X Maths Sqp1 Sol

  • Uploaded by: PRADEEP GUPTA
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View X Maths Sqp1 Sol as PDF for free.

More details

  • Words: 2,933
  • Pages: 13
An

Educomp Initiative

Mock Test Paper – I Mathematics Class X

m o .r c u o H g n i n r a e .L w w w Solution

Section A

1.

17 has none of the 2, 3, 5 as its factors so given rational no. is in simplest form Also 90 = 2 × 32 × 5  2m ×5n. 

2. 3.

17 is a non-terminating repeating. 90

The graph intersects the x-axis at one point the number of zero is one. 3x + y – 1 = 0

... (1)

2(3x + y – 1) = 0

… (2)



a1 b c  1  1 a2 b2 c2

The pair of linear equation is consistent with infinite solutions.

4.

Put x  3 in the equation

( 3) 2  3 3  3  6  0

3 – 9 + 6  0  0 = 0, which is true

 x  3 is soln of the equation.

5.

tan  = 1, AB2 = AC2 + BC2  AB = sin =

2

1 1 , cos = 2 2

 2sin  cos = 2 

1 1   1 ; proved. 2 2

www.learninghour.com India's No. 1 Tutoring Company

1 [email protected] Ph: 011-26121440, 011-26897579

An

Educomp Initiative

A

6.

5 .6

cm

m o .r c u o H g n i n r a e .L w w w B

3.2 cm

C

6 cm

In  ABC, AD is the bisector of A



BD AB 3.2 5.6    DC AC 6  3.2 AC

 AC

7.

2.8  5.6  4.9 cm 3.2

 POQ + PTQ = 180°

 PTQ = 180° – 110° = 70°  x =70°

8.

2r – 2r = 105 2r (– 1) = 105

22  105  7  1  105  r   24.5 cm 2  15  7 

 2r 

9.

P (E) + P ( not E ) = 1

= P(E) = 1 – P (not E) = 1 

10.

1 5  6 6

a 

5 6

x 10   xi 10  5  50

new x 

new x 

x

i

5

  xi  50  3  5  35

3 5 7 5

www.learninghour.com India's No. 1 Tutoring Company

2 [email protected] Ph: 011-26121440, 011-26897579

An

Educomp Initiative

Solution B 11.

Sum of zeros =

(coefficient of x ) (coefficient of x 2 )

c  ab  c  ab 1

m o .r c u o H g n i n r a e .L w w w 

Product of zeroes =

 (constant term) coeff .of x 2

=

 abc  – abc 1

Or

3x  8 2x  5 6 x2  31x  47  6 x2 15x



+

16x  47 16x  40

+

12.

– 7

 Quotient = 3x – 8 Remainder = 7

sin 5 A = cos 4A

sin 5A = sin (90° – 4A) 5 A = 90 – 4 A

5 A + 4A = 90  A =

13.

90 = 10° 9

In  ABP and  AQD, we have, BAQ = AQD (alt S) B = D

ABP ~  QDA (AA ~ Rule)



AB BP AB × AD = BP × DQ  DQ AD

Hence AB × BC = BP × DQ = [ AD = BC]

www.learninghour.com India's No. 1 Tutoring Company

3 [email protected] Ph: 011-26121440, 011-26897579

An

14.

Let r be the radius of circle area of circle = r2

m o .r c u o H g n i n r a e .L w w w  r2 2

Area of semicircle =

2

 r  45  r  360 8

Area of sector ROQ =

 Area of sector POR 

2

 r 2  r 2 3 r 2   2 8 8

 P(E) of the spinner to land in region II =

15.

Educomp Initiative

3 r 2 / 8 3 = 8 r2

AB = BC

2

2



1  6   3  1



 25  16  =



41 = K2 – 2K + 26



K2 –2K – 15 = 0



(K – 5) (K + 3) = 0



K = 5 or – 3



2

2

 K  1  8  3 

K 2  2 K  1  25

Section C

16.

Let the length of altitude be xcm length of hypotenuse = 2x + 1

length of base = 2x + 1 –2 = 2x – 1 Using pythogoras thm, we get x2 + (2x –1)2 = (2x + 1)2  x2 – 8x = 0

 x(x – 8) = 0  0 or x = 8 rejecting x = 0 length of sides of  are 8 cm, 17cm and 15 cm.

www.learninghour.com India's No. 1 Tutoring Company

4 [email protected] Ph: 011-26121440, 011-26897579

An

Educomp Initiative

Or

 a 2  b2    0 17. x² + bx –  4  

m o .r c u o H g n i n r a e .L w w w b a2  b2    x² + 2 2 x =   4 b x + 2  2x +   2

2

a2  b2  b  b   = +   4 2 2

2

2

b a2  x    =  2 4 

 x

18.

b a = 2 2

 x

b a  2 2

 x

b  a b  a , 2 2

tn = 5 – 6 n

t1 = 5 – 6×1 = –1

 a = –1 and l = 5 – 6n  Sum of n terms, Sn 



n a  l  n  1  5  6n  2 2 n 4  6n  n 2  3n 2

www.learninghour.com India's No. 1 Tutoring Company

5 [email protected] Ph: 011-26121440, 011-26897579

An

19.

