Ww

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ww as PDF for free.

More details

  • Words: 519
  • Pages: 1
7.3.3.3 four-layer neuro-fuzzy system (ANFIS) although the five-layer structure described here has been so far the nost commonly known for ANFIS architecture, there has been another suggested structure of ANFIS involving a four-layer architecture. in this structure , layers three and four pertaining to normalization and consequent variables are combined in such a way as to obtain an equivalent structure with only four layers. in the new network the weight normalization takes place at the last layer[15]. figture 7.8 shows the ANFIS four-layer structure with two inputs. 7.3.3.4 three-layer neuro-fuzzy approximator in[22], L.maguire and co-authors introduced a three-layer neuro-fuzzy system as an alternative architecture for approximate fuzzy reasoning. the fuzzy model used in their works is a zero-order sugeno model, where each fuzzy rule has a euzzy singleton consequent. the proposed neuro-fuzzy architecture implements the zero-order sugeno type as a three-layer network. the first laye consist of n+1 nodes where n is the number of inputs. the extra node represents a unity bias input. the input layaer (first layer) broadcasts the inputs to selected nodes in the hidden layer. the number of nodes in the hidden layer depends on the number of fuzzy sets associated with each input domain. the number of nodes in the hidden layer is determined by the relation np, where p is the number of fuzzy sets (partitions) in each input domain and n is the number of inputs. each node in the hidden layer receives two weighted inputs, one from one of the input variables and the second from the bias node. in the hidden node, the squared sum of those variables is passed to an activation function to produce an output according to: terjemahan 7.3.3.3 empat-lapisan sistem neuro-fuzzy (ANFIS) walaupun lima-lapis struktur yang dijelaskan di sini telah nost yang selama ini dikenal untuk arsitektur ANFIS, ada saran lain struktur ANFIS melibatkan empat-lapisan arsitektur. dalam struktur ini, lapisan tiga dan empat menyangkut hal menjadikan normal dan akibat variabel digabungkan dalam sebaik mungkin untuk mendapatkan struktur yang setara dengan hanya empat lapisan. jaringan baru dalam hal menjadikan normal berat berlangsung di lapisan terakhir [15]. figture 7,8 menunjukkan ANFIS empat-lapisan struktur dengan dua masukan. 7.3.3.4 tiga-lapisan neuro-fuzzy approximator dalam [22], L.maguire dan co-penulis memperkenalkan tiga-lapisan neuro-fuzzy sistem sebagai alternatif untuk arsitektur perkiraan fuzzy alasan. fuzzy model yang digunakan dalam karya mereka adalah nol-pesanan sugeno model, fuzzy aturan di mana masing-masing memiliki akibat euzzy tunggal. usulan neuro-fuzzy arsitektur melaksanakan nol-pesanan sugeno jenis sebagai tiga lapisan jaringan. laye pertama terdiri dari node n +1 di mana n adalah jumlah input. ekstra node merupakan kesatuan bias masukan. input layaer (lapisan pertama) siaran masukan yang dipilih untuk node di lapisan tersembunyi. jumlah node dalam lapisan tersembunyi tergantung pada jumlah fuzzy set yang terkait dengan setiap masukan domain. jumlah node dalam lapisan tersembunyi ditentukan oleh hubungan np, dimana p adalah jumlah fuzzy set (partisi) di setiap domain masukan dan n adalah jumlah input. setiap node tersembunyi di lapisan dua weighted menerima masukan, satu dari salah satu variabel dan masukan dari kedua bias node. tersembunyi di node, yang squared jumlah variabel yang dibawa ke aktivasi fungsi untuk menghasilkan output yang sesuai untuk:

Related Documents

Ww
May 2020 10
Ww
June 2020 11
Ww
November 2019 19
Ww 2020
November 2019 19
Mesaje Ww
June 2020 5
Tracklist Ww
November 2019 10