
The coordinates of any point on y-axis are of type (O, y). Let point be P(O, y) Let A and B denote given points (–5, –2) and (3, 2) respectively
AP = BP
2
2
0 5 y 2
2
2
0 3 y 2
25 y 2 4 4 y 9 y 2 4 4 y
www.learninghour.com India's No. 1 Tutoring Company
7
[email protected] Ph: 011-26121440, 011-26897579
An
Educomp Initiative
16 8 y y 2
m o .r c u o H g n i n r a e .L w w w The coordinates are (0, –2)
24.
Since the tangents from an external point to a circle are equal in length
A
B
P
C
and
BP = BQ
… (i)
CP = CR
… (ii)
AQ = AR
… (iii)
R
Q
Now, perimeter of ABC =
AB + BC + AC
=
AB + (BP + PC ) + AC
=
AB + BQ + AC + CR (from (i) & (ii))
=
AQ + AR
=
2 AQ [ AQ = AR]
Or
In ABC, B=90°
CA2 = AB2 + BC2 [by pythagoras theorem]
(Now AD2 = AB2 + BC2 + CA2 – given) = CA2 + CD2 [ CA = CD]
Now , in ACD, we have AD2 = CA2 + CD
ACD = 90°
www.learninghour.com India's No. 1 Tutoring Company
8
[email protected] Ph: 011-26121440, 011-26897579
An
25.
Educomp Initiative
Area of region ABCD = area of sector AOC – area of sector BOD
40 22 40 22 14 14 7 7 cm 2 360 7 360 7
m o .r c u o H g n i n r a e .L w w w =
22 154 cm² = (28.7)cm2 = 9 3
Or
Area of field
Total cost of ploughing Rate per m 2
5775 2 m 3850 m² 1.5
=
Let r be the radius of field, area of circle = r2 r2 = 3850 r 3850
7 = 22
Circumference of field = r = 2 Cost of fencing the field = 220
35 35 35
22 35 = 220 m 7
17 Rs.1870 2
Section D
26.
If a line is drawn parallel to one side of a triangle intersecting the other two sides then it divides the two sides in the same ratio. A
F
D
Given : A ABC in which DE | | BC and intersects AB in D and AC in E
G
E
To prove :
B
www.learninghour.com India's No. 1 Tutoring Company
AD AE DB EC
C
9
[email protected] Ph: 011-26121440, 011-26897579
An
Educomp Initiative
Construction : Join BE, CD and draw EF BA and DG CA. Proof : Since EF AG.EF the height of s ADE and DBE.
m o .r c u o H g n i n r a e .L w w w Now, Area (ADE)=
1 (AD.EF) 2
1 Area ( DBE) = DB . EF 2
Area ADE Area DBE
½ AD.EF ½ DB.EF
AD DB
… (i)
Similarly
Area ADE Area DEC
AE EC
… (ii)
But DBE and DEC are on the same base and between the same parallel DE and BC. ar (DBE) = ar (DEC)
… (iii)
from (i), (ii) and (iii) ar ADE ar DEC
ar ADE ar DBE
AE AD = EC DB
Now, LM | | AB in ABC
AL BM = LC MC
AL BM AC AL BC BM
x3 x2 2 x ( x 3) (2 x 3) ( x 2)
(x 3) ( x 5) (x 2)( x 3)
x ² 2 x 15 x ² x 6
x=9
www.learninghour.com India's No. 1 Tutoring Company
10
[email protected] Ph: 011-26121440, 011-26897579
An
27.
Educomp Initiative
For the upper portion of the shuttle cock r1 = 1 cm, r2 = 5/2 cm, h = (7 – 1) cm = 6
m o .r c u o H g n i n r a e .L w w w 2
l h2 r2 r1
36 2.25 cm =
38.25 cm 6.2(approx)
C.S.A. of frustum part = l (r1 + r2) = × 6.2 ×(2.5 + 1) cm² = 21.7 cm² C.S.A of hemisphere part with radius 1cm = 2 r12 = 2 (1)2 = 2 cm²
Total S.A. = (21.7+2) cm² = 23.7
22 74.49 cm² 74.5 cm² 7 Or
Inner radius of the glass (r) =
7 cm Height (h) = 12 cm 2
Apparent capacity of the glass = r2h
22 7 7 12 462 cm³ 7 2 2
volume of inverted hemispherical bottom =
2 22 7 7 7 539 2 cm³ r³ = 3 7 2 2 2 6 3
Actual capacity of glass = 462
28.
539 2233 1 cm³ 372 cm³ 6 6 6
Let the original no. of student in room Aand room B be x and y resp. 5 students shifted from : x – 5 = y + 5 A to B
5 students are shifted : x + 5 = 2(y – 5) from B to A
www.learninghour.com India's No. 1 Tutoring Company
11
[email protected] Ph: 011-26121440, 011-26897579
An
Educomp Initiative
The pair of linear equation is
x y 10
… (i)
x 2 y 15
… (ii)
m o .r c u o H g n i n r a e .L w w w x
10
5
x
5
–5
y
0
–5
y
10
5
From the graph (to be drawn) we see that the lines intersect at P (35, 25) No. of students in room A = 35
No. of students in room B = 25
29.
Let B be the window of a house AB and let CD be the other house. Then AB = h m Let CD = H metres, CE = AB = h m
D
ED = (H – h) m
(H-h)m
From rt BED
BE BE cot cot ED (H h)
BE = cot (H – h)
… (i)
E
In rt d BEC tan =
Hm
CE BE h cot BE
… (ii)
hm
From (i) and (ii)
(H – h) cot = h cot
H = h
30.
(cot cot ) h(1 + tan cot ) cot
Class
Frequency
Med pt. ni
f in i
0-20
17
10
170
20-40
f1
30
30f1
40-60
32
50
1600
60-80
f2
70
70f2
80-100
19
90
1710
Total
120
www.learninghour.com India's No. 1 Tutoring Company
12
[email protected] Ph: 011-26121440, 011-26897579
An
f
i
Educomp Initiative
17 f1 32 f 2 19 120
68 + f1 + f2 = 120
f1 + f2 = 120 – 68
f1 + f2 = 52
m o .r c u o H g n i n r a e .L w w w f x 17 30 f i i
Mean =
1
1600 70 f 2 1710 = 3480 + 30f1 + 70f2
3480 30 f1 70 f 2 50 120
30 f1 + 70 f2 = 2520
…(ii)
By solving (i) and (ii) we get f1 =
112 28 4
f2 = 52 – 28 = 24
Or
The classes are discontinuous form New Class Intervals. Height (in cm)
No. of student
159.5-162.5
15
162.5-165.5
118
165.5-168.5
142
168.5-171.5
127
171.5-174.5
18
1 = 165.5, h = 3, f1 = 142, fo = 118 f2 = 127
f1 f o h 2 f f f 2 1 0
Mo = l +
142 118 24 3 = 165.5 + 3 39 2 142 118 127
= 165.5 +
= 165.5 +
24 165.5 1.85 = 167.35. 13
........End of Solution........
www.learninghour.com India's No. 1 Tutoring Company
13
[email protected] Ph: 011-26121440, 011-26897579