Date:
______/______/ 2009
Marks
Worksheet 6: Fundamental Algebra (Simplifying Algebraic Expressions) 1
Basic Question (a) Simplify 2e + 3 f − 2(e + f ) . Solution: 2e + 3 f − 2(e + f ) = 2e + 3 f − 2e − 2 f = f
[Xin Min Sec School/2007] Ans: f (b) Simplify (−5m − 8n + 8 p ) − (−5n + 5m − 4 p ) . Solution: (−5m − 8n + 8 p ) − (−5n + 5m − 4 p ) = −5m − 8n + 8 p + 5n − 5m + 4 p = −10m − 3n + 12 p
[Anglican High School/2007] Ans: −10m − 3n + 12 p (c) Simplify 2b(c − a ) − [3c(a − b ) − 3a(b + c )] . Solution: 2b ( c − a ) − 3c ( a − b ) − 3a ( b + c ) = 2bc − 2ab − [3ac − 3bc − 3ab − 3ac] = 2bc − 2ab − [−3bc − 3ab] = 2bc − 2ab + 3bc + 3ab = ab + 5bc
[Chung Cheng High School/2007] Ans: ab + 5bc
© Victoria School Math Department
2
Basic Question (a) Express
3(5a − 1) 3a + 7 − as a single fraction. 4 6
Solution:
3(5a − 1) 3a + 7 − 4 6 9(5a − 1) − 2(3a + 7) = 12 45a − 9 − 6a − 14 = 12 39a − 23 = 12
[Anglican High School/2007] 39a − 23 Ans: 12 (b) Express
x−5 2 x − 3 3( x + 1) − + as a single fraction in its simplest form. 3 6 5
Solution:
x−5 2 x − 3 3( x + 1) − + 3 6 5 10( x − 5) − 5( 2 x − 3) + 18( x + 1) = 30 10 x − 50 − 10 x + 15 + 18 x + 18 = 30 18 x − 17 = 30
[Chung Cheng High School/2007] 18 x − 17 Ans: 30
© Victoria School Math Department
3
Intermediate Question 2 3 Simplify the expression 6a ÷ 3a . 5b 3 10b
Solution: 6a 2 3a 3 6a 2 10b ÷ = × 5b3 10b 5b3 3a 3 4a 2b = 3 3 1a b 4 = 2 ab [Cat High Sec 1 P1/2007] 4 Ans: ab 2
4
Intermediate Question 2
3m 2 (− 6mn ) ÷ . 12 23 n (b) Subtract (3x2 – 4xy + 5y2) from the sum of (3x2 – 2xy + 6y) and (2x3 + xy – 2y2).
(a) Simplify
Solution: 3m 2 ( −6mn ) (a) ÷ 23 n 12 2 3m 12 = 3 × 2 n 36m 2 n 2 1m 2 = 8m 2 n 3 1 = 3 8n
2
(b) ( 3 x 2 − 2 xy + 6 y ) + ( 2 x 3 + xy − 2 y 2 ) − ( 3 x 2 − 4 xy + 5 y 2 ) = 3 x 2 − 2 xy + 6 y + 2 x3 + xy − 2 y 2 − 3 x 2 + 4 xy − 5 y 2 = 2 x 3 + 3 xy + 6 y − 7 y 2
[Cedar Girls’ Sec School/2007] 1 Ans: (a) 3 (b) 2 x 3 + 3xy + 6 y − 7 y 2 8n
© Victoria School Math Department
5
Advance Question Simplify 2 x 2 15 xz 3 8 x 4 yz (a) × ÷ 3 4 6 12 (b) ( 8 x 3 y 4 ) ÷ xy 5 (c)
3 xy 5 × ( −2 x 3 )
2
2 3
( − xy )
Solution:
(a)
2 x 2 15 xz 3 8 x 4 yz 2 x 2 15 xz 3 6 × ÷ = × × 4 3 4 6 3 4 8 x yz 15 x3 z 3 = 4 8 x yz =
15 z 2 8 xyz
12 xy 8 x 3 y 4 5 = × (b)8 x y ÷ 5 1 12 xy 3
4
=
(c)
3 xy 5 × ( −2 x3 ) 2 3
( − xy )
10 x 2 y 3 3
2
=
3 xy 5 × 4 x 6 − x3 y 6
=
−12 x 4 y
Ans: (a)
10 x 2 y 3 15 z 2 −12x 4 (b) (c) 3 8 xyz y
© Victoria School Math Department