Date:
______/______/ 2009
Marks
Worksheet 13: Solving Inequalities 1
Basic Given that −4 ≤ x ≤ 3 and 1 ≤ y ≤ 8 , calculate (a) the largest value of xy , (b) the smallest value of x − y , x (c) the smallest value of , y (d) the largest value of x 2 + y 2 . Solution: (a) (b)
Largest value of xy = 3 × 8 = 24 Smallest value of x − y = −4 − 8
(c)
= − 12 x −4 Smallest value of = y 1 = −4
(d)
Largest value of x 2 + y 2 = ( −4 ) + 82
2
= 16 + 64 = 80 [Catholic High School / 2007] Ans: (a) 24 (b) –12 (c) – 4 (d) 80
2
Basic (a) Find the largest integer p such that 5 p < 23. (b) Find the smallest prime number q such that 3q > 69. Solution: 5 p < 23 (a) 23 p< 5 p < 4.6 Largest integer p = 4 (b)
3q > 69 q > 23
Smallest prime number q = 29 [Anglican High School / 2007] Ans: (a) p = 4 (b) q = 29
© Victoria School Math Department
3
Basic Solve the inequality 2 − 2 x > 9 . Hence write down the greatest integer value of x which satisfies 2 − 2 x > 9 . Solution: 2 − 2x > 9 −2 x > 7 x < −3.5 The greatest integer value of x = − 4
[GCE O Level / 2008] Ans: x = – 4
4
Basic (a)
Illustrate, on the number line given in the answer space below, the solution of the inequality 4 x − 10 ≤ x + 6 .
0
(b)
1
4
3
2
5
6
7
Hence, list all the possible natural numbers of the solution.
Solution: (a) 4 x − 10 ≤ x + 6 4 x − x ≤ 6 + 10 3 x ≤ 16
x≤5
0
(b)
1 3
1
2
3
5 51 3
4
6
7 x
All the possible natural numbers are 1, 2, 3, 4, and 5.
[Cedar Girl’s Sec School/2007] 1 Ans: (a) x ≤ 5 (b) 1, 2, 3, 4, 5 3
© Victoria School Math Department
5
Basic Solve the inequality 3 − 2 x <
1 (3x − 4) . 2
Solution:
1 ( 3x − 4 ) 2 3 − 2 x < 1.5 x − 2 3 + 2 < 1.5 x + 2 x 5 < 3.5 x 3 − 2x <
3.5 x > 5 x >1
3 7
[Cedar Girl’s Sec School/2008] 3 Ans: x > 1 7
6
Intermediate Solve the following inequality 5
1 1 ≤ 1 − 8k . 2 2
Solution:
1 1 ≤ 1 − 8k 2 2 1 1 8k ≤ 1 − 5 2 2 8 k ≤ −4
5
4 8 1 k≤− 2 k≤−
[Anglican High School / 2007] 1 Ans: k ≤ − 2
© Victoria School Math Department
7
Advance (a)
Solve −5 ≤ 2 x + 3 ≤ 10 .
(b)
Hence, write down the greatest and least integer values of x which satisfy
−5 ≤ 2 x + 3 ≤ 10 . Solution: (a) − 5 ≤ 2 x + 3 ≤ 10 − 5 ≤ 2 x + 3 and
2 x + 3 ≤ 10
− 8 ≤ 2x −4≤ x ∴ − 4 ≤ x ≤ 3.5 (b)
2x ≤ 7 x ≤ 3.5
Greatest integer of x = 3 Least integer of x = − 4
[Catholic High School / 2007] Ans: (a) − 4 ≤ x ≤ 3.5 (b) 3 , − 4
© Victoria School Math Department