Date:
______/______/ 2009
Marks
Worksheet 8: Fundamental Algebra (Substitution and Factorisation) 1
Basic Question Given that x = 5 , y = −4 , z = −2 , h = 0 and k = −1 , evaluate the following: (a) xy ( 2 x − 4k + xhz ) (b)
5 x − 3z xhk − 5 yk
(c)
2k xh − yz
Solution: (a)
xy ( 2 x − 4k + xhz ) = (5)(−4) [ 2(5) − 4(−1) + (5)(0)(−2)] = (−20) [10 + 4] = −280
(c)
(b)
5 x − 3z xhk − 5 yk 5(5) − 3(−2) = (5)(0)(−1) − 5(−4)(−1) 25 + 6 = 0 − 20 11 = −1 20
2k xh − yz 2(−1) = (5)(0) − (−4)(−2) −2 = −8 1 = 4
[Xin Min Sec School/2007] Ans: (a) −280 (b) −1
11 1 (c) 20 4
© Victoria School Math Department
2
Intermediate Question Given that a = −1 , b = (a)
1 and c = 2 , find the value of 2
1 1 1 + + a b c
(b)
a2 − b2 1 2 c 3
(b)
a 2 − b2 1 2 c 3
Solution: (a)
1 1 1 + + a b c 1 1 1 = + + −1 1 2 2 1 = −1 + 2 + 2 1 =1 2
1 (−1) − 2 = 1 2 (2) 3
2
2
1− =
1 4
4 3
=
3 4 4 3
=
3 3 × 4 4
=
3 4 [Cedar Girls’ Sec School/2008] 1 3 Ans: (a) 1 (b) 2 4
3
Intermediate Question (a) Factorise the expression p − pq + 3 − 3q completely. Solution:
(a) p − pq + 3 − 3q = p (1 − q ) + 3(1 − q ) = (1 − q )( p + 3) [Xin Min Sec School/2007] Ans: (1 − q )( p + 3)
© Victoria School Math Department
(b) Simplify
2y2 + 4y 5y
÷
2
4y + 8 10 y 2
Solution:
2 y2 + 4 y 4 y + 8 ÷ 5 y2 10 y 2
(b)
2 y ( y + 2) 10 y 2 × 5 y2 4( y + 2) =y =
[Cedar Girls’ Sec School /2008] Ans: y
4
Intermediate Question Factorize the following. (a) f (a − b ) + g (b − a ) (b) 2 pq − rs + 2 ps − qr
-( a - b) Solution: (a)
(b)
f ( a − b) + g (b − a ) = f ( a − b ) − g ( a − b) = (a − b)( f − g )
Common Factor
5
2 pq − rs + 2 ps − qr = 2 pq + 2 ps − qr − rs = 2 p(q + s) − r (q + s ) = (q + s)(2 p − r )
[Anglican High School/2007] Ans: (a) ( a − b)( f − g ) (b) ( q + s)(2 p − r )
Common Factor
Advance Question (a) Factorise x3 y − 5 x 2 y 2 − 3 xy 3 + 8 xy 4 . (b) Factorise ab + a 2b 2 − a 3b3 completely. Hence, factorise a n b n + a n +1b n +1 − a n + 2b n + 2 . Solution: (a)
(b)
x 3 y − 5 x 2 y 2 − 3 xy 3 + 8 xy 4 = xy ( x 2 − 5 xy − 3 y 2 + 8 y 3 )
ab + a 2b 2 − a 3b3 = ab (1 + ab − a 2b 2 )
a nb n + a n +1b n +1 − a n + 2b n + 2 = a nb n (1 + ab − a 2b 2 )
Ans: (a) xy ( x − 5 xy − 3 y + 8 y 2
2
3
)
[Anglican High School/2007] (b) ab (1 + ab − a 2b 2 ) , a n b n (1 + ab − a 2b 2 )
© Victoria School Math Department