Quadratic Expressions (Binomial Products) Products of Monomials -
(ax)2 = a2x2
-
(abx)2 = a2 b2x2
Products of Binomials -
×
(a + b)(c + d) = ac + ad + bc + bd ac
-
(a ± b)2 = a2 ± 2ab + b2
-
(a + b)(a
b) = a2
b2
x 2
-
(ax + b)(cx + d) = (ac)x + (ad + bc)x + bd
-
(x + p)(x + q) = x2 + (p + q)x + pq
2
× ac
a c
b d
bc ad
bd
x
1
a c
b d
bc ad
bd
a
b
c
ac
bc
d
ad
bd
EXERCISE 1 1. Simplify: (a) 3x 2 + (3 y )2
(b) (3 p 2 q)3 ÷ pq 2
Ans: 3 x 2 + 9 y 2
Ans: 27 p5 q
2. Compare each of the following set of operations, algebraic one and arithmetic one: (a)
( x + 2)( x + 3) 12 × 13
(b)
( x + 2)(3 x + 4) 12 × 23
.
(c)
(2 x + 3)(4 x + 5) 23 × 45
(d)
.
( x + 2)2 12 × 12
.
EXERCISE 2 1. Use the diagram to show: (a) (a + b) 2 = a 2 + 2ab + b 2
(b) ( x + p )2 = x 2 + 2 px + p 2
(c) (a b)2 = a 2 2ab + b 2
(d) ( x
(e) (a + b)(a b) = a 2 b 2
(f) ( x + p )( x
p ) 2 = x 2 2 px + p 2
p) = x 2
p2
2. Product: (a) ( x + 1)( x + 2)
(b) (2 x + 3)(4 x 5)
Ans: x 2 + 3 x + 2 (c) (2 x 3)(4 x + 5)
Ans: 8 x 2 + 2 x 15 (d) (2 x 3)(4 x 5)
Ans: 8 x 2 2 x 15
Ans: 8 x 2 22 x + 15
3. Product: (a) (3 x + 2)(4 x + 5)
(b) (2 p 3)(4 p + 7)
Ans: 8 p 2 + 2 p 21
Ans: 12 x 2 + 23 x + 10 (c) (2 x + 3 y )( x + 5 y )
(d) (3a 5b)(2a b)
Ans: 2 x 2 + 13 xy + 15 y 2 (e) (2 x + 5) 2
Ans: 6a 2 13ab + 5b 2 (f) (2 y 5)2
Ans: 4 y 2 20 y + 25
Ans: 4 x 2 + 20 x + 25 (g) (3 x + 2)2
(h) (3 x 2 y ) 2
Ans: 9 x 2 12 xy + 4 y 2
Ans: 9 x 2 + 12 x + 4 (i) (3 x + 2)(3 x 2)
(j) (2 x + 5 y )(2 x 5 y )
Ans: 9 x 2 4
Ans: 4 x 2 25 y 2
(k) (2 p 2 3 pq)(q 2 2 pq )
Ans: 3 pq 3 4 p 3 q 4 p 2 q 2