Educomp Initiative

Let a be any positive integer of the form 5q + 1 a = 5q + 1 a2 = (5q + 1)2

m o .r c u o H g n i n r a e .L w w w  a2 = 25q2 + 10q + 1 = 5 (5q2 + 2q) + 1 =5m+1

where m = 5q2 + 2q Hence proved.

20.

To prove;

cos A sin A   sinA  cosA 1  tanA 1  cotA

L.H.S,

cos A sin A  1  sinA/cosA 1  cotA/sinA

=

cos 2 A sin 2 A  cosA–sinA sinA–cosA

cosA  sinA cosA  sinA  cos 2 A sin 2 A  = cosA–sinA cosA–sinA  cosA  sinA  = cos A + sin A = RHS Hence proved.

Or

4  cos70  cosec 90   70   3cos 55   7sin 90   55   7  tan5  tan85   tan25  tan65   tan45 

=

3cos 55 4 cos70 sec70  7 cos55 7 tan5 tan 90 –5  tan 25 tan 90  25  1

www.learninghour.com India's No. 1 Tutoring Company

6 [email protected] Ph: 011-26121440, 011-26897579

An



22.

3 4  7 7  tan 5 cot 5 tan 25 cot 25 

m o .r c u o H g n i n r a e .L w w w =

21.

Educomp Initiative

3 4 3  4 1    7 7 7 7

Solution for Q. 21 to be done by students.

Let A (4,6) , B (0, 4) andC(6,2) be the vertices of the triangle ABC. Let P(x, y) be the circumcentre of ABC. Then, PA= PB = PC

 PA² = PB² = PC²

Now, PA² = PB²

 (x – 4)2 + (y – 6)2 = (x – 0)2 + (y – 4)2  2x + y = 9

… (i)

Also PB2 = PC2

 (x – 0)2 + (y – 4)2 = (x – 6)2 + (y – 2)2

 12x – 4y = 24  3x – y = 6 Adding (i) & (ii), we get

… (ii)

5x = 15  x = 3

23.



y = 9 – 2x (from i)



y=9–6=3



x = 3, y = 3

The coordinates of any point on y-axis are of type (O, y). Let point be P(O, y) Let A and B denote given points (–5, –2) and (3, 2) respectively

 AP = BP 

2

2

0  5    y  2 



2

2

0  3    y  2 

 25  y 2  4  4 y  9  y 2  4  4 y

www.learninghour.com India's No. 1 Tutoring Company

7 [email protected] Ph: 011-26121440, 011-26897579

An

Educomp Initiative

 16   8 y  y  2

m o .r c u o H g n i n r a e .L w w w  The coordinates are (0, –2)

24.

Since the tangents from an external point to a circle are equal in length

A

B

P

C

and

 BP = BQ

… (i)

CP = CR

… (ii)

AQ = AR

… (iii)

R

Q

Now, perimeter of ABC =

AB + BC + AC

=

AB + (BP + PC ) + AC

=

AB + BQ + AC + CR (from (i) & (ii))

=

AQ + AR

=

2 AQ [ AQ = AR]

Or

In ABC, B=90°

 CA2 = AB2 + BC2 [by pythagoras theorem]

(Now AD2 = AB2 + BC2 + CA2 – given) = CA2 + CD2 [ CA = CD]

Now , in ACD, we have AD2 = CA2 + CD

 ACD = 90°

www.learninghour.com India's No. 1 Tutoring Company

8 [email protected] Ph: 011-26121440, 011-26897579

An

25.

Educomp Initiative

Area of region ABCD = area of sector AOC – area of sector BOD

40 22  40 22    14  14    7  7  cm 2 360 7  360 7 

m o .r c u o H g n i n r a e .L w w w =

22 154 cm² = (28.7)cm2 = 9 3

Or

Area of field 

Total cost of ploughing Rate per m 2

 5775  2  m  3850 m²  1.5 

=

Let r be the radius of field, area of circle = r2  r2 = 3850  r  3850

7 = 22

Circumference of field = r = 2  Cost of fencing the field = 220 

35  35  35

22  35 = 220 m 7

17  Rs.1870 2

Section D

26.

If a line is drawn parallel to one side of a triangle intersecting the other two sides then it divides the two sides in the same ratio. A

F

D

Given : A  ABC in which DE | | BC and intersects AB in D and AC in E

G

E

To prove :

B

www.learninghour.com India's No. 1 Tutoring Company

AD AE  DB EC

C

9 [email protected] Ph: 011-26121440, 011-26897579

An

Educomp Initiative

Construction : Join BE, CD and draw EF  BA and DG  CA. Proof : Since EF  AG.EF the height of s ADE and DBE.

m o .r c u o H g n i n r a e .L w w w Now, Area (ADE)=

1 (AD.EF) 2

1 Area ( DBE) = DB . EF 2 

Area  ADE  Area  DBE 



½ AD.EF  ½ DB.EF 



AD DB

… (i)

Similarly

Area  ADE  Area  DEC 



AE EC

… (ii)

But DBE and  DEC are on the same base and between the same parallel DE and BC. ar (DBE) = ar (DEC)

… (iii)

from (i), (ii) and (iii) ar ADE  ar DEC 





ar ADE  ar  DBE 

AE AD = EC DB

Now, LM | | AB in ABC

AL BM = LC MC



AL BM  AC  AL BC  BM



x3 x2  2 x  ( x  3) (2 x  3)  ( x  2)



(x  3) ( x  5)  (x  2)( x  3)



x ²  2 x  15  x ²  x  6



x=9

www.learninghour.com India's No. 1 Tutoring Company

10 [email protected] Ph: 011-26121440, 011-26897579

An

27.

