Wzory na I sprawdzian z pis.
12 S W := 2 3 , S := n (k − k )
k
n
−
∑ (∑ xij − x) 2 , x =1 j =1
f ( t ) = α 0 + α 1t , a = ( X′X ) X′y
Ve =
se 2 ,ϕ = y
∑( y t =1 n
t
∑( y t =1
t
− yˆ t ) − y)
P T
n
j= 1 i =1
ij
, χ 2 = Wn(k − 1)
1 n ( yt − yˆ t ) 2 , se = s = ∑ n − 2 t =1
a = 0, a1
2 e
se2
,
2
(i ) −1 R 2 = 1 − ϕ 2 , var( a ) = se2 ( X′X ) , t =
, 2
a yTP = ca = [1 T ] ⋅ 0 , sD = T a1
(y
k
∑∑x k
i =1 −1
n
_
[
]
s 1 + c( X′X ) c′ 2 e
)
−1
, V DT =
s DT
ai , D ( ai )
, VI TP =
y TP
dI P T
,
P T
y
− u ⋅ s DT , yTP + u ⋅ s DT . ~2
yt = α 0 ⋅ α1 ⋅ e , ln yt = ln α 0 + t ln α1 + ξ t , s e = ξt
t
[
~
]
1 n ( ln yt − ln yˆ t ) 2 , ∑ n − 2 t =1
~
α1 ξ t −1 s DT = se2 1 + c( X′X ) c′ , s DT = s DT ⋅ yTP , yt = α 0 + α1 ln t + ξ t , yt = α 0 t e ,
1 ln yt = ln α 0 + α1 ln t + ξ t , yt = α 0 + α1 + ξ t , t y tlj
= f (T ) + g lj
^
j
+ ξ tij , et = y t − y t , g ′j = ij ij ij
1 N
N
∑ et , g j = g ′j − g ′ , g ′ = lj
l =1
1 m ∑ g ′j , m j =1
1 ytlj = f ( tlj ) w j + ξ tij , u t = yt / y t , w' j = ∑ u t , w j = w' j / w' , w' = ∑ w' j , N l =1 m j =1 N
^
ij
u=
∑(
1 yt − ytP m t∈I ep
)
, Vu =
ij
u y t∈I ep
ij
_
lj
_
1
m
m
∑g j =1
m
∑w j =1
j
j
=0 =m
sP 1 P 2 , s p = m ∑ ( yt − yt ) , V s P = y t∈I ep t∈I ep
n/2 2 n ~ 2 n ~ 2π 2π 2π 2π y t = f (t ) + ∑ α i sin it + β i cos it , a i = ∑ y t sin it , bi = ∑ y t cos it , n t =1 n t =1 n n n n i =1 a i2 + bi2 a n2 / 2 + bn2/ 2 1 n ~ 2 2 a n / 2 = 0 , bn / 2 = ∑ y t cos(π t ) , Ai = a i + bi , wi = , wn / 2 = , 2 sY2 sY2 n t =1