Educomp Initiative

For the upper portion of the shuttle cock r1 = 1 cm, r2 = 5/2 cm, h = (7 – 1) cm = 6

m o .r c u o H g n i n r a e .L w w w 2

l  h2  r2  r1  

36  2.25 cm =

38.25 cm 6.2(approx)

C.S.A. of frustum part = l (r1 + r2) =  × 6.2 ×(2.5 + 1) cm² = 21.7  cm² C.S.A of hemisphere part with radius 1cm = 2 r12 = 2 (1)2 = 2 cm²

Total S.A. = (21.7+2) cm² = 23.7 

22  74.49 cm²  74.5 cm² 7 Or

Inner radius of the glass (r) =

7 cm Height (h) = 12 cm 2

Apparent capacity of the glass = r2h

22 7 7    12  462 cm³ 7 2 2

volume of inverted hemispherical bottom =

2 22 7 7 7 539 2     cm³ r³ =  3 7 2 2 2 6 3

 Actual capacity of glass = 462 

28.

539 2233 1  cm³  372 cm³ 6 6 6

Let the original no. of student in room Aand room B be x and y resp. 5 students shifted from : x – 5 = y + 5 A to B

5 students are shifted : x + 5 = 2(y – 5) from B to A

www.learninghour.com India's No. 1 Tutoring Company

11 [email protected] Ph: 011-26121440, 011-26897579

An

Educomp Initiative

 The pair of linear equation is

x  y  10

… (i)

x  2 y  15

… (ii)

m o .r c u o H g n i n r a e .L w w w x

10

5

x

5

–5

y

0

–5

y

10

5

From the graph (to be drawn) we see that the lines intersect at P (35, 25) No. of students in room A = 35



No. of students in room B = 25

29.

Let B be the window of a house AB and let CD be the other house. Then AB = h m Let CD = H metres, CE = AB = h m

D

ED = (H – h) m

(H-h)m

From rt BED

BE BE  cot    cot  ED (H  h)

 BE = cot  (H – h)

… (i)



E

In rt d  BEC tan  =

Hm



CE  BE  h cot  BE

… (ii)

hm

From (i) and (ii)



(H – h) cot  = h cot 

H = h

30.

(cot   cot )  h(1 + tan  cot ) cot 

Class

Frequency

Med pt. ni

f in i

0-20

17

10

170

20-40

f1

30

30f1

40-60

32

50

1600

60-80

f2

70

70f2

80-100

19

90

1710

Total

120

www.learninghour.com India's No. 1 Tutoring Company

12 [email protected] Ph: 011-26121440, 011-26897579

An

f

i

Educomp Initiative

17  f1  32  f 2  19  120



68 + f1 + f2 = 120



f1 + f2 = 120 – 68



f1 + f2 = 52

m o .r c u o H g n i n r a e .L w w w  f x  17  30 f i i

Mean =

1

 1600  70 f 2  1710 = 3480 + 30f1 + 70f2

3480  30 f1  70 f 2  50 120

 30 f1 + 70 f2 = 2520

…(ii)

By solving (i) and (ii) we get f1 =

112  28 4

f2 = 52 – 28 = 24

Or

The classes are discontinuous form New Class Intervals. Height (in cm)

No. of student

159.5-162.5

15

162.5-165.5

118

165.5-168.5

142

168.5-171.5

127

171.5-174.5

18

1 = 165.5, h = 3, f1 = 142, fo = 118 f2 = 127



f1  f o    h 2 f  f  f 2   1 0

Mo = l + 

142  118   24   3 = 165.5 + 3 39  2  142  118  127 

= 165.5 + 

= 165.5 +

24  165.5  1.85 = 167.35. 13

........End of Solution........

www.learninghour.com India's No. 1 Tutoring Company

13 [email protected] Ph: 011-26121440, 011-26897579

Related Documents

X Maths Sqp1 Sol
October 2019 9
X Maths Sqp1 Qp
October 2019 9
Sqp-maths-x-2008
November 2019 6
Ncert- Maths - Class X
April 2020 9
Dpp3 Maths X Questions
December 2019 19
Dpp2 Maths Questions X
December 2019 24

More Documents from ""

X Maths Sqp1 Sol
October 2019 9
X Maths Sqp1 Qp
October 2019 9
Nabard
April 2020 3
Iswcbof
October 2019 23
Bajaj Allianz Limited
June 2020 7